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Abstract: Reduction algorithms are an important tool for understanding structural properties of groups. They play an

important role in algorithms designed to investigate matrix groups over a finite field. One such algorithm was designed

by Brooksbank et al. for members of the class C6 in Aschbacher’s theorem, namely groups N that are normalizers in

GL(d, q) of certain absolutely irreducible symplectic-type r -groups R , where r is a prime and d = rn with n > 2.

However, the analysis of this algorithm has only been completed when d = r2 and when d = rn and n > 2, in the latter

case under the condition that G/RZ(G) ∼= N/RZ(N) . We prove that the algorithm runs successfully for some groups

in the case of d = r3 without any assumption.
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1. Introduction

In 1984, Aschbacher proved in his famous paper [2] that every subgroup of GL(d, q) lies in at least one of nine

classes C1 ,C2 ,. . . ,C9 .

This classification is regarded as the starting point of the matrix group recognition project. One of the

first published articles related to this project is Neumann and Praeger’s algorithm [14], which decides whether

or not a matrix group over a finite field contains the special linear group. After this paper many algorithms

were designed; some examples are [1, 3, 8, 13, 15]. For a more comprehensive list of references one can see [18],

and the aim and frame of the project can be found in [12].

Given groups G and H , a reduction algorithm sets up a data structure for a homomorphism φ : G → H

with nontrivial image. Reduction algorithms are not only an important tool for understanding structural

properties of groups but also form an integral part of the matrix group recognition project. If we can design

a reduction algorithm for the group G , then we can find a normal subgroup N and the factor group G/N .

Repeating these steps recursively, we can form a composition tree for G in which the leaves of the tree are

either simple groups or constructively recognized groups in other ways. Hence, this composition tree provides

a data structure in which computation in the original group can be conducted.

Up to now, there have been two important reduction algorithms. One of them is an algorithm for the

groups in the classes C3 and C5 , which is fully analyzed and so has an important value in the literature [6].
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The other reduction algorithm is designed for the groups in the C6 class [5], but this algorithm has not yet

been fully analyzed.

In this paper, we extend the analysis of the algorithm given in [5]. We use the GAP system [20]

(http://www.gap-system.org) in our analyses.

2. Essential preliminaries and process of the analyses

2.1. Normalizers of extraspecial groups

In [2], Aschbacher defined the class C6 as subgroups of the normalizer in GL(d, q) of symplectic-type r -groups

R (r prime). Symplectic-type r -groups are closely related to the extraspecial groups due to the their structure.

We will be concerned only with the symplectic-type r -groups with minimal exponent. The structures of these

groups outlined in [11, 19] are given in Table 1.

Table 1. Symplectic-type r -groups.

Structure of R |R| |Z(R)| Notation

n︷ ︸︸ ︷
R0 ◦R0 ◦ · · · ◦R0 r1+2n r r1+2n

n︷ ︸︸ ︷
D8 ◦D8 ◦ · · · ◦D8 21+2n 2 21+2n

+

n−1︷ ︸︸ ︷
D8 ◦D8 ◦ · · · ◦D8 ◦Q8 21+2n 2 21+2n

−

Z4 ◦
n︷ ︸︸ ︷

D8 ◦D8 ◦ · · · ◦D8 22+2n 4 22+2n

In C6 groups, the structures of the normalizers of the symplectic-type r -groups given in [5] are as follows:

Z (GL (d, q)) ◦ r1+2n.Sp (2n, r) , r odd

Z (GL (d, q)) ◦ 22+2n.Sp (2n, 2) , r = 2 and 4|q − 1

Z (GL (d, q)) ◦ 21+2n
+ .O+ (2n, 2) , r = 2

Z (GL (d, q)) ◦ 21+2n
− .O− (2n, 2) , r = 2.

We are interested in extensions by Sp(2n, r). If G is a C6 group with d = r3 , then G/(R∩G) ∼= GR/R ≤
N/R ∼= Sp(6, r). It is well known that if G is perfect, then all factor groups of G , especially G/(R ∩ G), are

perfect. For a perfect C6 group G , the factor group G/(R ∩G) is a perfect subgroup of Sp(6, r). To analyze

the algorithm for perfect C6 groups, we have to determine all perfect subgroups of the Sp(6, r). These groups

are firstly used in the analyses of the perfect C6 groups and eventually in the generalization (d = r3 ).

Any subgroup of a group G is contained in at least one of the maximal subgroups of G , and all perfect

subgroups of G are contained in the soluble residual of G . We have to determine the soluble residuals of the
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maximal subgroups of Sp(6, r) and depending on these residuals we must find all the perfect subgroups of

Sp(6, r). Hence, using the maximal subgroups of Sp(6, r) taken from [4, 11], the soluble residuals of maximal

subgroups of Sp(6, r) are determined and given in the Table 2.

Table 2. Soluble residuals of maximal subgroups of Sp(6, r).

Soluble residuals of the maximal subgroups

Maximal subgroups r = 2 r = 3 r ≥ 5

E1+4
r : ((r−1)×Sp(4,r)) - E1+4

3 :Sp(4, 3) E1+4
r :Sp(4,r)

E5
r : ((r−1)×Sp(4,r)) E5

2 :A6 - -

E3+4
r : (GL(2,r)×Sp(2,r)) [ ] [ ] E3+4

r : (SL(2,r)×Sp(2,r))

E6
r :GL(3,r) E6

2 :GL (3, 2) E6
3 :SL(3, 3) E6

r :SL(3,r)

Sp(2,r)×Sp(4,r) A6 Sp(4, 3) Sp(2,r)×Sp(4,r)

Sp(2,r)3:S3 - [ ] Sp(2,r)3

GL(3,r)·2 - SL(3, 3) SL(3,r)

Sp(2,r3) : 3 Sp(2,23) Sp(2,33) Sp(2,r3)

GU(3,r)·2 - SU(3, 3) SU(3,r)

Sp(2,r) ◦GO(3,r) - - Sp(2,r) ◦ SO(3,r)

SO+(6,r) A8
∼= PSL(4, 2) - -

SO−(6,r) PSp(4, 3) ∼= PSU(4, 2) - -

2·A5
∼= SL(2, 5) - 2·A5

∼= SL(2, 5) -

N1 - - PSU(3, 3) (r= 11)

2·S−
5 - - 2·A5

∼= SL(2, 5) (r= 7)

2·L2(7)
·2+

2·L2(13) - Sp(2, 13) -

U3 (3) : 2 PSU(3, 3) - -

2× U3(3) - - PSU(3, 3) (r= 7)

(2× U3 (3))·2 - - PSU(3, 3) (r= 11)

2·J2 - - 2·J2 (r= 5)

2·L2(q) - - Sp(2,r) (r ≥ 7)

“[ ]” stands for the trivial group.

“–” means that there is no group in this case.

“notation” can be found in [4].

The perfect subgroups obtained from the soluble residuals stated in Table 2 are as follows:

A5 , 2·A5
∼= SL(2, 5), SL(2, 9) ∼= 2.A6 , 25.A5 , 22.(A5×A5), 52.A52

1 , PSL(3, 2), 3.A6 , 3.A7 , PSL(2, 11),

2.(A5×A5), 2.(A5×L2(11)), 2
3.L2(3), A7 , Inn(Z2wrA5), 2

6.A5 , PSU(3, 3) (the notation of [9] has been used

for these groups).
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2.2. Strategy of the analyses

In [5], the authors designed a reduction algorithm for C6 groups and proved the following theorem:

Theorem 2.1 [5] Let G ≤ NGL(d,q)(R) be a C6 group where R is an extraspecial r -group and d = rn . Then

there exists a reduction algorithm from G to H where H is a permutation or matrix group.

The algorithm described in Theorem 2.1 relies on a procedure called BlindDescent, which takes as input

a group G ≤ GL(d, q) and δ > 0 and returns as output generators for a subgroup U for which U/(UZ(G)) is

abelian. BlindDescent chooses a random element x in G and repeats a basic step up to 48nlog(1/δ) times. In the

basic step first another random element y in G is chosen. Depending on the properties of x and y , the element

x might be modified. If during some repetition of the basic step a generating set for a subgroup is returned, we

say that BlindDescent is successful ; otherwise, the procedure fails. As the procedure for BlindDescent relies in

turn on several subprocedures, we have not reproduced the procedure here and instead refer the reader to [5, p.

8]. We note that the analysis of the reduction algorithm in Theorem 2.1 in [5] was only completed for the case

d = r2 and for the cases d = rn with n > 2 under the additional assumption that G/RZ(G) ∼= N/RZ(N). For

the case d = r an analyzed algorithm exists as presented by [17]. We extend the analysis to the case d = r3

without any further assumptions. We obtain our result by the following steps:

1. the analyses for the soluble C6 groups,

2. the analyses for the perfect C6 groups,

3. the analyses for the general case d = r3 .

3. Analysis of the algorithm “BlindDescent”

Hypothesis 1 Let G be a C6 group including R as an extraspecial r -group (r prime), d = r3 , and let δ be

a reliability parameter.

3.1. Soluble case

We know that the derived series of a finite group G terminates either in the trivial group, if G is soluble, or

in a perfect group called the “soluble residual”. Thus, we investigate groups in terms of their solubility and

perfectness. For soluble linear groups of degree n , Zassenhaus determined an upper bound for the derived length

of the group as a function of n [21]. This bound was improved by Huppert [10] and Dixon [7]. Ultimately,

Newman [16] proved the following:

Let τ be the function defined on positive rational numbers by:

τ (n) =



5a (n) , for 9a(n) ≤ n ≤ 16.9a(n)−1

5a (n) + 1, for 16.9a(n)−1 ≤ n ≤ 3.9a(n)

5a (n) + 2, for 3.9a(n) ≤ n ≤ 4.9a(n)

5a (n) + 3, for 4.9a(n) ≤ n ≤ 64.9a(n)−1

5a (n) + 4, for 64.9a(n)−1 ≤ n ≤ 9a(n)−1

where a (n) = [log9n ] ( [x] is a largest integer that is less than or equal to x).
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Then

ρ (n) =


1, for n = 1

4, for n = 2

9 + τ ((n− 2)/8) , for n ∈ {6, 7, 17, 59, 60, 61, 62, 63, 64, 65}
10 + τ ((n− 2)/8) , other

is an upper bound for the derived length of a soluble linear groups of degree n .

Lemma 3.1 The derived length of a soluble subgroup of Sp(6, r) is at most 7 .

Proof If n = 6, then we need τ (1/2) to find ρ (n). Since a(1/2) = [log91/2] = −1 we find τ (1/2) = −2.

Hence, we get ρ (n) = 7. 2

Theorem 3.1 Suppose Hypothesis 1 holds. Assume that some iteration of the main loop in BlindDescent(G , δ )

(BlindDescent is a part of the reduction algorithm [5], which has not yet been fully analyzed) generates a

nonscalar x ∈ H for some soluble subgroup H of group G . Then BlindDescent succeeds in at most eight

further iterations with probability greater than 1− 9δ .

Proof In the main loop of BlindDescent, line 18 or 21 returns the suitable element x or generates elements

x in subgroups of the derived series of H . Hence, we construct a correct x in at most seven iterations because

the derived length of any soluble subgroup of Sp(6, r) is at most 7 by Lemma 3.1, and so H(7) ≤ R . The

probability of these iterations and the last normal subgroup computation is at least 1− 9δ . 2

3.2. Perfect case

We have to consider all soluble residuals of maximal subgroups of Sp(6, r) because these subgroups are perfect,

and then we analyze the other perfect subgroups of Sp(6, r) obtained from these soluble residuals.

We need the following lemma to analyze the algorithms for an input group G for which G/(R ∩ G) is

perfect.

Lemma 3.2 Let G be a finite group and H an elementary abelian normal r -subgroup of G . If C is a fixed

coset of H in G , then the conditional probability, Prob ([g, h] ̸= 1| [g, h] ∈ H), is at least 1− 1/r where h is

a uniformly distributed random element of C and g is a fixed element of G acting nontrivially on H .

Proof See [5, Lemma 5.1.ii]. 2

Theorem 3.2 Suppose Hypothesis 1 holds. If S = R∩G and G=G/S ∼= A6 (in case r = 2), then BlindDescent

returns successfully with probability 1− δ after at most 160log(1/δ) repetitions of a basic step.

Proof Assume that the element assigned to x in any loop of BlindDecent is in G\R and y is the random

element chosen just after this assignment. Let x = xS and y = yS . One can easily see with a simple program

that computes the proportion of commutative elements in A6 that Prob (y ∈ CG (x)) ≥ 1/80. We know that:

Prob (y ∈ CG (x)) = Prob([x, y] = S)

= Prob(x−1y−1xyS = S)

= Prob([x, y] ∈ S).

918
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Hence, we get Prob ([x, y] ∈ S) ≥ 1/80 . Now let us calculate the probability of producing an element in R\Z(R)

using BlindDescent with the aid of Lemma 3.2. If we assume that b = xZ (S) and h = yZ (S) ∈ gS/Z(S) with

g ∈ G , then for any kZ (S) ∈ S/Z(S) with k ∈ S ,

(kZ (S))
b
= (xZ (S))

−1
kZ (S)xZ (S).

As x ∈ G\R , we know that x /∈ Z (S), so the element x−1kx is not always an element of Z (S). Henceforth,

the element b acts on S/Z(S) nontrivially. From Lemma 3.2,

Prob ([b, h] ̸= Z (S)| [b, h] ∈ S/Z(S)) ≥ 1− 1/2

⇒ Prob ([xZ (S) , yZ (S)] ̸= Z (S)| [xZ (S) , yZ (S)] ∈ S/Z(S)) ≥ 1/2

⇒ Prob
(
x−1y−1xyZ (S) ̸= Z (S) |x−1y−1xyZ (S) ∈ S/Z(S)

)
≥ 1/2

⇒ Prob ([x, y] /∈ Z (S)| [x, y] ∈ S) ≥ 1/2.

Hence, from the definition of conditional probability (P (A | B) = P (A ∧B)/P (B)),

Prob ([x, y] /∈ Z (S) ∧ [x, y] ∈ S) ≥ Prob ([x, y] /∈ Z (S)| [x, y] ∈ S)× Prob([x, y] ∈ S).

We get the probability that [x, y] ∈ S \ Z(S) is at least 1/160. For such an element y , line 11 reassigns x to

a nonscalar element of R with p = oy . Thus, BlindDescent produces a suitable x with probability 1− δ after

160log(1/δ) elements y have been processed. 2

Theorem 3.3 Suppose Hypothesis 1 holds. If S = R ∩ G and G = G/S ∼= 2·A5 , then BlindDescent returns

successfully with probability 1− δ after at most 30log(1/δ) repetitions of a basic step.

Proof Let N=O∞(G) be the soluble radical of G . In this case, we have G/N ∼= A5 . Let x = xS and y = yS

where x and y are elements of G produced by BlindDescent. If x /∈ N , then Prob
(
yN ∈ CG/N

(
xN

))
≥ 1/20.

One can see that

Prob
(
yN ∈ CG/N

(
xN

))
= Prob

([
xN, yN

]
= N

)
= Prob

(
x−1y−1x yN = N

)
= Prob

(
[x, y] ∈ N

)
and so we obtain Prob

(
[x, y] ∈ N

)
≥ 1/20.

We know that N ≤ G/S and so from the Correspondence Theorem, there is a normal subgroup of G

corresponding to N where this subgroup includes S . Let us show this group by N . Hence, one can see that

N = N/S . Also, since we can define an epimorphism (natural homomorphism) from N to N , the normal

subgroup N is soluble. Then:

Prob
(
[x, y] ∈ N

)
≥ 1/20 ⇒ Prob((xS)

−1
(yS)

−1
xSyS ∈ N/S ≥ 1/20

⇒ Prob(x−1y−1xyS ∈ N/S) ≥ 1/20

⇒ Prob([x, y] ∈ N) ≥ 1/20.
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ÇAĞMAN and ANKARALIOĞLU/Turk J Math

Assume that H = G/Z(G) and A = N/Z(G) (here, the group A = N/Z(G) is an elementary abelian 2-group

with order 25 ). If we take b = xZ(G) , h = yZ(G), and C = gZ(G)(N/Z(G)), then from Lemma 3.2, we get:

Prob
([
xZ

(
G
)
, yZ

(
G
)]

̸= Z
(
G
)
|
[
xZ

(
G
)
, yZ

(
G
)]

∈ N/Z(G)
)
≥ 1− 1/3

⇒ Prob
(
x−1y−1x yZ

(
G
)
̸= Z

(
G
)
| x−1y−1x yZ

(
G
)
∈ N/Z(G)

)
≥ 2/3

⇒ Prob
(
[x, y] /∈ Z

(
G
)
| [x, y] ∈ N

)
≥ 2/3

⇒ Prob
(
x−1y−1x y /∈ Z (G/S) | x−1y−1xyS ∈ N/S

)
≥ 2/3

⇒ Prob
(
x−1y−1xyS /∈ Z (N/S) | [x, y] ∈ N

)
≥ 2/3

⇒ Prob ([x, y] /∈ Z(N)| [x, y] ∈ N) ≥ 2/3.

Then, from the definiton of conditional probability, we see that the probability that [x, y] ∈ N \Z(N) is at least

1/30. Therefore, BlindDescent finds a suitable x with probability 1− δ in line 11 with p = oy after 30log(1/δ)

elements y have been processed. 2

Theorem 3.4 Suppose Hypothesis 1 holds. If S = R ∩G and G = G/S ∼= Inn(Z2wrA5) , then BlindDescent

returns successfully with probability 1− δ after at most 40log(1/δ) repetitions of a basic step.

Proof In this case, r = 2, N is an elementary abelian group of order 24 , Z(G) is the trivial subgroup,

H = G/Z(G) and A = N/Z(G) ∼= N . Let N be a subgroup of G that corresponds to N . Then, as in Theorem

3.3, we get Prob([x, y] ∈ N) ≥ 1/20. Hence, if we take b = xZ(G), h = yZ(G), and C = gZ(G)(N/Z(G)),

then by Lemma 3.2, we get:

Prob
([
xZ

(
G
)
, yZ

(
G
)]

̸= Z
(
G
)
|
[
xZ

(
G
)
, yZ

(
G
)]

∈ N/Z(G)
)
≥ 1− 1/2

⇒ Prob
(
x−1y−1x yZ

(
G
)
̸= Z

(
G
)
| x−1y−1x yZ

(
G
)
∈ N/Z(G)

)
≥ 1/2

⇒ Prob
(
[x, y] /∈ Z

(
G
)
| [x, y] ∈ N

)
≥ 1/2

⇒ Prob(x−1y−1x y /∈ Z (G/S) | x−1y−1xyS ∈ N/S) ≥ 1/2

⇒ Prob(x−1y−1xyS /∈ Z (N/S) | [x, y] ∈ N) ≥ 1/2

⇒ Prob([x, y] /∈ Z(N)| [x, y] ∈ N) ≥ 1/2.

Thus, from the definition of conditional probability, we obtain that the probability that [x, y] ∈ N \ Z(N) is

at least 1/40. BlindDescent finds a suitable x with probability 1− δ in line 11 with p = oy after 40log(1/δ)

elements y have been processed. 2

Theorem 3.5 Suppose Hypothesis 1 holds. If S = R ∩ G and G = G/S ∼= 3.A6 , then BlindDescent returns

successfully with probability 1− δ after at most 200log(1/δ) repetitions of a basic step.

Proof In this situation, r = 5, N ∼= C3 (cyclic group of order 3), H = G/Z(G), and A = N/Z(G). One can

see easily that A is the trivial group, so A can be taken as an elementary abelian 5-group. Hence, if we take
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N as a subgroup of G corresponding to N , then:

Prob([x, y] ∈ N) ≥ 1/80

and

Prob([x, y] /∈ Z(N)| [x, y] ∈ N) ≥ 4/5.

We get the probability that [x, y] ∈ N \ Z(N) is at least 1/200. Therefore, BlindDescent produces a suitable

x with probability 1− δ in line 11 with p = oy after 200log(1/δ) elements y have been processed. 2

Theorem 3.6 Suppose Hypothesis 1 holds. If S = R ∩ G and G = G/S ∼= PSL(3, 2) , then BlindDescent

returns successfully with probability 1− δ after at most 60log(1/δ) repetitions of a basic step.

Proof In this case, r= 3 and Prob( [x, y] ∈ S) ≥ 1/40. So, since

Prob ([x, y] /∈ Z (S)| [x, y] ∈ S) ≥ 2/3,

we obtain:

Prob ([x, y] /∈ Z (S) ∧ [x, y] ∈ S) ≥ 1/60.

2

If we know that any involution of a finite group G is in the center of G , then at least half of the elements

of G have even order. For example, let t be a central involution of G and let y be an arbitrary element of G .

Then one of y and yt has even order. If y has even order, then the statement is clearly true. Assume that y

has odd order, i.e. |y| = 2k + 1. In this case, |yt| = lcm(|y|, |t|) = 2.(2k + 1). Thus, yt has even order. Also,

the number of pairs y, yt of elements different from each other is equal to half of the order of G . Thus, at least

half of the elements of G have even order.

Taking advantage of this property of finite groups, the analysis in [5] was done for Sp(2, r), which is a

perfect subgroup of Sp(4, r). One can see in [4, 11] that this subgroup is also a perfect subgroup of Sp(6, r).

Thus, this analysis is also valid for Sp(6, r).

Theorem 3.7 Suppose Hypothesis 1 holds. If S = R∩G and G = G/S ∼= Sp(2, r)
3
, then BlindDescent returns

successfully with probability 1− δ after at most 324log(1/δ) repetitions of a basic step.

Proof It is well known that the order of the center of Sp(2, r)3 is equal to 8 and all involutions of these

groups are central. Thus, at least half of the elements of any of these groups have even order. In Sp(2, r), the

proportion of elements of order equal to 6 modulo 8 is at least 1/6. Hence, the proportion of even ordered and

noncentral elements of the form y = (y1, y2, y3) in G = Sp(2, r)
3
for which y is determined by the elements

mentioned in previous sentence is at least 1/216. For y ∈ G for which the image of y is y , the image of yoy/2

is an involution and central. Then we get:

xSyoy/2S = yoy/2SxS

⇒ x−1S(y
oy/2)

−1
SxS = S

⇒ [x, yoy/2] ∈ S.
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Thus, we find that Prob([x, yoy/2] ∈ S) = 1. Here r ≥ 3 and so, from Lemma 3.2, we obtain:

Prob([x, yoy/2] /∈ Z(S)| [x, yoy/2] ∈ S) ≥ 2/3.

Hence, we get:

Prob([x, yoy/2] /∈ Z(S) ∧ [x, yoy/2] ∈ S) ≥ 1.
2

3
.
1

216

⇒ Prob([x, yoy/2] /∈ Z(S) ∧ [x, yoy/2] ∈ S) ≥ 1

324
.

BlindDescent thus produces a suitable x with probability 1− δ in line 11 with p = 2. 2

3.3. Integration

If the input group G is soluble, then BlindDescent runs successfully by Theorem 3.1. If the input group G is

nonsoluble, then we take a preparatory step of replacing G by its soluble residual. If the soluble residual of G

is one of the groups considered in Section 3.2, then BlindDescent gives the result successfully.
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