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Abstract: Let M2n+1 be an almost co-Kähler manifold of dimension > 3 with Kählerian leaves. In this paper, we

first prove that if M2n+1 is locally symmetric, then either it is a co-Kähler manifold with locally symmetric Kählerian

leaves, or the Reeb vector field ξ is harmonic and in this case M2n+1 is non-co-Kähler. We also prove that any almost

co-Kähler manifold of dimension 3 is ϕ -symmetric if and only if it is locally isometric to either a flat Euclidean space

R3 or a Riemannian product R×N2(c) , where N2(c) denotes a Kähler surface of constant curvature c ̸= 0.
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1. Introduction

In 1969, Tanno in [23] proved the well-known theorem that almost contact metric manifolds whose automorphism

groups have maximum dimensions can be classified into three classes, which were later characterized as Sasakian,

Kenmotsu, and co-Kähler manifolds, respectively. Notice that the notion of co-Kähler manifolds in this paper

is just the terminology of cosymplectic manifolds earlier used by Blair [1, 2] and Goldberg and Yano [12]. Here

we adopt new terminology due to the fact that the co-Kähler manifolds can be regarded as an odd-dimensional

version of Kähler manifolds from certain topological viewpoints. For more details we refer the reader to Li [14],

a recent survey by Cappelletti-Montano et al. [5], and the many references therein regarding geometric and

topological results on such manifolds.

Among others, the study of locally symmetric almost contact metric manifolds has been an interesting

problem in contact geometry for a long time. With regard to the complete classification of locally symmetric

contact metric manifolds, we refer the reader to Blair [2, pp. 132–133] and references therein. In particular,

Ghosh and Sharma in [11] proved that a locally symmetric contact strongly pseudoconvex integrable CR

manifold of dimension 2n + 1, n > 1 and n ̸= 3, is locally isometric to either the unit sphere S2n+1 or the

Riemannian product Sn(4) × Rn+1 . Very recently, the present author and Liu in [24] proved that any CR -

integrable almost Kenmotsu manifold of dimension greater than 3 is locally symmetric if and only if it is locally

isometric to either the hyperbolic space H2n+1(−1) or the product Hn+1(−4) × Rn . We also observe that

Perrone in [20] proved that any 3-dimensional locally symmetric almost co-Kähler manifold is locally isometric

to either the Euclidean space R3 or a product space R × N2(c), where N2(c) denotes a Kähler surface of

constant curvature c ̸= 0.
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Motivated by these results mentioned above, one object of this paper is to study locally symmetric almost

co-Kähler manifolds. We mainly prove that if an almost co-Kähler manifold M2n+1 of dimension greater than

3 with Kählerian leaves is locally symmetric, then either M2n+1 is a co-Kähler manifold with locally symmetric

Kählerian leaves of dimension 2n , or the Reeb vector field ξ is an eigenvector field of the Ricci operator with

nonzero eigenvalue and hence ξ is harmonic and in this case M2n+1 is non-co-Kähler. Some corollaries of our

main results are also provided.

On the other hand, by generalizing the notion of local symmetry, Takahashi in [22] introduced the notion

of (weakly) local ϕ-symmetry in the context of Sasakian geometry (that is, the Riemannian curvature tensor

is η -parallel), which is also an analogous notion of Hermitian symmetry in complex geometry. Many kinds

of symmetries in the framework of contact geometry were introduced and studied after Takahashi’s paper was

published. For example, Boeckx et al. in [3] and [4] studied strongly local ϕ -symmetric contact metric manifolds

and some D -homothetic transformations of ϕ-symmetric spaces, respectively. Moreover, ϕ-recurrent and ϕ-

symmetric Kenmotsu manifolds were studied by De et al. in [9] and [10]. Recently, the present author and Liu

in [25] studied ϕ-recurrent and ϕ-symmetric almost Kenmotsu manifolds with the Reeb vector field satisfying

some nullity conditions.

As far as we know, the studies of ( locally) ϕ-symmetric co-Kähler manifolds are limited. The other

object of the present paper is to study ϕ-symmetric almost co-Kähler manifolds of dimension three. Applying

some results shown by Perrone [20, 21], we obtain a complete local classification theorem of such manifolds.

Namely, any almost co-Kähler manifold of dimension 3 is ϕ-symmetric if and only if it is locally isometric

to either a flat Euclidean space R3 or a Riemannian product R × N2(c), where N2(c) is a Kähler surface of

constant curvature c ̸= 0. This obviously extends the corresponding results of Perrone [20].

This paper is arranged as follows. After providing some necessary preliminaries regarding almost co-

Kähler manifolds in Section 2, we give some properties of such manifolds under a condition of local symmetry

in Section 3. In the last section, we shall present the complete classification result of 3-dimensional almost

co-Kähler manifolds under a condition of ϕ-symmetry.

2. Preliminaries

In this paper, by an almost contact structure, which is denoted by the triplet (ϕ, ξ, η), we mean that on a

(2n + 1)-dimensional smooth manifold M2n+1 there exist a (1, 1)-type tensor field ϕ , a global vector field ξ ,

and a 1-form η such that

ϕ2 = −id + η ⊗ ξ, η(ξ) = 1, (2.1)

where id denotes the identity endomorphism, and ξ is called the characteristic or the Reeb vector field. It

follows from (2.1) that ϕ(ξ) = 0, η ◦ ϕ = 0, and rank(ϕ) = 2n . We shall denote by (M2n+1, ϕ, ξ, η) a smooth

manifold M2n+1 endowed with an almost contact structure, which is called an almost contact manifold.

The fundamental 2-form Φ on an almost contact metric manifold M2n+1 is defined by Φ(X,Y ) =

g(X,ϕY ) for any vector fields X and Y . We may define an almost complex structure J on product manifold

M2n+1 × R by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
, (2.2)

where X denotes the vector field tangent to M2n+1 , t is the coordinate of R , and f is a smooth function

defined on the product.
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An almost contact structure is said to be normal if the above almost complex structure J is integrable,

i.e. J is a complex structure. According to Blair [2], the normality of an almost contact structure is expressed

by [ϕ, ϕ] = −2dη ⊗ ξ , where [ϕ, ϕ] denotes the Nijenhuis tensor of ϕ defined by

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

for any vector fields X,Y on M2n+1 .

If on an almost contact manifold there exists a Riemannian metric g satisfying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) (2.3)

for any vector fields X,Y , then g is said to be compatible with the associated almost contact structure. In

general, an almost contact manifold endowed with a compatible Riemannian metric is said to be an almost

contact metric manifold and is denoted by (M2n+1, ϕ, ξ, η, g).

In this paper, by an almost co-Kähler manifold, we mean an almost contact metric manifold such that

both the 1-form η and 2-form Φ are closed (see [5]). In particular, an almost co-Kähler manifold is said to

be a co-Kähler manifold if the associated almost contact structure on it is normal, which is also equivalent to

∇ϕ = 0, or equivalently ∇Φ = 0. Notice that (almost) co-Kähler manifolds are just the (almost) cosymplectic

manifolds studied in [1, 2, 12, 17, 18]. The simplest example of (almost) co-Kähler manifolds is the Riemannian

product of a real line or a circle and a (almost) Kähler manifold. However, there do exist some examples of

(almost) co-Kähler manifolds that are not globally the product of a (almost) Kähler manifold and a real line or

a circle (see, for example, Dacko [17, Section 3]).

We now present some properties of almost co-Kähler manifolds. On an almost co-Kähler manifold

(M2n+1, ϕ, ξ, η, g), we set h = 1
2Lξϕ and h′ = h ◦ ϕ (notice that both h and h′ are symmetric operators

with respect to the metric g ). Then the following formulas can be found in Olszak [17, 18] and Perrone [20]:

hξ = 0, hϕ+ ϕh = 0, tr(h) = tr(h′) = 0, (2.4)

∇ξϕ = 0, ∇ξ = h′, divξ = 0, (2.5)

∇ξh = −h2ϕ− ϕl, (2.6)

ϕlϕ− l = 2h2, (2.7)

where l := R(· , ξ)ξ is the Jacobi operator along the Reeb vector field and the Riemannian curvature tensor R

is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

and tr and div denote the trace and divergence operators, respectively.

3. Locally symmetric almost co-Kähler manifolds of dimension > 3

In this section, we shall provide some classification results of locally symmetric almost co-Kähler manifolds of

dimension greater than 3. First, following Olszak [17, Section 3] and O’Neill [16, p. 221], we see easily that

any Riemannian product of a real line or a circle and a locally symmetric (almost) Kähler manifolds is a locally

symmetric (almost) co-Kähler manifold. Next we present a useful lemma shown by Perrone [20].
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Lemma 3.1 ([20]). On any locally symmetric almost co-Kähler manifold we have ∇ξh = 0 .

Proof Notice that the condition of local symmetry (i.e. ∇R = 0) implies that ∇ξl = 0. Then the proof

follows from Eq. (3.3) of Perrone [20, Lemma 3.1].

Proposition 3.1. Let M2n+1 be a locally symmetric almost co-Kähler manifold; then the multiplicity of the

eigenvalue zero of h is at least three.

Proof On any locally symmetric almost co-Kähler manifold M2n+1 , using ∇ξh = 0 in equations (2.6) and

(2.7) we obtain

l = −h2. (3.1)

Recall that the rank of a locally symmetric manifold is defined as the maximal dimension of a flat, totally

geodesic submanifold of the manifold (see Helgason [13]). By this definition, we have 1 ≤ rank(M2n+1) ≤ 2n .

If the rank of M2n+1 equals one, M2n+1 must be of constant sectional curvature since the dimension is odd.

On the other hand, according to Goldberg and Yano [12] and also Olszak [17, 18], in this context M2n+1 is a

locally flat co-Kähler manifold and we obtain easily that h = 0. If M2n+1 does not have constant sectional

curvature, its rank must be greater than one. This implies that for any point p ∈ M2n+1 and each tangent

vector at the point, there exists a flat, totally geodesic submanifold of dimension two through the point and

tangent to the vector. In particular, there exists a nonzero vector X at each point p orthogonal to ξ such that

lX = 0.

Let {ξ, Ei, ϕEi} be a local ϕ-frame of eigenvectors of h with the corresponding eigenvalues {0, λi,−λi}
respectively, where i ranges from 1 to n . Then we may write X =

∑n
i=1(X

iEi +X∗iϕEi), and using this in

equation (3.1) we obtain
n∑

i=1

Xi(λi)
2Ei +X∗i(λi)

2ϕEi = 0.

Since X is a nonzero vector, by the previous relation, there exists 1 ≤ j ≤ n such that Xj ̸= 0 (or

X∗j ̸= 0) and hence λj = 0. Obviously, ξ , Ej , and ϕEj are three distinct nonzero eigenvectors of h with

eigenvalue 0.

By the second term of relation (2.5), it is easy to check that (Lξg)(X,Y ) = 2g(h′X,Y ). Then ξ is a

Killing vector field if and only if h is vanishing. The following corollary follows from [12, Proposition 3] and

Proposition 3.1.

Corollary 3.1 ([20]). Any three-dimensional locally symmetric almost co-Kähler manifold is co-Kähler.

If on an almost co-Kähler manifold M2n+1 the Reeb vector field ξ satisfies

R(X,Y )ξ =k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

+ ν(η(Y )h′X − η(X)h′Y )
(3.2)

for certain smooth functions k, µ , and ν , we say that M2n+1 is an almost co-Kähler (k, µ, ν)-manifold (see

Dacko and Olszak [8] and also [5]).

Proposition 3.2. Any almost co-Kähler (k, µ, ν)-manifold is locally symmetric if and only if it is locally

isometric to the product of a real line or a circle and a locally symmetric almost Kähler manifold.
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Proof Let M2n+1 be an almost co-Kähler (k, µ, ν)-manifold. Substituting Y = ξ in (3.2) we get

l = −kϕ2 + µh+ νh′.

Using this in equation (2.7) and in view of equation (2.6) we obtain

h2 = kϕ2.

If k ̸= 0, h has three distinct eigenvalues 0 and ±
√
−k , contradicting Proposition 3.1. Having k = 0

and hence h = 0, according to Dacko [6, Theorem 2], we see that M2n+1 is locally isometric to the product of

a real line or a circle and an almost Kähler manifold. The converse is trivial.

Proposition 3.3. Let M2n+1 be a locally symmetric almost co-Kähler manifold; then the following relation

holds:

g((∇Xh′)h′Y + (∇Y h
2)X,Z) + g((∇Zh

′)h′Y,X) = 2g((∇h′Y h
′)X,Z) (3.3)

for any vector fields X,Y, Z .

Proof On any locally symmetric almost co-Kähler manifold, from equation (3.1) we have lX = −h2X for any

X ∈ X(M). Taking the covariant derivative of this relation, and using ∇R = 0 and relation (2.5), we obtain

R(∇Y X, ξ)ξ +R(X,h′Y )ξ +R(X, ξ)h′Y = −∇Y h
2X (3.4)

for any X,Y ∈ X(M). Using the second term of (2.5) we have

R(X,Y )ξ = (∇Xh′)Y − (∇Y h
′)X (3.5)

for any X,Y ∈ X(M). Applying (3.5) in (3.4) and using (3.1) again we get

(∇Xh′)h′Y − (∇h′Y h
′)X +R(X, ξ)h′Y + (∇Y h

2)X = 0

for any X,Y ∈ X(M). By taking the inner product of the above equation with any vector field Z ∈ X(M),

and using the fact that ∇Xh′ is a symmetric operator and using again (3.5), we obtain (3.3).

On an almost contact metric manifold, a symmetric (1, 1)-type tensor field T is said to be cyclic parallel

if it satisfies
g((∇XT )Y, Z) + g((∇Y T )Z,X) + g((∇ZT )X,Y ) = 0

for any vector fields X,Y, Z . Obviously, if T is parallel then the above relation holds trivially. Under the

condition of the cyclic parallelism of h′ , we obtain:

Corollary 3.2. Let M2n+1 be an almost co-Kähler manifold such that the tensor field h′ is cyclic parallel. If

in addition M2n+1 is locally symmetric, then it is locally isometric to the product of a real line or a circle and

a locally symmetric almost Kähler manifold.

Proof From relation (3.3), by the condition of the cyclic parallelism of h′ and the symmetry of h′ we obtain

(∇Y h
2)X − 3(∇h′Y h

′)X = 0 (3.6)

for any vector fields X,Y . Replacing X by ξ in (3.6) and making use of (2.5) we obtain h′3 = 0. Since h is

symmetric, we conclude that h = 0 and hence the proof is similar to that of Proposition 3.2. This completes

the proof.
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On a Riemannian manifold, a (1, 1)-type tensor field T is said to be of Codazzi type if it satisfies

(∇XT )Y = (∇Y T )X

for any vector fields X,Y . Using the above condition, we obtain:

Corollary 3.3. Let M2n+1 be an almost co-Kähler manifold with h′ being of Codazzi type. If in addition

M2n+1 is locally symmetric, then it is locally isometric to the product of a real line or a circle and a locally

symmetric almost Kähler manifold.

Proof Suppose that h′ is of Codazzi type; then from relation (3.5) we have

S(X, ξ) = 0

for any vector fields X , where S denotes the Ricci tensor defined by S(X,Y ) = tr{· → R(· , X)Y } . Moreover,

it follows from equation (3.1) that S(ξ, ξ) = tr(l) = −tr(h2). Comparing this with the above relation gives

that tr(h2) = 0. Since h is symmetric, we conclude that h = 0. The rest of the proof is similar to that of

Proposition 3.2. This completes the proof.

On an almost co-Kähler manifold M2n+1 , we shall denote by D the integrable distribution defined by

D = ker η . Let M2n be an integral manifold of D , and then it is easy to check that M2n and the restriction

of ϕ on it admit an almost Kähler structure. If the associated almost Kähler structure is integrable, Olszak

in [18] called M2n+1 an almost co-Kähler manifold with Kählerian leaves. Such a notion is analogous to that

of contact strongly pseudoconvex integrable CR manifolds (see [11]) and CR -integrable almost Kenmotsu

manifolds (see [24]). Moreover, Dacko and Olszak in [7] proved that any conformally flat almost co-Kähler

manifold of dimension > 3 with Kählerian leaves is locally flat.

It is easy to check that any co-Kähler manifold has Kählerian leaves. Clearly, any almost co-Kähler

manifold of dimension 3 has Kählerian leaves. From Dacko and Olszak [8], we know that any almost co-Kähler

(k, µ, ν)-manifold with k < 0 has Kählerian leaves. For more strictly almost co-Kähler manifolds with Kählerian

leaves, we refer the reader to Olszak [18, Section 3].

The following result characterizes the integrability of the associated almost Kähler structure.

Lemma 3.2 ([18, Proposition]). An almost co-Kähler manifold has Kählerian leaves if and only if

(∇Xϕ)(Y ) = g(X,hY )ξ − η(Y )hX (3.7)

for any vector fields X,Y .

Obviously, by (3.7), it follows that an almost co-Kähler manifold is co-Kähler if and only if it has Kählerian

leaves and ξ is Killing.

Lemma 3.3 ([19, Proposition 10]). Let M2n+1 be an almost co-Kähler manifold with Kählerian leaves, and

then we have
Qϕ− ϕQ = lϕ− ϕl + (η ◦Qϕ)⊗ ξ − η ⊗ (ϕQξ), (3.8)

where Q denotes the Ricci operator.

Together with the above two lemmas, we obtain the following main result.
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Theorem 3.1. Let M2n+1 be a locally symmetric almost co-Kähler manifold of dimension greater than 3 with

Kählerian leaves. Then either M2n+1 is a co-Kähler manifold with locally symmetric Kählerian leaves, or ξ is

an eigenvector field of the Ricci operator with negative constant eigenvalue.

Proof On any locally symmetric almost co-Kähler manifold, from equation (3.1) we get lϕ = ϕl . Using this

in equation (3.7) gives that

Qϕ− ϕQ = (η ◦Qϕ)⊗ ξ − η ⊗ (ϕQξ). (3.9)

Taking the covariant derivative of QϕX − ϕQX = η(QϕX)ξ− η(X)ϕQξ along any vector field and using (2.5),

we have

(∇Y Q)ϕX +Q(∇Y ϕ)X + (Qϕ− ϕQ)(∇Y X)− (∇Y ϕ)QX − ϕ(∇Y Q)X

=g(h′Y,QϕX)ξ + g(ξ, (∇Y Q)ϕX +Q(∇Y ϕ)X +Qϕ(∇Y X))ξ

+ η(QϕX)h′Y − g(X,h′Y )ϕQξ − η(∇Y X)ϕQξ

− η(X)((∇Y ϕ)Qξ + ϕ(∇Y Q)ξ + ϕQh′Y )

for any X,Y ∈ X(M). The assumption of local symmetry implies that ∇Q = 0. Using this and applying

Lemma 3.2 to the previous equation we have

g(X,hY )Qξ − η(X)QhY + (Qϕ− ϕQ)(∇Y X)− g(hQX, Y )ξ + η(QX)hY

=g(h′Y,QϕX)ξ + g(Qξ, g(hX, Y )ξ − η(X)hY + ϕ(∇Y X))ξ + η(QϕX)h′Y

− g(h′X,Y )ϕQξ − η(∇Y X)ϕQξ − η(X)(g(hQξ, Y )ξ − S(ξ, ξ)hY + ϕQh′Y )

for any X,Y ∈ X(M). Applying equation (3.9) in the previous relation we obtain

S(ξ, ξ)g(hX, Y )ξ + η(QϕX)h′Y − g(h′X,Y )ϕQξ + η(X)S(ξ, ξ)hY

=g(hX, Y )Qξ + η(QX)hY
(3.10)

for any X,Y ∈ X(M). Taking the inner product of (3.10) with X we get

S(X, ξ)g(hX, Y )η(X)− g(ϕQξ,X)g(h′X,Y ) = g(Qξ,X)g(hX, Y ) (3.11)

for any X,Y ∈ X(M). Putting X = ϕQξ into equation (3.11) we obtain

∥ϕQξ∥2hQξ = 0.

Clearly, by (2.1), ϕQξ = 0 implies that ξ is an eigenvector field of the Ricci operator Q . Moreover, by

(3.1) we know that the eigenvalue is −tr(h2). Otherwise, if hQξ = 0, putting X = ϕQξ into equation (3.10)

we obtain

∥ϕQξ∥2h′ = 0.

It follows from the above relation that either Qξ = −tr(h2)ξ or h is vanishing. With regard to h = 0,

applying Lemma 3.2 and Dacko [6, Theorem 2] we obtain that M2n+1 is a co-Kähler manifold with locally

symmetric Kählerian leaves. Next, let us consider h ̸= 0 and Qξ = −tr(h2)ξ . Taking the covariant derivative

of the latter equation and making use of the second term of relation (2.5) we have

Qh′X = −X(tr(h2))ξ − tr(h2)h′X (3.12)

746



WANG/Turk J Math

for any X ∈ X(M). The inner product of the above relation with ξ implies that tr(h2) is a positive constant

and hence M2n+1 is a strictly almost co-Kähler manifold. This completes the proof.

For a Riemannian manifold (M, g), we denote by (T 1M, gS) the unit tangent sphere bundle admitting

the well-known Sasakian metric. Then any unit vector field U defines a map U : (M, g) → (T 1M, gS). Let M

be closed and orientable; U is said to be harmonic if it is a critical point of the energy function defined by

E(U) =
1

2
vol(M) +

1

2

∫
M

∥U∥2dM.

Pak and Kim in [15] proved that the Reeb vector field of an almost co-Kähler manifold is harmonic if and only

if it is an eigenvector field of the Ricci operator. Then we have the following corollary.

Corollary 3.4. On a locally symmetric almost co-Kähler manifold with Kählerian leaves, the Reeb vector field

ξ is harmonic.

Proof If h = 0, by equation (3.5) we obtain R(X,Y )ξ = 0 and hence Qξ = 0. Otherwise, the proof follows

from Theorem 3.1.

Corollary 3.5. On a locally symmetric almost co-Kähler manifold with Kählerian leaves, the following relations

hold:

tr(∇Xh2) = (divh′)(h′X) = 0

for any vector field X .

Proof First, let us consider a local orthonormal ϕ -frame {e0 = ξ, ei, en+i = ϕei, 1 ≤ i ≤ n} on each point of

M2n+1 . Since h′ anticommutes with ϕ , then by using relation (3.7) we obtain

tr(∇Xh′) = g((∇Xh′)ξ, ξ) +

n∑
i=1

g((∇Xh′)ei, ei) +

n∑
i=1

g((∇Xh′)en+i, en+i)

=

n∑
i=1

(
g((∇Xh′)ei, ei) + g((∇Xh′)ϕei, ϕei)

)
= 0

for any vector field X . Replacing Y by ej in (3.5) and taking the inner product of the resulting equation with

ej , and summing j over 0 ≤ j ≤ 2n , we obtain

S(X, ξ) = (divh′)(X)

for any vector field X . By Corollary 3.4 we know that ξ is an eigenvector field of Q . Then by (2.4) and the

previous relation we obtain (divh′)(h′X) = 0.

Using again tr(∇Xh′) = 0 for any vector field X and replacing X = Z = ej in equation (3.3), and

summing j over 0 ≤ j ≤ 2n , we obtain

tr(∇Y h
2) + 2(divh′)(h′Y ) = 0

for any vector field Y . This completes the proof.

Corollary 3.6. On a locally symmetric almost co-Kähler manifold with Kählerian leaves, the following relations

hold:

Qϕ = ϕQ, Qh′ = h′Q, Qh = hQ. (3.13)
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Proof The first term follows from Corollary 3.4 and equation (3.9). The second and third terms hold naturally

for the case h = 0. By Theorem 3.1, if h ̸= 0 we get from (3.12) that

Qh′ = −tr(h2)h′. (3.14)

Obviously, ξ being an eigenvector of the Ricci operator implies that Qh′ξ = h′Qξ holds. Next, let X be

an eigenvector field of h′ orthogonal to ξ with a nonzero eigenvalue. Then we obtain directly from equation

(3.14) that QX = −tr(h2)X and hence Qh′X = h′QX . Finally, let {e1, ϕe1, · · · , ek, ϕek} be all eigenvector

fields of h′ orthogonal to ξ with eigenvalues zero, where 1 ≤ k ≤ n − 1. Then, for any 1 ≤ j ≤ n − 1, from

equation (3.14) we see that both Qej and Qϕej belong to span{e1, ϕe1, · · · , ek, ϕek} . Then it follows that

Qh′ej = h′Qej and Qh′ϕej = h′Qϕej . This means that Qh′ = h′Q . The third term of relation (3.13) follows

directly from the previous two. This completes the proof.

Remark 3.1. Goldberg and Yano [12] proved that an almost co-Kähler manifold is co-Kähler if and only if the

curvature transformation R commutes with ϕ , i.e. R(X,Y )ϕ = ϕR(X,Y ) . This implies that Qϕ = ϕQ . From

our main result, the previous relation holds even on a strictly almost co-Kähler manifold.

4. ϕ-symmetric almost co-Kähler manifolds of dimension three

In this section, we investigate 3-dimensional almost co-Kähler manifolds under certain symmetry conditions.

We first give the definition of ϕ-symmetry on an almost contact metric manifold (see also De et al. [9, 10] and

[24]) as follows.

Definition 4.1. An almost contact metric manifold M is said to be ϕ-symmetric if its Riemannian curvature

tensor satisfies

ϕ2(∇WR)(X,Y )Z = 0 (4.1)

for any vector fields X,Y, Z,W on M .

Obviously, a locally symmetric almost contact metric manifold (i.e. ∇R = 0) is ϕ -symmetric. Usually,

the converse of the above assertion is not necessarily true. In this section, we aim to prove that on any almost

co-Kähler manifold of dimension 3 the conditions of local symmetry and ϕ-symmetry are equivalent.

Let (M3, ϕ, ξ, η, g) be an almost co-Kähler manifold of dimension 3. Following Perrone [21], let U1

be the open subset of M3 on which h ̸= 0 and U2 the open subset defined by U2 = {p ∈ M3 : h =

0 in a neighborhood of p} . Therefore, U1 ∪ U2 is an open dense subset of M3 . For any point p ∈ U1 ∪ U2 , we

may find a local orthonormal basis {ξ, e1, e2 = ϕe1} of three distinct unit eigenvector fields of h in a certain

neighborhood of p . On U1 we may assume that he1 = λe1 and hence he2 = −λe2 , where λ is a positive

function.
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Lemma 4.1 ([21, Lemma 2.1]). On U1 we have

∇ξe1 = ae2, ∇ξe2 = −ae1, ∇e1ξ = −λe2, ∇e2ξ = −λe1,

∇e1e1 =
1

2λ
(e2(λ) + σ(e1))e2, ∇e2e2 =

1

2λ
(e1(λ) + σ(e2))e1,

∇e2e1 = λξ − 1

2λ
(e1(λ) + σ(e2))e2, ∇e1e2 = λξ − 1

2λ
(e2(λ) + σ(e1))e1,

le1 = −ξ(λ)e2 + (λ2 + 2aλ)e1, le2 = −ξ(λ)e1 + (λ2 − 2aλ)e2,

∇ξh =

(
1

λ
ξ(λ)id + 2aϕ

)
h,

where a is a smooth function and σ is the 1-form defined by σ(·) = S(· , ξ) .

Using the above lemma, one obtains the Ricci operator Q expressed as follows (see also Perrone [21]):

Q = αid + βη ⊗ ξ + ϕ∇ξh− σ(ϕ2)⊗ ξ + σ(e1)η ⊗ e1 + σ(e2)η ⊗ e2, (4.2)

where α = 1
2 (r + tr(h2)) and β = − 1

2 (r + 3tr(h2)) and r is the scalar curvature.

Regarding the classification of 3-dimensional locally symmetric almost co-Kähler manifolds, we have:

Lemma 4.2 ([21, Proposition 3.1]). A locally symmetric almost co-Kähler manifold of dimension 3 is locally

either a flat Euclidean space R3 or a product space R×N2(c) , where N2(c) denotes a Kähler surface of constant

curvature c ̸= 0 .

In what follows, we shall show that the conclusion of Lemma 3.1 holds even under a condition weaker

than local symmetry, i.e. ϕ-symmetry.

Lemma 4.3. Let M2n+1 be a ϕ-symmetric almost co-Kähler manifold of dimension ≥ 3 , and then we have

∇ξh = 0 .

Proof Clearly, by relation (2.1), the notion of ϕ -symmetry implies that

(∇WR)(X,Y )Z = g((∇WR)(X,Y )Z, ξ)ξ

for any vector fields X,Y, Z,W . Replacing both Y and Z by ξ in the above relation and using the second

term of relation (2.4) we have

(∇W l)X = R(X,h′W )ξ +R(X, ξ)h′W + g(lX, h′W )ξ + g((∇W l)X, ξ)ξ

for any vector fields X,W . In view of lξ = 0, replacing W by ξ in the previous relation we get

∇ξl = 0.

According to Perrone [20, Lemma 3.1], on an almost co-Kähler manifold ∇ξh = 0 and ∇ξl = 0 are equivalent.

This completes the proof.

By Definition 4.1, we easily obtain the following:
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Lemma 4.4. On a ϕ-symmetric almost co-Kähler manifold of dimension ≥ 3 we have

(∇WQ)X = g((∇WQ)X, ξ)ξ (4.3)

for any vector fields X,W .

Theorem 4.1. Let M3 be an almost co-Kähler manifold of dimension 3 , and then M3 is locally symmetric if

and only if it is ϕ-symmetric.

Proof If h = 0 holds identically, the proof follows from Lemma 4.2. Therefore, we now need only to consider

the case that h is not identically zero. Without loss of generality we can assume that λ > 0. We remark that

Lemma 4.1 is applicable in this case. If M3 is ϕ-symmetric, by Lemma 4.3 we may use ∇ξh = 0 in Lemma

4.1 and obtain
ξ(λ) = a = 0. (4.4)

In view of the above relation and (2.1), it follows from equation (4.2) that

Qξ = −tr(h2)ξ + σ(e1)e1 + σ(e2)e2, Qe1 = σ(e1)ξ + αe1, Qe2 = σ(e2)ξ + αe2.

Using relation (4.4) and applying Lemma 4.1, by a simple calculation we obtain

(∇e1Q)e1 =

(
e1(σ(e1))−

1

2λ
(e2(λ) + σ(e1))σ(e2)

)
ξ + e1(α)e1 − λσ(e1)e2.

Comparing this relation with (4.3) and in view of the assumption λ > 0 we may get

e1(α) = σ(e1) = 0. (4.5)

Similarly, applying Lemma 4.1 and using equation (4.5) we obtain

(∇e2Q)e2 =

(
e2(σ(e2))−

1

2λ
(e1(λ) + σ(e2))σ(e1)

)
ξ + e2(α)e2 − λσ(e2)e1.

Comparing this relation with relation (4.3) and in view of λ > 0 we get

e2(α) = σ(e2) = 0. (4.6)

In view of a = 0, using equations (4.5) and (4.6) and applying again Lemma 4.1 we have

(∇ξQ)e1 = ξ(α)e1.

Comparing this with relation (4.3) we have that

ξ(α) = 0. (4.7)

Together with equations (4.5)–(4.7) we obtain that 2α = r+tr(h2) is a constant and ξ is an eigenvector

field of the Ricci operator Q . Applying again Lemma 4.1 and using Qξ = −tr(h2)ξ we get

(∇e1Q)ξ = −e1(tr(h
2))ξ +

λ

2
(r + 3tr(h2))e2.
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Comparing this with relation (4.3) and in view of λ > 0 we have

r + 3tr(h2) = 0. (4.8)

Then we conclude that both the scalar curvature r and tr(h2) are constants. In particular, applying Lemma

4.3 and using (4.4)–(4.8) in equation (4.2) gives that Q = r
3 id. It is well known that on any three-dimensional

Riemannian manifold the curvature tensor R is given by

R(X,Y )Z =g(Y,Z)QX − g(X,Z)QY + g(QY,Z)X

− g(QX,Z)Y − r

2
(g(Y, Z)X − g(X,Z)Y )

for any vector fields X,Y, Z . Hence, an Einstein condition Q = r
3 id on the above relation gives that M3 is

of constant sectional curvature. Moreover, following Olszak [18, Theorem 3] we know that any 3-dimensional

almost co-Kähler manifold of constant sectional curvature is locally flat. Then using l = 0 in equation (2.7)

gives that h = 0 and hence λ = 0, a contradiction. Then the proof follows from Lemma 4.2. The converse is

trivial.

Applying Lemma 4.2 and Theorem 4.1 we have:

Theorem 4.2. On any almost co-Kähler manifold M3 of dimension 3 , the following statements are equivalent:

1) M3 is locally symmetric.

2) M3 is ϕ-symmetric.

3) M3 is locally isometric to a product R×N2(c) , where N2(c) denotes a Kähler surface of constant curvature
c .
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