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Abstract: Some algebraic properties of the ideals of Veronese bi-type arising from graphs with loops are studied. More

precisely, the property of these ideals to be bi-polymatroidal is discussed. Moreover, we are able to determine the

structure of the ideals of vertex covers for such generalized graph ideals.
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1. Introduction

Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be a polynomial ring in two sets of variables over a field K . In some

recent papers [5, 9, 16], monomial ideals of R were introduced and their connection to bipartite complete

graphs was studied. Here we consider a class of monomial ideals of R , the so-called Veronese bi-type ideals,

which are an extension of the ideals of Veronese type in a polynomial ring with two sets of variables. More

precisely, the ideals of Veronese bi-type are monomial ideals of R generated in the same degree: Lq,s =∑
k+r=q Ik,sJr,s , with k, r ⩾ 1, s ⩽ q , where Ik,s is the Veronese type ideal generated on degree k by the set

{Xai1
1 · · ·Xain

n |
∑n

j=1 aij = k, 0 ⩽ aij ⩽ s, s ∈ {1, . . . , k}} and Jr,s is the Veronese type ideal generated on

degree r by the set {Y bi1
1 · · ·Y bim

m |
∑m

j=1 bij = r, 0 ⩽ bij ⩽ s, s ∈ {1, . . . , r}} [10–13, 15]. When s=2, the

Veronese bi-type ideals arise from bipartite graphs with loops, the so-called strong quasi-bipartite graphs [10].

A graph G with loops is quasi-bipartite if its vertex set V can be partitioned into disjoint subsets V1 and V2 ,

any edge joins a vertex of V1 with a vertex of V2 , and some vertices in V have loops. A quasi-bipartite graph

G is strong if it is a complete bipartite graph and all its vertices have loops. A strong quasi-bipartite graph on

vertices x1, . . . , xn, y1, . . . , ym is denoted by K′
n,m .

In this paper some properties of the above class of monomial ideals are discussed. In particular the Veronese

bi-type ideals give an example of generalization of polymatroidal ideals. The class of polymatroidal ideals is

one of the rare classes of monomial ideals with the property that all powers of an ideal in this class have a

linear resolution. In fact, the powers of a polymatroidal ideal are polymatroidal ideals and the polymatroidal

ideals have linear quotients; hence, they are an important class of monomial ideals with linear resolution.

In [12] the author introduced the generalized notion of discrete bi-polymatroid and the related notion of bi-

polymatroidal ideal in R . Let I be a monomial ideal of R generated in a single degree and G(I) be its
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unique set of minimal generators. I is called a bi-polymatroidal ideal if for any two monomials u, v ∈ G(I)

such that degXi(u) > degXi(v) or degYk
(u) > degYk

(v) there exist j ∈ [n] with degXj (u) < degXj (v) or

l ∈ [m] with degYl
(u) < degYl

(v) such that Xj(u/Xi) ∈ G(I) or Yl(u/Yk) ∈ G(I). A special class of discrete

bi-polymatroids, namely the discrete bi-polymatroid of Veronese type whose set of bases is Bq,2 = {(a; b) ∈
Zn+m
+ : |a| = k, |b| = r, 0 ⩽ ai, bj ⩽ 2} , was introduced. The corresponding bi-polymatroidal ideal of R is the

ideal of Veronese bi-type Lq,2 associated to a strong quasi-bipartite graph K′
n,m . We denote Lq,2 by Iq(K′

n,m).

In [1] and [4], algebraic properties of polymatroidal ideals were examined, and in particular it was proved that a

monomial localization of a polymatroidal ideal is a polymatroidal ideal. In Section 2 we generalize such a result

to a bi-polymatroidal ideal Iq(K′
n,m); namely, we verify that a monomial localization of Iq(K′

n,m) is again a

bi-polymatroidal ideal.

In addition, we are interested in some problems linked to the minimal vertex covers introduced in [6–8], or,

more precisely, algebraic aspects concerning a generalization of the notion of minimal vertex covers that holds

for complete bipartite graphs Kn,m [9]. Let I ⊂ R = K[X1, . . . , Xn;Y1, . . . , Ym] be a monomial ideal. The

ideal of (minimal) covers of I , denoted by Ic , is generated by all monomials Xi1 · · ·XikYj1 · · ·Yjh such that

(Xi1 , . . . , Xik , Yj1 , . . . , Yjh) is an associated (minimal) prime ideal of I . For a strong quasi-bipartite graph

K′
n,m , the ideal of vertex covers of a generalized graph ideal Iq(K′

n,m) is denoted by (Iq)c(K′
n,m). In Section

3 the structure of (Iq)c(K′
n,m) is entirely described.

2. Preliminary notions

Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the polynomial ring over a field K in two sets of variables with

deg(Xi) = deg(Yj) = 1, for all i = 1, . . . , n , j = 1, . . . ,m .

Let q, s, k, r be nonnegative integers with s ⩽ q and q = k + r , r, k ⩾ 1. The ideals of Veronese bi-type of

degree q are the monomial ideals of R

Lq,s =
∑

k+r=q

Ik,sJr,s ,

where Ik,s is the ideal of Veronese type of degree k in the variables X1, . . . , Xn and Jr,s is the ideal of Veronese

type of degree r in the variables Y1, . . . , Ym .

Lq,s is not trivial for 2 ⩽ q ⩽ s(n+m)− 1.

Remark 2.1 In general Ik,s ⊆ Ik , where Ik is the Veronese ideal of degree k generated by all the monomials

in the variables X1, . . . , Xn of degree k [17, 18].

One has Ik,s = Ik for any k ⩽ s . If s = 1, Ik,1 is the square-free Veronese ideal of degree k generated

by all the square-free monomials in the variables X1, . . . , Xn of degree k . Similar considerations hold for

Jr,s ⊂ K[Y1, . . . , Ym] .

Example 2.2 Let R = K[X1, X2;Y1, Y2] be a polynomial ring.

1) L2,2 = I1,2J1,2 = I1J1 = (X1Y1, X1Y2, X2Y1, X2Y2).

2) L4,2 = I3,2J1,2 + I1,2J3,2 + I2,2J2,2 = I3,2J1 + I1J3,2 + I2J2 = (X2
1X2Y1, X

2
1X2Y2, X1X

2
2Y1,

X1X
2
2Y2, X1Y

2
1 Y2, X2Y

2
1 Y2, X1Y1Y

2
2 , X2Y1Y

2
2 , X

2
1Y

2
1 , X

2
1Y1Y2, X

2
1Y

2
2 , X

2
2Y

2
1 , X

2
2Y

2
2 , X

2
2Y1Y2,

X1X2Y
2
1 , X1X2Y

2
2 , X1X2Y1Y2).
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For s = 2 and q ⩾ 3, the ideals Lq,s are those associated to the walks of length q−1 of the strong

quasi-bipartite graphs. Recall the following notions introduced in [10, 14].

Definition 2.3 A graph G with loops is said to be quasi-bipartite if its vertex set V = {x1, . . . , xn, y1, . . . , ym}
can be partitioned into the subsets V1 = {x1, . . . , xn} and V2 = {y1, . . . , ym} , every edge joins a vertex of V1

with a vertex of V2 , and some vertices in V have loops.

Definition 2.4 A quasi-bipartite graph G is called strong if it is a complete bipartite graph and all its vertices

have loops.

A strong quasi-bipartite graph on vertices x1, . . . , xn, y1, . . . , ym will be denoted by K′
n,m .

Definition 2.5 Let G be a graph with loops in each of its n vertices. A walk of length q in G is an alternating

sequence w = {vi0 , li1 , vi1 , li2 , . . . , viq−1 , liq , viq} , where vi0 or vig is a vertex of G and lig = {vig−1 , vig}, g =

1, . . . , q , is either the edge joining vig−1 and vig or a loop if vig−1 = vig , 1 ⩽ i0 ⩽ i1 ⩽ . . . ⩽ iq ⩽ n .

Example 2.6 Let K′
n,m be a strong quasi-bipartite graph on vertices x1, . . . , xn, y1, . . . , ym . A walk of length

2 in K′
n,m is {xi, li, xi, lij , yj} or {xi, lij , yj , lj , yj} where li = {xi, xi} , lj = {yj , yj} are loops, and lij is the

edge joining xi and yj . Because K′
n,m is bipartite, any walk in it have not the edges {xih , xik} , ih ̸= ik , and

{yjh , yjk} , jh ̸= jk .

Let G be a graph with loops. The generalized graph ideal Iq(G) associated to G is the ideal of the polynomial

ring R generated by all the monomials of degree q ⩾ 3 corresponding to the walks of length q−1. Hence, the

variables in each generator of Iq(G) have at most degree 2.

For a strong quasi-bipartite graph K′
n,m , the associated generalized graph ideals Iq(K′

n,m) are therefore Lq,2 =∑
k+r=q Ik,2Jr,2 , for q ⩾ 3 [10] .

Remark 2.7 When q = 2, the ideal Lq,2 does not describe the edge ideal I(K′
n,m) = I2(K′

n,m) of a strong

quasi-bipartite graph. In fact, if we consider the strong quasi-bipartite graph K′
2,2 on vertices x1, x2, y1, y2

then I(K′
2,2) = (X1Y1, X1Y2, X2Y1, X2Y2, X

2
1 , X

2
2 , Y

2
1 , Y

2
2 ), but L2,2 = (X1Y1, X1Y2, X2Y1, X2Y2). Hence,

I(K′
2,2) ̸= L2,2 .

In the sequel, for strong quasi-bipartite graphs, we will often denote Lq,2 , q ⩾ 3, by Iq(K′
n,m).

Example 2.8 Let R = K[X1, X2;Y1, Y2] and K′
2,2 be the strong quasi-bipartite graph on vertices x1, x2, y1, y2 :
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I3(K′
2,2)=I1J2+I2J1=(X1Y1Y2, X2Y1Y2, X1Y

2
1 , X2Y

2
1 , X1Y

2
2 , X2Y

2
2 , X1X2Y1, X1X2Y2, X

2
1Y1, X

2
1Y2, X

2
2Y1, X

2
2Y2).

I4(K′
2,2) = I3,2J1 + I1J3,2 + I2J2 = (X2

1X2Y1, X
2
1X2Y2, X1X

2
2Y1, X1X

2
2Y2, X1Y

2
1 Y2, X2Y

2
1 Y2,

X1Y1Y
2
2 , X2Y1Y

2
2 , X

2
1Y

2
1 , X

2
1Y1Y2, X

2
1Y

2
2 , X

2
2Y

2
1 , X

2
2Y

2
2 , X

2
2Y1Y2, X1X2Y

2
1 , X1X2Y

2
2 , X1X2Y1Y2).

3. Monomial localization of bi-polymatroidal ideals

In [12] the ideals of Veronese bi-type Lq,s are introduced as a class of bi-polymatroidal ideals. We recall some

notions.

Let n,m > 0 be integers and [n+m] = {1, 2, . . . , n+m} . Let Z+ be the set of nonnegative integers and Zn+m
+

be the set of the vectors (a; b) with a ∈ Zn
+ and b ∈ Zm

+ , i.e. (a; b) = (a1, . . . , an; b1, . . . , bm) ∈ Zn+m
+ with each

ai ⩾ 0, bj ⩾ 0.

The modulus of the vector (a; b) is the number |(a; b)| = |a|+|b| =
∑n

i=1 ai+
∑m

j=1 bj . Let (a; b) and (c; d) be two

vectors of Zn+m
+ ; one has (a; b) ⩾ (c; d) if all components (ai−ci; bi−di) of the vector (a−c; b−d) are nonneg-

ative. If (a; b) ⩾ (c; d) and (a; b) ̸= (c; d), one writes (a; b) > (c; d). We say that (c; d) is a subvector of (a; b) if

(a; b) ⩾ (c; d). Moreover, we set (a; b)∨(c; d) = (max{a1, c1}, . . . ,max{an, cn};max{b1, d1}, . . . ,max{bm, dm}).
Hence, (a; b) ⩽ (a; b) ∨ (c; d) and (c; d) ⩽ (a; b) ∨ (c; d).

We generalize the combinatorial concept of discrete polymatroid introduced in [3].

Definition 3.1 A discrete bi-polymatroid on the set [n+m] is a nonempty finite subset P ⊂ Zn+m
+ satisfying

the following conditions:

1) P contains with each (a; b) ∈ P all its integral subvectors; that is, if (a; b) ∈ P and (c; d) ∈ Zn+m
+ with

(c; d) ⩽ (a; b), then (c; d) ∈ P ;

2) if for all (a; b), (c; d) ∈ P with |(a; b)| < |(c; d)| , then there is a vector (u; v) ∈ P such that (a; b) < (u; v) <

(a; b) ∨ (c; d).

A base of a discrete bi-polymatroid P is a vector (a; b) ∈ P such that (a; b) < (c; d) for no (c; d) ∈ P . The set

of bases of P is denoted by B(P ).

Remark 3.2 Each base of a discrete bi-polymatroid P has the same modulus that is said to be the rank of P .

In fact, if (a; b) and (c; d) are bases of P with |(a; b)| < |(c; d)| , then by Definition 3.1 there exists (u; v) ∈ P

with (a; b) < (u; v) < (a; b) ∨ (c; d). This contradicts the maximality of (a; b) ∈ B(P ).

A characterization of discrete bi-polymatroids in terms of their set of bases is the following:

Theorem 3.3 (Bi-exchange property, [12])

P is a discrete bi-polymatroid ⇔ if (a; b), (c; d) ∈ B(P ) with ai > ci or bk > dk , then there exist j ∈ {1, . . . , n} ,
l ∈ {1, . . . ,m} with aj < cj or bl < dl such that (a; b)−(ei; 0)+(ej ; 0) ∈ B(P ) or (a; b)−(0; e′k)+(0; e′l) ∈ B(P ) ,

where ei, e
′
j denote the standard basis vectors of Zn

+,Zm
+ respectively.

For a monomial ideal I ⊂ R we denote by G(I) its unique set of minimal generators.

A monomial ideal generated by all the monomials corresponding to the set B(P ) of bases of a discrete bi-

polymatroid is called a bi-polymatroidal ideal and it is generated by all the monomials XaY b with (a, b) ∈ B(P ),
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where XaY b stands for Xa1
1 · · ·Xan

n Y b1
1 · · ·Y bm

m . In [12] the following definition of bi-polymatroidal ideal is given

as a consequence of Theorem 3.3.

Definition 3.4 A monomial ideal I of R generated in a single degree is called bi-polymatroidal if for all

monomials u = Xa1
1 · · ·Xan

n Y b1
1 · · ·Y bm

m , v = Xc1
1 · · ·Xcn

n Y d1
1 · · ·Y dm

m in G(I) and for each i with ai > ci

or k with bk > dk one has j ∈ [n] with aj < cj or l ∈ [m] with bl < dl such that Xj(u/Xi) ∈ G(I) or

Yl(u/Yk) ∈ G(I).

It follows that if for any two monomials u, v ∈ G(I) such that degXi(u) > degXi(v) or degYk
(u) >

degYk
(v) there exist j ∈ [n] with degXj (u) < degXj (v) or l ∈ [m] with degYl

(u) < degYl
(v) such that

Xj(u/Xi) ∈ G(I) or Yl(u/Yk) ∈ G(I).

Theorem 3.5 ([12])

The bi-polymatroidal ideals of R = K[X1, . . . , Xn;Y1, . . . , Ym] have linear quotients.

Now we consider the class of bi-polymatroidal ideals Lq,2 = Iq(K′
n,m).

Let q, r, k be nonnegative integers such that k + r = q ; then

Bq,2 = {(a; b) ∈ Zn+m
+ : |a| = k, |b| = r, 0 ⩽ ai, bj ⩽ 2}

is the set of bases of a discrete bi-polymatroid of rank q . In fact, let (a, b), (c, d) ∈ Bq,2 with ai > ci or

bk > dk , Then for some j, l such that aj < cj or bl < dl , one has (a; b) − (ei; 0) + (ej ; 0) = (a1, . . . , ai −
1, . . . , aj +1, . . . , an; b1, . . . , bm), (a; b)− (0; e′k) + (0; e′l) = (a1, . . . , an; b1, . . . , bk − 1, . . . , bl +1, . . . , bm). Hence,

(a; b)− (ei; 0) + (ej ; 0) ∈ Bq,2 , (a; b)− (0; e′k) + (0; e′l) ∈ Bq,2 , by definition.

This one is a discrete bi-polymatroid of Veronese bi-type.

Example 3.6 Let n = m = 2. The set of bases of a discrete bi-polymatroid of rank 3 is

B3,2 = {(2, 0; 1, 0), (2, 0; 0, 1), (1, 1; 1, 0), (1, 1; 0, 1), (0, 2; 1, 0), (0, 2; 0, 1), (1, 0; 2, 0), (1, 0; 0, 2),
(1, 0; 1, 1), (0, 1; 2, 0), (0, 1; 0, 2), (0, 1; 1, 1)} .

The bi-polymatroidal ideal corresponding to the set Bq,2 is Lq,2 = Iq(K′
n,m), q ⩾ 3, where K′

n,m is a strong

quasi-bipartite graph.

The monomial ideal Iq(K′
n,m) satisfies Definition 3.4. In fact, let u = Xa1

1 · · ·Xan
n Y b1

1 · · ·Y bm
m , v = Xc1

1

· · ·Xcn
n Y d1

1 · · ·Y dm
m ∈ G(Iq(K′

n,m)), then Xa1
1 · · ·Xan

n ∈ Ik,2 and Y b1
1 · · ·Y bm

m ∈ Jr,2 such that
∑n

i=1 ai +∑m
j=1 bj = q , and 0 ⩽ ai, bj ⩽ 2. Then it follows easily by the structure of G(Iq(K′

n,m)) that for each i with

ai > ci or k with bk > dk one has j with aj < cj or l with bl < dl such that Xj(u/Xi) ∈ G(Iq(K′
n,m)) or

Yl(u/Yk) ∈ G(Iq(K′
n,m)).

Let us study some permanence properties of the bi-polymatroidal ideal Iq(K′
n,m).

Theorem 3.7 Let Iq(K′
n,m) ⊂ R = K[X1, . . . , Xn;Y1, . . . , Ym] be the bi-polymatroidal ideal associated to strong

quasi-bipartite graphs. For all monomials u of R one has:

1. Iq(K′
n,m) : u is a bi-polymatroidal ideal.
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2. Iq(K′
n,m) : u has linear quotient.

3. Iq(K′
n,m) : u has a linear resolution.

Proof Let Iq(K′
n,m) =

∑
k+r=q Ik,2Jr,2, q ⩾ 3.

1. It is enough to prove that for all variables Xi (resp. Yk ), Iq(K′
n,m) : Xi (resp. Iq(K′

n,m) : Yk ) is a

bi-polymatroidal ideal of R . Set J = Iq(K′
n,m) : Xi . Let u, v ∈ G(J), then Xiu,Xiv ∈ XiJ ⊆ Iq(K′

n,m).

If degXi(u) = degXi(v), then Xiu and Xiv satisfy the bi-exchange property of Definition 3.4 being

Iq(K′
n,m) bi-polymatroidal. Hence, this property is satisfied by u and v . If degXi(u) > degXi(v), then

Xi divides u . For a variable Xt with degXt(u) > degXt(v), we prove that there exists a variable Xj with

degXj (v) > degXj (u), such that Xj(u/Xt) ∈ G(J). Being degXt(Xiu) > degXt(Xiv) and Iq(K′
n,m) a

bi-polymatroidal ideal, it follows that there exists a variable Xj with degXj (Xiu) < degXj (Xiv) such

that Xj(Xiu/Xt) ∈ G(Iq(K′
n,m)). Then we have that Xj(u/Xt) ∈ J . The same result holds for

degXi(u) < degXi(v).

In a similar way, if we set J = Iq(K′
n,m) : Yk the thesis follows with the same argument. We conclude

that Iq(K′
n,m) : u is bi-polymatroidal.

2. Any bi-polymatroidal ideal has linear quotients (Theorem 3.5), so for Iq(K′
n,m) : u .

3. It follows from the general fact that ideals generated in a single degree with linear quotients have a linear

resolution ([2], Lemma 4.1). 2

Example 3.8 Let R = K[X1, X2;Y1, Y2] and L3,2 = (X1Y1Y2, X2Y1Y2, X1Y
2
1 , X2Y

2
1 , X1Y

2
2 , X2Y

2
2 , X1X2Y1,

X1X2Y2, X
2
1Y1, X

2
1Y2, X

2
2Y1, X

2
2Y2) such that L3,2 = I3(K′

2,2), where K′
2,2 is the strong quasi-bipartite graph

on vertices x1, x2, y1, y2 . Set u = X1 . One has:

I3(K′
2,2) : u = (Y1Y2, X2Y1Y2, Y

2
1 , X2Y

2
1 , Y

2
2 , X2Y

2
2 , X2Y1, X2Y2, X1Y1, X1Y2, X

2
2Y1, X

2
2Y2).

Hence:
I3(K′

2,2) : u = (Y1Y2, Y
2
1 , Y

2
2 , X2Y1, X2Y2, X1Y1, X1Y2),

i.e. a bi-polymatroidal ideal. In fact, I3(K′
2,2) : u easily satisfies the bi-exchange property.

We denote the set of monomial prime ideals of R by P(R). Let ℘ ∈ P(R) be a monomial prime ideal. The

monomial localization of a monomial ideal I with respect to ℘ is the monomial ideal I(℘), which is obtained

from I by substituting the variables that do not belong to ℘ by 1.

More precisely, setting ℘ = (Xi1 , . . . , Xir , Yj1 , . . . , Yjt), we denote by I(℘) the monomial ideal in the polynomial

ring K[Xi1 , . . . , Xir , Yj1 , . . . , Yjt ] where I(℘) = IC with C = [n+m]\{i1, . . . , ir, j1, . . . , jt} . If I is a square-free

monomial ideal, then I(℘) = I : XC where XC =
∏

i∈C Xi .

Example 3.9 Let R = K[X1, X2;Y1, Y2] . Set ℘ = (X2, Y1, Y2). Compute the monomial localization of

I3(K′
2,2) with respect to ℘ , i.e. (I3(K′

2,2))(℘) = (I3(K′
2,2))C where C = {1} :

(I3(K′
2,2))(℘) = (Y1Y2, X2Y1Y2, Y

2
1 , X2Y

2
1 , Y

2
2 , X2Y

2
2 , X2Y1, X2Y2, Y1, Y2, X

2
2Y1, X

2
2Y2) = (Y1, Y2),

obtained from I(K′
2,2) by substituting the variable X1 that does not belong to ℘ by 1.

758



IMBESI and LA BARBIERA/Turk J Math

Remark 3.10 For square-free bi-polymatroidal ideals the monomial localization is a bi-polymatroidal ideal by

Theorem 3.7 (being I(℘) = I : u , where u =
∏

i∈CXi ).

For the non-square-free bi-polymatroidal ideal Iq(K′
n,m) we give the following:

Theorem 3.11 Let Iq(K′
n,m) ⊂ R be a bi-polymatroidal ideal. For all ℘ ∈ P(R) one has:

1. (Iq(K′
n,m))(℘) is a bi-polymatroidal ideal.

2. (Iq(K′
n,m))(℘) has linear quotients.

3. (Iq(K′
n,m))(℘) has a linear resolution.

Proof

1. Let Iq(K′
n,m) ⊂ R = K[X1, . . . , Xn;Y1, . . . , Ym] be the bi-polymatroidal ideal generated in degree q .

Set, for any i ∈ [n + m] , (Iq(K′
n,m)){i} the monomial ideal obtained from Iq(K′

n,m) by substituting

the variable of index i by 1. Let XaY b ∈ Iq(K′
n,m), where XaY b = Xa1

1 · · ·Xan
n Y b1

1 · · ·Y bm
m and

(a; b) = (a1, ..., an; b1, ..., bm) ∈ Zn+m
+ . Then Iq(K′

n,m) = ({XaY b | (a; b) ∈ Bq,2}). Suppose i ∈ [n] ;

this means that (Iq(K′
n,m)){i} is the monomial ideal obtained from Iq(K′

n,m) by substituting the variable

Xi by 1. It follows that (Iq(K′
n,m)){i} = ({Xa′

Y b | (a; b) ∈ Bq,2}), where for all (a; b) ∈ Bq,2 we put

Xa′
Y b = XaY b/Xai

i .

We prove that (Iq(K′
n,m)){i} is a bi-polymatroidal ideal.

The first step is to show that (Iq(K′
n,m)){i} is generated in a single degree. If hi = max{ai | (a; b) ∈ Bq,2},

then we prove that G((Iq(K′
n,m)){i}) = {XaY b/Xhi

i | (a; b) ∈ Bq,2, ai = hi}. Let (c; d) ∈ Bq,2 then

ci < hi . Now we show that there exists (u, v) ∈ Bq,2 with ui = hi and such that Xu′
Y v divides Xc′Y d .

We proceed by induction on hi − ci . If hi − ci = 0, it is clear. Suppose, now, that hi − ci > 0, i.e.

ci < hi . Let (a, b) ∈ Bq,2 with ai = hi . Applying Theorem 3.3 there exists an integer j ∈ [n] with

aj < cj such that (a; b) − (ei; 0) + (ej ; 0) ∈ Bq,2 , and by symmetry (c, d) − (ej ; 0) + (ei; 0) ∈ Bq,2 . Set

(z, t) = (c, d) − (ej ; 0) + (ei; 0). Hence, one has that Xz′
Y t divides Xc′Y d . Being hi − zi < hi − ci , by

induction hypothesis there exists (u, v) ∈ Bq,2 with ui = hi and such that Xu′
Y v divides Xz′

Y t . It

follows that Xu′
Y v divides Xc′Y d ; this yields the desired conclusion.

The second step is to prove that the set B′
q,2 = {(a′, b)|Xa′

Y b ∈ G((Iq(K′
n,m)){i})} is the set of bases of

a discrete bi-polymatroid P ′ of rank q − hi on the set [n+m]\{i} .
For all (a′; b) ∈ B′

q,2 one has |(a′, b)| = q−hi . Now we verify the bi-exchange property: let (a′, b), (c′, d) ∈
B′

q,2 with a′k > c′k , then k ̸= i . By hypothesis for (a, b), (c, d) ∈ Bq,2 : let ak = a′k > c′k = ck , then there

exists l ∈ [n] such that al < cl and (a; b) − (ek; 0) + (el; 0) ∈ Bq,2 . Set (x, y) = (a; b) − (ek; 0) + (el; 0);

since ai = ci = hi , it follows that l ̸= i and xi = ai . Hence, it follows that (x′, y) ∈ B′
q,2 , i.e.

(a′; b)−(ek; 0)+(el; 0) ∈ B′
q,2 as required. Hence, B′

q,2 is a discrete bi-polymatroid on the set [n+m]\{i} .
It follows that (Iq(K′

n,m)){i} is a bi-polymatroidal ideal.

If we suppose i ∈ [m] , the thesis follows by the same argument. In all cases one has that (Iq(K′
n,m)){i}

is bi-polymatroidal ideal. As a consequence, if ℘ = (Xi1 , . . . , Xir , Yj1 , . . . , Yjr ) is a prime ideal of R ,
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the monomial localization (Iq(K′
n,m))(℘) = Iq(K′

n,m)C , with C = [n + m]\{i1, . . . , ir, j1, . . . , jr} , is a

bi-polymatroidal ideal.

2. It follows from Theorem 3.5.

3. It follows from the general fact that ideals generated in the same degree with linear quotients have a linear

resolution ([2], Lemma 4.1).

2

Example 3.12 Let R = K[X1, X2;Y1, Y2] . Consider the ideal (I3(K′
2,2)) = (X1Y1Y2, X2Y1Y2, X1Y

2
1 , X2Y

2
1 ,

X1Y
2
2 , X2Y

2
2 , X1X2Y1, X1X2Y2, X

2
1Y1, X

2
1Y2, X

2
2Y1, X

2
2Y2) and ℘ = (X2, Y1, Y2), C={1} . One has (I3(K′

2,2))(℘)

= I3(K′
2,2)C = (Y1, Y2), i.e. a bi-polymatroidal ideal of R .

4. Ideals of vertex covers for the generalized graph ideals of a strong quasi-bipartite graph

Definition 4.1 Let G be any graph with loops on vertex set [n] = {v1, . . . , vn} . A subset C of [n] is said to

be a generalized vertex cover of G if every walk of G is incident with one vertex in C . C is said minimal if no

proper subset of C is a generalized vertex cover of G .

Remark 4.2 There exists a one-to-one correspondence between generalized vertex covers of G and prime ideals

of the generalized graph ideal Iq(G) that preserves the minimality. In fact, ℘ is a minimal prime ideal of Iq(G) if
and only if ℘ = (C), for some minimal generalized vertex cover C of G . Thus, Iq(G) has primary decomposition

(C1) ∩ · · · ∩ (Cr), where C1, . . . , Cr are the minimal generalized vertex covers of G .

An algebraic aspect linked to the generalized vertex covers of G is the notion of the ideal of vertex covers for

the generalized graph ideals associated to G .

Definition 4.3 The ideal of vertex covers for the generalized graph ideal Iq(G), denoted by (Iq)c(G) , is the

ideal of R generated by all monomials Xi1 · · ·Xir such that (Xi1 , . . . , Xir ) is an associated prime ideal of

Iq(G).

Hence, (Iq)c(G) = ({Xi1 · · ·Xir | {vi1 , . . . , vir} is a generalized vertex cover of G}) , and the minimal generators

of (Iq)c(G) correspond to the minimal generalized vertex covers.

The following generalizes the characterization of the ideals of vertex covers given in [18].

Property 4.1 (Iq)c(G) =
( ∩
{vi1 , li2 ,...,viq}walk inG

(Xi1 , . . . , Xiq )
)
, ∀ q ⩾ 2 .

From now on, let R = K[X1, . . . , Xn;Y1, . . . , Ym] , n ⩾ m , be the polynomial ring over a field K in two sets of

variables and K′
n,m be a strong quasi-bipartite graph on vertex set [n+m] = {x1, . . . , xn, y1, . . . , ym} .

Let Iq(K′
n,m) denote the generalized graph ideals of K′

n,m .

Recall that they are the ideals of Veronese bi-type of degree q ,
∑

k+r=q Ik,2Jr,2 , where Ik,2 is the ideal of

Veronese type of degree k in X1, . . . , Xn , and Jr,2 is the one of degree r in Y1, . . . , Ym .
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For instance, I3,2 has generators X2
1X2, . . . , Xn−1X

2
n;X1X2X3, . . . , Xn−2Xn−1Xn ,

I4,2 = (X2
1X

2
2 , . . . , X

2
n−1X

2
n;X

2
1X2X3, . . . , Xn−2Xn−1X

2
n;X1 · · ·X4, . . . , Xn−3 · · ·Xn) , . . . ;

I2h,2 has
(
n
h

)
+

(
n

h−1

)(
n−h+1

2

)
+

(
n

h−2

)(
n−h+2

4

)
+ · · · +

(
n
1

)(
n−1

2(h−1)

)
+

(
n
2h

)
generators of even degree 2h ⩽ 2n ,

which are monomials with h, or h+ 1, . . . , or 2h, of the n variables;

I2h+1,2 has
(
n
h

)(
n−h
1

)
+

(
n

h−1

)(
n−h+1

3

)
+ · · ·+

(
n
1

)(
n−1
2h−1

)
+

(
n

2h+1

)
generators of odd degree 2h+ 1 ⩽ 2n , which

are monomials with h+ 1, or h+ 2, . . . , or 2h+ 1, of the n variables.

The generators of Iq(K′
n,m) correspond to all the walks of length q− 1 in K′

n,m , where 3 ⩽ q ⩽
2(n +m) − 1 . They are monomials of degree q in the variables Xi, X

2
i , Yj , Y

2
j . For instance, the generalized

graph ideals of K′
5,3 are the following ones :

I3(K′
5,3) = I1J2 + I2J1 ,

I4(K′
5,3) = I1J3,2 + I2J2 + I3,2J1 ,

I5(K′
5,3) = I1J4,2 + I2J3,2 + I3,2J2 + I4,2J1 ,

I6(K′
5,3) = I1J5,2 + I2J4,2 + I3,2J3,2 + I4,2J2 + I5,2J1 ,

I7(K′
5,3) = I1J6,2 + I2J5,2 + I3,2J4,2 + I4,2J3,2 + I5,2J2 + I6,2J1 ,

I8(K′
5,3) = I2J6,2 + I3,2J5,2 + I4,2J4,2 + I5,2J3,2 + I6,2J2 + I7,2J1 ,

I9(K′
5,3) = I3,2J6,2 + I4,2J5,2 + I5,2J4,2 + I6,2J3,2 + I7,2J2 + I8,2J1 ,

I10(K′
5,3) = I4,2J6,2 + I5,2J5,2 + I6,2J4,2 + I7,2J3,2 + I8,2J2 + I9,2J1 ,

I11(K′
5,3) = I5,2J6,2 + I6,2J5,2 + I7,2J4,2 + I8,2J3,2 + I9,2J2 + I10,2J1 ,

I12(K′
5,3) = I6,2J6,2 + I7,2J5,2 + I8,2J4,2 + I9,2J3,2 + I10,2J2 ,

I13(K′
5,3) = I7,2J6,2 + I8,2J5,2 + I9,2J4,2 + I10,2J3,2 ,

I14(K′
5,3) = I8,2J6,2 + I9,2J5,2 + I10,2J4,2 ,

I15(K′
5,3) = I9,2J6,2 + I10,2J5,2 .

Let (Iq)c(K′
n,m) indicate the ideal of vertex covers of Iq(K′

n,m) , ∀ q .

The following result establishes the structure of (Iq)c(K′
n,m) .

Theorem 4.4 Let (Iq)c(K′
n,m) be the ideals of vertex covers for the generalized graph ideals associated to the

strong quasi-bipartite graph K′
n,m , n ⩾ m .

When q = 2(n+m)−2ℓ+1 or q = 2(n+m)−2(ℓ−1) , for any ℓ = 1, . . . , n+m−1 , (Iq)c(K′
n,m) are structured

as follows :

if ℓ = 1, . . . ,m−1 , there are(
n
ℓ

)
generators of degree ℓ , Xi1 · · ·Xiℓ ,(

m
ℓ

)
generators of degree ℓ , Yj1 · · ·Yjℓ ,∑ℓ−1

h=1

(
n

ℓ−h

)(
m
h

)
generators of degree ℓ , Xi1 · · ·Xiℓ−h

Yj1 · · ·Yjh ,∑ℓ−2
k=1

(
n

ℓ−k

)(
m

k+1

)
generators of degree ℓ+1 , Xi1 · · ·Xiℓ−k

Yj1 · · ·Yjk+1
;

if ℓ = m, . . . , n+m−1 , there are{ (
n
ℓ

)
generators of degree ℓ, Xi1 · · ·Xiℓ , for ℓ < n,

1 generator of degree n, X1 · · ·Xn, otherwise,
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1 generator of degree m , Y1 · · ·Ym ,∑m−1
h=1

(
n

ℓ−h

)(
m
h

)
generators of degree ℓ , Xi1 · · ·Xiℓ−h

Yj1 · · ·Yjh ,∑m−2
k=1

(
n

ℓ−k

)(
m

k+1

)
generators of degree ℓ+1 , Xi1 · · ·Xiℓ−k

Yj1 · · ·Yjk+1
;

by assuming that
(
a
b

)
is not zero only when 0 ̸= b ≨ a .

Proof The generators of (Iq)c(K′
n,m) are square-free monomials of R that derive from the associated minimal

prime ideals of the generalized graph ideals Iq(K′
n,m), when q = 3, . . . , 2(n+m)−1 . By symmetry on Xi

and Yj , we do not lack generality if we suppose n ⩾ m . It can be seen that q is linked to the degree of

some monomials in (Iq)c(K′
n,m) ; in fact, the pairs of ideals of vertex covers in which q = 2(n+m)−2ℓ+1 and

q = 2(n+m)−2(ℓ−1), for any ℓ = 1, . . . , n+m−1 , have the generators with both the sets of variables Xi, Yj

only of degrees ℓ and ℓ+1 . The structure of the ideals Iq(K′
n,m) brings to the following composition of the

ideals of vertex covers for them.

− (I2(n+m)−1)c(K′
n,m) and (I2(n+m))c(K′

n,m)

have
(
n
1

)
generators X1, . . . , Xn , and

(
m
1

)
generators Y1, . . . , Ym .

− (I2(n+m)−2·2+1)c(K′
n,m) and I2(n+m)−2)c(K′

n,m)

have
(
n
2

)
generators X1X2, . . . , Xn−1Xn ,

(
m
2

)
generators Y1Y2, . . . , Ym−1Ym , and(

n
1

)(
m
1

)
generators X1Y1, . . . , XnY1, X1Y2, . . . , XnY2, . . . , X1Ym, . . . , XnYm .

− (I2(n+m)−2·3+1)c(K′
n,m) and (I2(n+m)−4)c(K′

n,m)

have
(
n
3

)
generators X1X2X3, . . . , Xn−2Xn−1Xn ,(

m
3

)
generators Y1Y2Y3, . . . , Ym−2Ym−1Ym ,(

n
2

)(
m
1

)
generators X1X2Y1, . . . , Xn−1XnY1, X1X2Y2, . . . , X1X2Ym, . . . , Xn−1XnYm ,(

n
1

)(
m
2

)
generators X1Y1Y2, . . . , XnY1Y2, X1Y1Y3, . . . , X1Ym−1Ym, . . . , XnYm−1Ym , and(

n
2

)(
m
2

)
generators X1X2Y1Y2, . . . , Xn−1XnY1Y2, . . . , X1X2Ym−1Ym, . . . , Xn−1XnYm−1Ym .

− (I2(n+m)−2·4+1)c(K′
n,m) and (I2(n+m)−6)c(K′

n,m)

have
(
n
4

)
generators X1X2X3X4, . . . , Xn−3Xn−2Xn−1Xn ,(

m
4

)
generators Y1Y2Y3Y4, . . . , Ym−3Ym−2Ym−1Ym ,(

n
3

)(
m
1

)
generators X1X2X3Y1, . . . , Xn−2Xn−1XnY1, . . . , X1X2X3Ym, . . . , Xn−2Xn−1XnYm ,(

n
2

)(
m
2

)
generators X1X2Y1Y2, . . . , Xn−1XnY1Y2, . . . , X1X2Ym−1Ym, . . . , Xn−1XnYm−1Ym ,(

n
1

)(
m
3

)
generators X1Y1Y2Y3, . . . , XnY1Y2Y3, . . . , X1Ym−2Ym−1Ym, . . . , XnYm−2Ym−1Ym ,(

n
3

)(
m
2

)
generators X1X2X3Y1Y2, . . . , X1X2X3Ym−1Ym, . . . , Xn−2Xn−1XnYm−1Ym ,(

n
2

)(
m
3

)
generators X1X2Y1Y2Y3, . . . , X1X2Ym−2Ym−1Ym, . . . , Xn−1XnYm−2Ym−1Ym .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− (I2(n+m)−2m+1)c(K′
n,m) and (I2(n+1))c(K′

n,m)
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have
(
n
m

)
generators X1 · · ·Xm, . . . , Xn−m+1 · · ·Xn ,

(
m
m

)
generators Y1 · · ·Ym ,(

n
m−1

)(
m
1

)
generators X1 · · ·Xm−1Y1, . . . , X1 · · ·Xm−1Ym, . . . , Xn−m+2 · · ·XnYm ,

. . . . . . . . . . . .(
n
1

)(
m

m−1

)
generators X1Y1 · · ·Ym−1, . . . , XnY1 · · ·Ym−1, . . . , X1Y2 · · ·Ym, . . . , XnY2 · · ·Ym ,(

n
m−1

)(
m
2

)
generators X1 · · ·Xm−1Y1Y2, . . . , X1 · · ·Xm−1Ym−1Ym, . . . , Xn−m+2 · · ·XnYm−1Ym ,

. . . . . . . . . . . .(
n
2

)(
m

m−1

)
generators X1X2Y1 · · ·Ym−1, . . . , X1X2Y2 · · ·Ym, . . . , Xn−1XnY2 · · ·Ym .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− (I2(n+m)−2n+1)c(K′
n,m) and (I2(m+1))c(K′

n,m)

have
(
n
n

)
generators X1 · · ·Xn ,

(
m
m

)
generators Y1 · · ·Ym ,(

n
n−1

)(
m
1

)
generators X1 · · ·Xn−1Y1, . . . , X2 · · ·XnY1, . . . , X1 · · ·Xn−1Ym, . . . , X2 · · ·XnYm ,

. . . . . . . . . . . .(
n

n−m+1

)(
m

m−1

)
generators X1 · · ·Xn−m+1Y1 · · ·Ym−1, . . . , Xm · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−m+1Y2 · · ·Ym, . . . , Xm · · ·XnY2 · · ·Ym ,(
n

n−1

)(
m
2

)
generators X1 · · ·Xn−1Y1Y2, . . . , X2 · · ·XnY1Y2, . . . , X2 · · ·XnYm−1Ym ,

. . . . . . . . . . . .(
n

n−m+2

)(
m

m−1

)
generators X1 · · ·Xn−m+2Y1 · · ·Ym−1, . . . , Xm−1 · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−m+2Y2 · · ·Ym, . . . , Xm−1 · · ·XnY2 · · ·Ym .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− (I2(n+m)−2(n+m−4)+1)c(K′
n,m) and (I10)c(K′

n,m)

have
(
n
n

)
generators X1 · · ·Xn ,

(
m
m

)
generators Y1 · · ·Ym ,(

n
n−1

)(
m

m−3

)
generators X1 · · ·Xn−1Y1 · · ·Ym−3, . . . , X2 · · ·XnY1 · · ·Ym−3, . . . ,

X1 · · ·Xn−1Y4 · · ·Ym, . . . , X2 · · ·XnY4 · · ·Ym ,(
n

n−2

)(
m

m−2

)
generators X1 · · ·Xn−2Y1 · · ·Ym−2, . . . , X3 · · ·XnY1 · · ·Ym−2, . . . ,

X1 · · ·Xn−2Y3 · · ·Ym, . . . , X3 · · ·XnY3 · · ·Ym ,(
n

n−3

)(
m

m−1

)
generators X1 · · ·Xn−3Y1 · · ·Ym−1, . . . , X4 · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−3Y2 · · ·Ym, . . . , X4 · · ·XnY2 · · ·Ym ,(
n

n−1

)(
m

m−2

)
generators X1 · · ·Xn−1Y1 · · ·Ym−2, . . . , X2 · · ·XnY1 · · ·Ym−2, . . . ,

X1 · · ·Xn−1Y3 · · ·Ym, . . . , X2 · · ·XnY3 · · ·Ym ,(
n

n−2

)(
m

m−1

)
generators X1 · · ·Xn−2Y1 · · ·Ym−1, . . . , X3 · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−2Y2 · · ·Ym, . . . , X3 · · ·XnY2 · · ·Ym .

− (I2(n+m)−2(n+m−3)+1)c(K′
n,m) and (I8)c(K′

n,m)

have
(
n
n

)
generators X1 · · ·Xn ,

(
m
m

)
generators Y1 · · ·Ym ,(

n
n−1

)(
m

m−2

)
generators X1 · · ·Xn−1Y1 · · ·Ym−2, . . . , X2 · · ·XnY1 · · ·Ym−2, . . . ,

X1 · · ·Xn−1Y3 · · ·Ym, . . . , X2 · · ·XnY3 · · ·Ym ,(
n

n−2

)(
m

m−1

)
generators X1 · · ·Xn−2Y1 · · ·Ym−1, . . . , X3 · · ·XnY1 · · ·Ym−1, . . . ,
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X1 · · ·Xn−2Y2 · · ·Ym, . . . , X3 · · ·XnY2 · · ·Ym , and(
n

n−1

)(
m

m−1

)
generators X1 · · ·Xn−1Y1 · · ·Ym−1, . . . , X2 · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−1Y2 · · ·Ym, . . . , X2 · · ·XnY2 · · ·Ym .

− (I2(n+m)−2(n+m−2)+1)c(K′
n,m) and (I6)c(K′

n,m)

have
(
n
n

)
generators X1 · · ·Xn ,

(
m
m

)
generators Y1 · · ·Ym , and(

n
n−1

)(
m

m−1

)
generators X1 · · ·Xn−1Y1 · · ·Ym−1, . . . , X2 · · ·XnY1 · · ·Ym−1, . . . ,

X1 · · ·Xn−1Y2 · · ·Ym, . . . , X2 · · ·XnY2 · · ·Ym .

− (I2(n+m)−2(n+m−1)+1)c(K′
n,m) and (I4)c(K′

n,m)

have
(
n
n

)
generators X1 · · ·Xn , and

(
m
m

)
generators Y1 · · ·Ym . 2

Example 4.5 Let R = K[X1, X2, X3, X4, X5;Y1, Y2, Y3] and K′
5,3 be the strong quasi-bipartite graph on vertex

set {x1, x2, x3, x4, x5; y1, y2, y3} . The ideals of vertex covers (Iq)c of Iq(K′
5,3) , for q = 3, . . . , 15 , are the

following ones:

(I3)c = (I4)c = (X1X2X3X4X5; Y1Y2Y3) ,

(I5)c = (I6)c = (X1X2X3X4X5; Y1Y2Y3;

X1X2X3X4Y1Y2, X1X2X3X5Y1Y2, X1X2X4X5Y1Y2, X1X3X4X5Y1Y2, X2X3X4X5Y1Y2,

X1X2X3X4Y1Y3, . . . , X2X3X4X5Y1Y3, X1X2X3X4Y2Y3, . . . , X2X3X4X5Y2Y3) ,

(I7)c = (I8)c = (X1X2X3X4X5; Y1Y2Y3;

X1X2X3X4Y1, X1X2X3X5Y1, X1X2X4X5Y1, X1X3X4X5Y1, X2X3X4X5Y1,

X1X2X3X4Y2, . . . , X2X3X4X5Y2, X1X2X3X4Y3, . . . , X2X3X4X5Y3;

X1X2X3Y1Y2, X1X2X4Y1Y2, X1X2X5Y1Y2, X1X3X4Y1Y2, X1X3X5Y1Y2,

X1X4X5Y1Y2, X2X3X4Y1Y2, X2X3X5Y1Y2, X2X4X5Y1Y2, X3X4X5Y1Y2,

X1X2X3Y1Y3, . . . , X3X4X5Y1Y3, X1X2X3Y2Y3, . . . , X3X4X5Y2Y3;

X1X2X3X4Y1Y2, X1X2X3X5Y1Y2, X1X2X4X5Y1Y2, X1X3X4X5Y1Y2, X2X3X4X5Y1Y2,

X1X2X3X4Y1Y3, . . . , X2X3X4X5Y1Y3, X1X2X3X4Y2Y3, . . . , X2X3X4X5Y2Y3) ,

(I9)c = (I10)c = (X1X2X3X4, X1X2X3X5, X1X2X4X5, X1X3X4X5, X2X3X4X5; Y1Y2Y3;

X1X2X3Y1, X1X2X4Y1, X1X2X5Y1, X1X3X4Y1, X1X3X5Y1, X1X4X5Y1, X2X3X4Y1,

X2X3X5Y1, X2X4X5Y1, X3X4X5Y1, X1X2X3Y2, . . . , X3X4X5Y2, X1X2X3Y3, . . . , X3X4X5Y3;

X1X2Y1Y2, X1X3Y1Y2, X1X4Y1Y2, X1X5Y1Y2, X2X3Y1Y2, X2X4Y1Y2, X2X5Y1Y2,

X3X4Y1Y2, X3X5Y1Y2, X4X5Y1Y2, X1X2Y1Y3, . . . , X4X5Y1Y3, X1X2Y2Y3, . . . , X4X5Y2Y3;

X1X2X3Y1Y2, X1X2X4Y1Y2, X1X2X5Y1Y2, X1X3X4Y1Y2, X1X3X5Y1Y2,

X1X4X5Y1Y2, X2X3X4Y1Y2, X2X3X5Y1Y2, X2X4X5Y1Y2, X3X4X5Y1Y2,

X1X2X3Y1Y3, . . . , X3X4X5Y1Y3, X1X2X3Y2Y3, . . . , X3X4X5Y2Y3) ,

(I11)c = (I12)c = (X1X2X3, X1X2X4, X1X2X5, X1X3X4, X1X3X5, X1X4X5,

X2X3X4, X2X3X5, X2X4X5, X3X4X5; Y1Y2Y3;

X1X2Y1, X1X3Y1, X1X4Y1, X1X5Y1, X2X3Y1, X2X4Y1, X2X5Y1, X3X4Y1, X3X5Y1,

X4X5Y1, X1X2Y2, . . . , X4X5Y2, X1X2Y3, . . . , X4X5Y3;

X1Y1Y2, X2Y1Y2, X3Y1Y2, X4Y1Y2, X5Y1Y2, X1Y1Y3, . . . , X5Y1Y3, X1Y2Y3, . . . , X5Y2Y3;
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X1X2Y1Y2, X1X3Y1Y2, X1X4Y1Y2, X1X5Y1Y2, X2X3Y1Y2, X2X4Y1Y2, X2X5Y1Y2,

X3X4Y1Y2, X3X5Y1Y2, X4X5Y1Y2, X1X2Y1Y3, . . . , X4X5Y1Y3, X1X2Y2Y3, . . . , X4X5Y2Y3) ,

(I13)c = (I14)c = (X1X2, X1X3, X1X4, X1X5, X2X3, X2X4, X2X5, X3X4, X3X5, X4X5;

Y1Y2, Y1Y3, Y2Y3; X1Y1, X2Y1, X3Y1, X4Y1, X5Y1, X1Y2, . . . , X5Y2, X1Y3, . . . , X5Y3) ,

(I15)c = (X1, X2, X3, X4, X5; Y1, Y2, Y3) .
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