Turk J Math
(2016) 40: $766-769$
(c) TÜBITTAK
doi:10.3906/mat-1506-41

A note on reduction numbers and Hilbert-Samuel functions of ideals over Cohen-Macaulay rings

Amir MAFI*, Dler NADERI
Department of Mathematics, University of Kurdistan, Sanandaj, Iran

Received: 11.06 .2015	\bullet	Accepted/Published Online: 11.10 .2015	\bullet	Final Version: 16.06 .2016

Abstract

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 2$ with infinite residue field and I an \mathfrak{m}-primary ideal of R. Let I be integrally closed and J be a minimal reduction of I. In this paper, we show that the following are equivalent: $($ i $) P_{I}(n)=H_{I}(n)$ for $n=1,2$; (ii) $P_{I}(n)=H_{I}(n)$ for all $n \geq 1$; (iii) $I^{3}=J I^{2}$. Moreover, if $\operatorname{dim} R=3$, $n(I) \leq 1$ and grade $g r_{I}(R)_{+}>0$, then the reduction number $r(I)$ is independent.

Key words: Cohen-Macaulay rings, Hilbert-Samuel functions

1. Introduction

Throughout this note, we assume that (R, \mathfrak{m}) is a Cohen-Macaulay (abbreviated CM) local ring of dimension $d>0$ with infinite residue field and I is an \mathfrak{m}-primary ideal of R. Let $\ell\left(R / I^{n}\right)$ denote the length of the R-module R / I^{n}. The Hilbert-Samuel function of I is the function $H_{I}(n)=\ell\left(R / I^{n}\right)$. It is well known that this function coincides with a polynomial $P_{I}(n)$ of degree d for all sufficiently large integers n and we set $n(I)=\max \left\{n \in \mathbb{Z}: P_{I}(n) \neq H_{I}(n)\right\}$; this number first introduced by Ooishi [11]. $P_{I}(n)$ is called the HilbertSamuel polynomial of I. Northcott and Rees [10] defined a minimal reduction of I (abbreviated MR(I)) to be a d-generated ideal $J \subseteq I$ of R such that $J I^{n}=I^{n+1}$ for some nonnegative integers n. We denote $r_{J}(I)=\min \left\{n \in \mathbb{Z}: J I^{n}=I^{n+1}\right\}$. The reduction number $r(I)$ is defined as $r(I)=\min \left\{r_{J}(I): J \in M R(I)\right\}$. The reduction number $r(I)$ is said to be independent if $r(I)=r_{J}(I)$ for all $J \in M R(I)$. We denote the associated graded ring of I by $g r_{I}(R)=\oplus_{n \geq 0} I^{n} / I^{n+1}$ and $g r_{I}(R)_{+}$denotes the ideal $\oplus_{n \geq 1} I^{n} / I^{n+1}$. Huckaba [3] and Trung [14] showed that if grade $g r_{I}(R)_{+} \geq d-1$, then $r(I)$ is independent (see also [8]).

Hoa [2] proved that if $d=2$ and I agrees with its Ratliff-Rush closure \widetilde{I}, then the following are equivalent: (i) $H_{I}(n)=P_{I}(n)$ for $n=1,2$; (ii) $H_{I}(n)=P_{I}(n)$ for all $n \geq 1$; (iii) $r(I) \leq 2$ and grade $g r_{I}(R)_{+} \geq 1$ (see also [4]). For basic definitions, we refer the reader to [1, 9].

The main aim of this paper is to prove the following theorems.
Theorem 1.1 Let $d \geq 2$ and J be a minimal reduction of I. If $\bar{I}=I$, then the following are equivalent:
(i) $P_{I}(n)=H_{I}(n)$ for $n=1,2$.
(ii) $P_{I}(n)=H_{I}(n)$ for all $n \geq 1$.

[^0](iii) $r_{J}(I) \leq 2$.

Theorem 1.2 (Compare with Corollary 5 of [16].) Let $d=3$ and $\bar{I}=I$. If $n(I) \leq 1$ and grade $g r_{I}(R)_{+}>0$, then $r(I)$ is independent.

2. The results

Following Marley [8], let $S=\oplus_{n \geq 0} S_{n}$ be a Noetherian graded ring where S_{0} is an Artinian local ring, S is generated by 1 -forms over S_{0}, and $S_{+}=\oplus_{n \geq 1} S_{n}$. If $M=\oplus_{n \in \mathbb{Z}} M_{n}$ is a finitely generated graded S-module, then for $i \geq 0$ we let $H_{S_{+}}^{i}(M)=\oplus_{n \in \mathbb{Z}} H_{S_{+}}^{i}(M)_{n}$ be the i th local cohomology modules of M with support in S_{+}. It was shown that these modules are Artinian and that each $H_{S_{+}}^{i}(M)_{n}$ is finitely generated. Thus, $H_{S_{+}}^{i}(M)_{n}=0$ for n sufficiently large. If $H_{S_{+}}^{i}(M) \neq 0$, we let $a_{i}(M)=\max \left\{n \in \mathbb{Z}: H_{S_{+}}^{i}(M)_{n} \neq 0\right\}$. For convenience, we define $a_{i}(M)=\infty$ for $i<\operatorname{depth}_{S_{+}} M$ and $a_{i}(M)=\infty$ for $i>\operatorname{dim} M$. We will use $a_{i}(I)$ to denote $a_{i}\left(g r_{I}(R)\right)$.

The following lemma extends Theorem 2.1 of [13].
Lemma 2.1 Let $\bar{I}=I$ and $r(I) \leq 2$. Then $g r_{I}(R)$ is Cohen-Macaulay.
Proof Suppose J is a minimal reduction of I. Then $\overline{I^{2}}=\overline{J^{2}}$ and by Theorem 1 of [6] we have $\overline{I^{2}} \cap J=\bar{I} J=I J$. Therefore, $I^{2} \cap J=I J$, and since $J I^{n}=I^{n+1}$ for all $n \geq 2$, we have $I^{n} \cap J=I^{n-1} J$ for all $n \geq 1$. Hence, by Corollary 2.7 of [15], $g r_{I}(R)$ is Cohen-Macaulay.

The following result extends Remark 3.2 of [8].
Lemma 2.2 Let $d=2$ and $P_{I}(n)=H_{I}(n)$ for all $n \geq 3$. If $\bar{I}=I$, then $r(I)$ is independent.
Proof If $r(I) \leq 2$, then by Lemma $2.1 g r_{I}(R)$ is CM and so $r(I)$ is independent. If $r(I) \geq 3$, then since $n(I) \leq 2$, we have $r(I) \geq n(I)+1$. Hence, by Theorem 3.1 of [16] $r(I)$ is independent.

Proposition 2.3 Let $d=2$ and J be a minimal reduction of I. If $r_{J}(I) \leq n(I)+1$, then $a_{1}(I)=n(I)$.
Proof By Theorem 2.1 of [8] and our hypothesis, we have grade $g r_{I}(R)_{+}=0$. Therefore, $a_{0}(I)<a_{1}(I)$. If $a_{1}(I)<a_{2}(I)$, then by Lemma 2.1 and Remark 1.4 of $[8] n(I)+2 \leq r_{J}(I)$ and this is a contradiction with our hypothesis. Hence, $a_{2}(I) \leq a_{1}(I)$. If $a_{2}(I)=a_{1}(I)$, then $r_{J}(I)=a_{2}(I)+2$ and so $a_{2}(I)+2 \leq n(I)+1 \leq a_{2}(I)+1$ and this is also a contradiction. Thus, $a_{2}(I)<a_{1}(I)$ and so $a_{1}(I)=n(I)$, as required.

Proposition 2.4 Let $d=2$ and $n(I)+2 \leq r(I)$. Then $a_{2}(I)=n(I)$ or $a_{2}(I)=r(I)-2$.
Proof If grade $g r_{I}(R)_{+} \geq 1$, then $r(I)=n(I)+2=a_{2}(I)+2$. Hence, $a_{2}(I)=n(I)$. Suppose grade $g r_{I}(R)_{+}=0$ and then $a_{0}(I)<a_{1}(I)$. If $a_{1}(I)<a_{2}(I)$, then $a_{2}(I)=n(I)$. If $a_{2}(I)<a_{1}(I)$, then $n(I)=a_{1}(I)$ and so $a_{1}(I)+2=n(I)+2 \leq r(I) \leq a_{1}(I)+1$ and this is a contradiction. If $a_{1}(I)=a_{2}(I)$, then $a_{2}(I)+2 \leq r(I) \leq a_{2}(I)+2$. Therefore, $a_{2}(I)=r(I)-2$.

Ratliff and Rush [12] defined \widetilde{I} as follows: $\widetilde{I}=\cup_{n \geq 1} I^{n+1}: I^{n}$. They proved, for all $n>0, \widetilde{I^{n}}=$ $\cup_{k>0} I^{n+k}: I^{k}$. It is well known that grade $g r_{I}(R)_{+}>0$ if and only if $\widetilde{I^{n}}=I^{n}$ for all $n>0$. In the following results we denote the leading form of an element $x \in I \backslash I^{2}$ with $x^{*} \in I / I^{2} \subseteq g r_{I}(R)$.

Theorem 2.5 Let $d \geq 2$ and J be a minimal reduction of I. If $\bar{I}=I$, then the following are equivalent:
(i) $P_{I}(n)=H_{I}(n)$ for $n=1,2$.
(ii) $P_{I}(n)=H_{I}(n)$ for all $n \geq 1$.
(iii) $r_{J}(I) \leq 2$.

In particular, if one of the above cases holds, then $\operatorname{gr}_{I}(R)$ is $C M$.
Proof $(i i i) \Longrightarrow(i i) . r_{J}(I) \leq 2$ and by Lemma $2.1 g r_{I}(R)$ is CM. Thus, $r(I)=n(I)+d$ and so $n(I) \leq 2-d$. Therefore, $n(I) \leq 0$ and hence $P_{I}(n)=H_{I}(n)$ for all $n \geq 1$.
$(i i) \Longrightarrow(i)$. It is clear.
$(i) \Longrightarrow(i i i)$. We use induction on d. If $d=2$, then by Corollary 4 of [7] $P_{I}(n)=\ell\left(R / \widetilde{I^{n}}\right)$ for all $n \geq 1$. Therefore, $\widetilde{I^{n+1}}=J \widetilde{I^{n}}$ for all $n \geq 2$ and so $I^{3}=J I^{2}$. We may assume that $d \geq 3$, and that the assertion holds for CM local rings of dimension less than d. By Lemma 8.4.2 of [5] replacing R with $R(X)$, if necessary, and we may assume that there exists $x \in J$ such that x is a part of a system of minimal generators of J and, if we put $A=R /(x)$, by Lemma 11 of [7] $\mathfrak{a}=I A$ is integrally closed. By Lemma 2.3 of [16] $P_{\mathfrak{a}}(n)=H_{\mathfrak{a}}(n)$ for $n=1,2$. Therefore, by our induction hypothesis, $\mathfrak{a}^{3}=J \mathfrak{a}^{2}$ and $g r_{\mathfrak{a}}(A)$ is CM; in particular, $\widetilde{\mathfrak{a}^{n}}=\mathfrak{a}^{n}$ for all n. Since $\widetilde{I^{n}} A \subseteq \widetilde{\mathfrak{a}^{n}}=\mathfrak{a}^{n}=I^{n} A$, we have $\widetilde{I^{n}}+(x)=I^{n}+(x)$. Therefore, $\widetilde{I^{n}}=I^{n}+(x) \widetilde{I^{n-1}}$ for all $n \geq 1$ and so by induction on n, we have $\widetilde{I^{n}}=I^{n}$ for all n. Hence, $g r_{I}(R)$ is CM and x^{*} is a regular element of $g r_{I}(R)$. By Lemma 2.2 of [16] $r_{J}(I) \leq 2$, as required.

Theorem 2.6 Let $d=3$ and $n(I) \leq 1$. If grade $g r_{I}(R)_{+}>0$ and $\bar{I}=I$, then $r(I)$ is independent.
Proof Let $J_{1}=\left(x_{1}, x_{2}, x_{3}\right)$ and $J_{2}=\left(y_{1}, y_{2}, y_{3}\right)$ be minimal reductions of I. Since grade $g r_{I}(R)_{+}>0$, by Lemma 2.7 of [16] we may assume that x_{1}^{*} and y_{1}^{*} are regular elements in $g r_{I}(R)$ and $J=\left(x_{1}, x_{2}, y_{1}\right)$ is a minimal reduction of I. By Lemma 2.1 of [16] $n\left(I /\left(x_{1}\right)=n(I)+1 \leq 2\right.$. Replacing R with $R(T)$, by Lemma 11 of [7] $I /\left(x_{1}\right)$ is integrally closed and by Lemma $2.1 r\left(I /\left(x_{1}\right)\right)$ is independent. Hence, $r\left(I /\left(x_{1}\right)\right)=$ $r_{J_{1} /\left(x_{1}\right)}\left(I /\left(x_{1}\right)=r_{J /\left(x_{1}\right)}\left(I /\left(x_{1}\right)\right)\right.$. Since x_{1}^{*} is regular element in $g r_{I}(R)$, we have $r_{J_{1}}(I)=r_{J}(I)$. By the same argument $r_{J_{2}}(I)=r_{J}(I)$ and so $r_{J_{1}}(I)=r_{J_{2}}(I)$. Thus, $r(I)$ is independent, as required.

References

[1] Bruns W, Herzog J. Cohen-Macaulay rings. Cambridge, UK: Cambridge University Press, 1998.
[2] Hoa LT. A note on the Hilbert-Samul function in a two-dimensional local ring. Acta Math Viet 1996; 21: 335-347.
[3] Huckaba S. Reduction number for ideals of higher analytic spread. P Camb Philos Soc 1987; 102: 49-57.
[4] Huneke C. Hilbert functions and symbolic powers. Michigan Math J 1987; 34: 293-318.
[5] Huneke C, Swanson I. Integral Closure of Ideals, Rings and Modules. Cambridge, UK: Cambridge University Press, 2006.
[6] Itoh S. Integral closures of ideals generated by regular sequences. J Algebra 1988; 117: 390-401.
[7] Itoh S. Hilbert coefficients of integrally closed ideals. J Algebra 1995; 176: 638-652.

MAFI and NADERI/Turk J Math

[8] Marley T. The reduction number of an ideal and the local cohomology of the associated graded ring. P Am Math Soc 1993; 117: 335-341.
[9] Matsumura H. Commutative Ring Theory. Cambridge, UK: Cambridge University Press, 1986.
[10] Northcott DG, Rees D. Reduction of ideals in local rings. P Camb Philos Soc 1954; 50: 145-158.
[11] Ooishi A. Genera and arithmetic genera of commutative rings. Hiroshima Math J 1987; 17: 47-66.
[12] Ratliff LJ, Rush D. Two notes on reductions of ideals. Indiana Univ Math J 1978; 27: 929-934.
[13] Sally JD. Tangent cones at Gorenstein singularities. Compositio Math 1980; 40: 167-175.
[14] Trung NV. Reduction exponent and degree bound for the defining equations of graded rings. P Am Math Soc 1987; 101: 229-236.
[15] Valabrega P, Valla G. Form rings and regular sequences. Nagoya Math J 1978; 72: 93-101.
[16] Wu Y. Reduction numbers and Hilbert polynomials of ideals in higher dimensional Cohen-Macaulay local rings. Math Proc Cambridge 1992; 111: 47-56.

[^0]: *Correspondence: a_mafi@ipm.ir
 2010 AMS Mathematics Subject Classification: 13H10, 13D40.

