

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

A note on reduction numbers and Hilbert–Samuel functions of ideals over Cohen–Macaulay rings

Amir MAFI*, Dler NADERI

Department of Mathematics, University of Kurdistan, Sanandaj, Iran

Received: 11.06.2015 • Accepted/Pub	ished Online: 11.10.2015	•	Final Version: 16.06.2016
-------------------------------------	---------------------------------	---	----------------------------------

Abstract: Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \ge 2$ with infinite residue field and I an \mathfrak{m} -primary ideal of R. Let I be integrally closed and J be a minimal reduction of I. In this paper, we show that the following are equivalent: (i) $P_I(n) = H_I(n)$ for n = 1, 2; (ii) $P_I(n) = H_I(n)$ for all $n \ge 1$; (iii) $I^3 = JI^2$. Moreover, if dim R = 3, $n(I) \le 1$ and grade $gr_I(R)_+ > 0$, then the reduction number r(I) is independent.

Key words: Cohen-Macaulay rings, Hilbert-Samuel functions

1. Introduction

Throughout this note, we assume that (R, \mathfrak{m}) is a Cohen–Macaulay (abbreviated CM) local ring of dimension d > 0 with infinite residue field and I is an \mathfrak{m} -primary ideal of R. Let $\ell(R/I^n)$ denote the length of the R-module R/I^n . The Hilbert–Samuel function of I is the function $H_I(n) = \ell(R/I^n)$. It is well known that this function coincides with a polynomial $P_I(n)$ of degree d for all sufficiently large integers n and we set $n(I) = \max\{n \in \mathbb{Z} : P_I(n) \neq H_I(n)\}$; this number first introduced by Ooishi [11]. $P_I(n)$ is called the Hilbert–Samuel polynomial of I. Northcott and Rees [10] defined a minimal reduction of I (abbreviated MR(I)) to be a d-generated ideal $J \subseteq I$ of R such that $JI^n = I^{n+1}$ for some nonnegative integers n. We denote $r_J(I) = \min\{n \in \mathbb{Z} : JI^n = I^{n+1}\}$. The reduction number r(I) is defined as $r(I) = \min\{r_J(I) : J \in MR(I)\}$. The reduction number r(I) is observed integers $r(I) = \min\{r_J(I) : J \in MR(I)\}$. The reduction number r(I) is defined as $r(I) = \min\{r_J(I) : J \in MR(I)\}$. The reduction number r(I) is add to be independent if $r(I) = r_J(I)$ for all $J \in MR(I)$. We denote the associated graded ring of I by $gr_I(R) = \bigoplus_{n\geq 0} I^n/I^{n+1}$ and $gr_I(R)_+$ denotes the ideal $\bigoplus_{n\geq 1} I^n/I^{n+1}$. Huckaba [3] and Trung [14] showed that if grade $gr_I(R)_+ \geq d-1$, then r(I) is independent (see also [8]).

Hoa [2] proved that if d = 2 and I agrees with its Ratliff–Rush closure \widetilde{I} , then the following are equivalent: (i) $H_I(n) = P_I(n)$ for n = 1, 2; (ii) $H_I(n) = P_I(n)$ for all $n \ge 1$; (iii) $r(I) \le 2$ and grade $gr_I(R)_+ \ge 1$ (see also [4]). For basic definitions, we refer the reader to [1, 9].

The main aim of this paper is to prove the following theorems.

Theorem 1.1 Let $d \ge 2$ and J be a minimal reduction of I. If $\overline{I} = I$, then the following are equivalent:

- (i) $P_I(n) = H_I(n)$ for n = 1, 2.
- (ii) $P_I(n) = H_I(n)$ for all $n \ge 1$.

^{*}Correspondence: a_mafi@ipm.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 13H10, 13D40.

(iii) $r_J(I) \leq 2$.

Theorem 1.2 (Compare with Corollary 5 of [16].) Let d = 3 and $\overline{I} = I$. If $n(I) \le 1$ and grade $gr_I(R)_+ > 0$, then r(I) is independent.

2. The results

Following Marley [8], let $S = \bigoplus_{n \ge 0} S_n$ be a Noetherian graded ring where S_0 is an Artinian local ring, S is generated by 1-forms over S_0 , and $S_+ = \bigoplus_{n \ge 1} S_n$. If $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is a finitely generated graded S-module, then for $i \ge 0$ we let $H^i_{S_+}(M) = \bigoplus_{n \in \mathbb{Z}} H^i_{S_+}(M)_n$ be the *i*th local cohomology modules of M with support in S_+ . It was shown that these modules are Artinian and that each $H^i_{S_+}(M)_n$ is finitely generated. Thus, $H^i_{S_+}(M)_n = 0$ for n sufficiently large. If $H^i_{S_+}(M) \neq 0$, we let $a_i(M) = \max\{n \in \mathbb{Z} : H^i_{S_+}(M)_n \neq 0\}$. For convenience, we define $a_i(M) = \infty$ for $i < \operatorname{depth}_{S_+} M$ and $a_i(M) = \infty$ for $i > \dim M$. We will use $a_i(I)$ to denote $a_i(gr_I(R))$.

The following lemma extends Theorem 2.1 of [13].

Lemma 2.1 Let $\overline{I} = I$ and $r(I) \leq 2$. Then $gr_I(R)$ is Cohen-Macaulay.

Proof Suppose J is a minimal reduction of I. Then $\overline{I^2} = \overline{J^2}$ and by Theorem 1 of [6] we have $\overline{I^2} \cap J = \overline{I}J = IJ$. Therefore, $I^2 \cap J = IJ$, and since $JI^n = I^{n+1}$ for all $n \ge 2$, we have $I^n \cap J = I^{n-1}J$ for all $n \ge 1$. Hence, by Corollary 2.7 of [15], $gr_I(R)$ is Cohen–Macaulay.

The following result extends Remark 3.2 of [8].

Lemma 2.2 Let d = 2 and $P_I(n) = H_I(n)$ for all $n \ge 3$. If $\overline{I} = I$, then r(I) is independent.

Proof If $r(I) \leq 2$, then by Lemma 2.1 $gr_I(R)$ is CM and so r(I) is independent. If $r(I) \geq 3$, then since $n(I) \leq 2$, we have $r(I) \geq n(I) + 1$. Hence, by Theorem 3.1 of [16] r(I) is independent.

Proposition 2.3 Let d = 2 and J be a minimal reduction of I. If $r_J(I) \le n(I) + 1$, then $a_1(I) = n(I)$.

Proof By Theorem 2.1 of [8] and our hypothesis, we have grade $gr_I(R)_+ = 0$. Therefore, $a_0(I) < a_1(I)$. If $a_1(I) < a_2(I)$, then by Lemma 2.1 and Remark 1.4 of [8] $n(I)+2 \le r_J(I)$ and this is a contradiction with our hypothesis. Hence, $a_2(I) \le a_1(I)$. If $a_2(I) = a_1(I)$, then $r_J(I) = a_2(I)+2$ and so $a_2(I)+2 \le n(I)+1 \le a_2(I)+1$ and this is also a contradiction. Thus, $a_2(I) < a_1(I)$ and so $a_1(I) = n(I)$, as required.

Proposition 2.4 Let d = 2 and $n(I) + 2 \le r(I)$. Then $a_2(I) = n(I)$ or $a_2(I) = r(I) - 2$.

Proof If grade $gr_I(R)_+ \ge 1$, then $r(I) = n(I) + 2 = a_2(I) + 2$. Hence, $a_2(I) = n(I)$. Suppose grade $gr_I(R)_+ = 0$ and then $a_0(I) < a_1(I)$. If $a_1(I) < a_2(I)$, then $a_2(I) = n(I)$. If $a_2(I) < a_1(I)$, then $n(I) = a_1(I)$ and so $a_1(I) + 2 = n(I) + 2 \le r(I) \le a_1(I) + 1$ and this is a contradiction. If $a_1(I) = a_2(I)$, then $a_2(I) + 2 \le r(I) \le a_2(I) + 2$. Therefore, $a_2(I) = r(I) - 2$.

Ratliff and Rush [12] defined \widetilde{I} as follows: $\widetilde{I} = \bigcup_{n \ge 1} I^{n+1} : I^n$. They proved, for all n > 0, $\widetilde{I^n} = \bigcup_{k>0} I^{n+k} : I^k$. It is well known that grade $gr_I(R)_+ > 0$ if and only if $\widetilde{I^n} = I^n$ for all n > 0. In the following results we denote the leading form of an element $x \in I \setminus I^2$ with $x^* \in I/I^2 \subseteq gr_I(R)$.

Theorem 2.5 Let $d \ge 2$ and J be a minimal reduction of I. If $\overline{I} = I$, then the following are equivalent:

- (i) $P_I(n) = H_I(n)$ for n = 1, 2.
- (ii) $P_I(n) = H_I(n)$ for all $n \ge 1$.

(iii)
$$r_J(I) \leq 2$$
.

In particular, if one of the above cases holds, then $gr_I(R)$ is CM.

Proof (*iii*) \Longrightarrow (*ii*). $r_J(I) \le 2$ and by Lemma 2.1 $gr_I(R)$ is CM. Thus, r(I) = n(I) + d and so $n(I) \le 2 - d$. Therefore, $n(I) \le 0$ and hence $P_I(n) = H_I(n)$ for all $n \ge 1$. (*ii*) \Longrightarrow (*i*). It is clear.

 $(i) \Longrightarrow (iii)$. We use induction on d. If d = 2, then by Corollary 4 of [7] $P_I(n) = \ell(R/\widetilde{I^n})$ for all $n \ge 1$. Therefore, $\widetilde{I^{n+1}} = J\widetilde{I^n}$ for all $n \ge 2$ and so $I^3 = JI^2$. We may assume that $d \ge 3$, and that the assertion holds for CM local rings of dimension less than d. By Lemma 8.4.2 of [5] replacing R with R(X), if necessary, and we may assume that there exists $x \in J$ such that x is a part of a system of minimal generators of J and, if we put A = R/(x), by Lemma 11 of [7] $\mathfrak{a} = IA$ is integrally closed. By Lemma 2.3 of [16] $P_{\mathfrak{a}}(n) = H_{\mathfrak{a}}(n)$ for n = 1, 2. Therefore, by our induction hypothesis, $\mathfrak{a}^3 = J\mathfrak{a}^2$ and $gr_{\mathfrak{a}}(A)$ is CM; in particular, $\widetilde{\mathfrak{a}^n} = \mathfrak{a}^n$ for all n. Since $\widetilde{I^n}A \subseteq \widetilde{\mathfrak{a}^n} = \mathfrak{a}^n = I^nA$, we have $\widetilde{I^n} + (x) = I^n + (x)$. Therefore, $\widetilde{I^n} = I^n + (x)\widetilde{I^{n-1}}$ for all $n \ge 1$ and so by induction on n, we have $\widetilde{I^n} = I^n$ for all n. Hence, $gr_I(R)$ is CM and x^* is a regular element of $gr_I(R)$. By Lemma 2.2 of [16] $r_J(I) \le 2$, as required. \Box

Theorem 2.6 Let d = 3 and $n(I) \leq 1$. If grade $gr_I(R)_+ > 0$ and $\overline{I} = I$, then r(I) is independent.

Proof Let $J_1 = (x_1, x_2, x_3)$ and $J_2 = (y_1, y_2, y_3)$ be minimal reductions of I. Since grade $gr_I(R)_+ > 0$, by Lemma 2.7 of [16] we may assume that x_1^* and y_1^* are regular elements in $gr_I(R)$ and $J = (x_1, x_2, y_1)$ is a minimal reduction of I. By Lemma 2.1 of [16] $n(I/(x_1) = n(I) + 1 \le 2$. Replacing R with R(T), by Lemma 11 of [7] $I/(x_1)$ is integrally closed and by Lemma 2.1 $r(I/(x_1))$ is independent. Hence, $r(I/(x_1)) =$ $r_{J_1/(x_1)}(I/(x_1) = r_{J/(x_1)}(I/(x_1))$. Since x_1^* is regular element in $gr_I(R)$, we have $r_{J_1}(I) = r_J(I)$. By the same argument $r_{J_2}(I) = r_J(I)$ and so $r_{J_1}(I) = r_{J_2}(I)$. Thus, r(I) is independent, as required.

References

- [1] Bruns W, Herzog J. Cohen-Macaulay rings. Cambridge, UK: Cambridge University Press, 1998.
- [2] Hoa LT. A note on the Hilbert-Samul function in a two-dimensional local ring. Acta Math Viet 1996; 21: 335-347.
- [3] Huckaba S. Reduction number for ideals of higher analytic spread. P Camb Philos Soc 1987; 102: 49-57.
- [4] Huneke C. Hilbert functions and symbolic powers. Michigan Math J 1987; 34: 293-318.
- [5] Huneke C, Swanson I. Integral Closure of Ideals, Rings and Modules. Cambridge, UK: Cambridge University Press, 2006.
- [6] Itoh S. Integral closures of ideals generated by regular sequences. J Algebra 1988; 117: 390-401.
- [7] Itoh S. Hilbert coefficients of integrally closed ideals. J Algebra 1995; 176: 638-652.

- [8] Marley T. The reduction number of an ideal and the local cohomology of the associated graded ring. P Am Math Soc 1993; 117: 335-341.
- [9] Matsumura H. Commutative Ring Theory. Cambridge, UK: Cambridge University Press, 1986.
- [10] Northcott DG, Rees D. Reduction of ideals in local rings. P Camb Philos Soc 1954; 50: 145-158.
- [11] Ooishi A. Genera and arithmetic genera of commutative rings. Hiroshima Math J 1987; 17: 47-66.
- [12] Ratliff LJ, Rush D. Two notes on reductions of ideals. Indiana Univ Math J 1978; 27: 929-934.
- [13] Sally JD. Tangent cones at Gorenstein singularities. Compositio Math 1980; 40: 167-175.
- [14] Trung NV. Reduction exponent and degree bound for the defining equations of graded rings. P Am Math Soc 1987; 101: 229-236.
- [15] Valabrega P, Valla G. Form rings and regular sequences. Nagoya Math J 1978; 72: 93-101.
- [16] Wu Y. Reduction numbers and Hilbert polynomials of ideals in higher dimensional Cohen-Macaulay local rings. Math Proc Cambridge 1992; 111: 47-56.