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Abstract: Let M be an n -dimensional compact Riemannian manifold with a boundary. In this paper, we consider the

Steklov first eigenvalue with respect to the f -divergence form:

efdiv(e−fA∇u) = 0 in M, ⟨A(∇u), ν⟩ − ηu = 0 on ∂M,

where A is a smooth symmetric and positive definite endomorphism of TM , and the following three fourth order Steklov

eigenvalue problems:

(∆f )
2u = 0 in M, u = ∆fu− q

∂u

∂ν
= 0 on ∂M ;

(∆f )
2u = 0 in M, u =

∂2u

∂ν2
− µ

∂u

∂ν
= 0 on ∂M ;

(∆f )
2u = 0 in M,

∂u

∂ν
=

∂(∆fu)

∂ν
+ ξu = 0 on ∂M.

Under the assumption that the m -dimensional Bakry–Emery Ricci curvature and the weighted mean curvature are

bounded from below, we obtain sharp bounds for Steklov first nonzero eigenvalues. Moreover, we also study the case in

which the bounds are achieved.
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1. Introduction

Let (M, ⟨, ⟩) be an n -dimensional compact Riemannian manifold with a boundary and n ≥ 2. Denote ∆, ν

by the Laplace operator on M and the outward unit normal on ∂M , respectively. The Steklov problem is to

find a solution of the equation

∆u = 0 in M,
∂u

∂ν
= pu on ∂M, (1.1)

where p is a real number. This problem was introduced by Steklov in [19], in 1902, for bounded domains in the

plane. The study of the Steklov eigenvalue comes from physics and has appeared in quite a few physical fields,

such as fluid mechanics, electromagnetism, and elasticity. For related research and some improvements on the

Steklov problem of (1.1), see [7, 8, 12, 13, 18] and the references therein.
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Let f ∈ C2(M). The f -Laplacian operator is defined by

∆f = efdiv(e−f∇ ) = ∆−∇f∇,

which is symmetric in L2(M, e−fdv). Namely,∫
M

u∆fv e
−fdv = −

∫
M

∇u∇v e−fdv =

∫
M

v∆fu e
−fdv, ∀ u, v ∈ C∞

0 (M),

where dv is the volume form induced by the metric on M . In general, the triple (M, ⟨, ⟩, e−fdv) is customarily

called a smooth metric measure space. Following [2, 3, 16], the m-dimensional Bakry–Emery Ricci curvature

associated to the f -Laplacian is given by

Ricmf = Ric +∇2f − 1

m− n
df ⊗ df,

where m ≥ n is a constant, and m = n if and only if f is a constant. We define

Ricf = Ric +∇2f.

Then Ricf can be seen as the ∞-dimensional Bakry–Emery Ricci curvature. The equation Ricf = k⟨, ⟩ for

some constant k is just the gradient Ricci soliton equation, which plays an important role in the study of Ricci

flow (see [4]). The equation Ricmf = k⟨, ⟩ corresponds to the quasi-Einstein equation (cf. [5]), which has been

studied by many authors.

In recent years, many interesting estimates for eigenvalues of the f -Laplacian operator have been

obtained, for example, [6, 15, 17, 22]. In this paper, we study the following three fourth order Steklov eigenvalue

problems:

(∆f )
2u = 0 in M, u = ∆fu− q

∂u

∂ν
= 0 on ∂M. (1.2)

(∆f )
2u = 0 in M, u =

∂2u

∂ν2
− µ

∂u

∂ν
= 0 on ∂M ; (1.3)

(∆f )
2u = 0 in M,

∂u

∂ν
=

∂(∆fu)

∂ν
+ ξu = 0 on ∂M. (1.4)

For f constant, the problem (1.2) was studied by Kuttler [13]; the problem (1.3) was studied by Kuttler [13]

and Payne [18]; the problem (1.4) was first studied by Kuttler and Sigillito in [14], where some estimates for

the first eigenvalue ξ1 were obtained. In the present paper, we also study the Steklov first eigenvalue with

respect to the f -divergence form operator efdiv(e−fA·), where A is a smooth symmetric and positive definite

endomorphism of TM with A ≤ δI (in the matrix sense), namely the problem:

efdiv(e−fA∇u) = 0 in M, ⟨A(∇u), ν⟩ − ηu = 0 on ∂M. (1.5)

When f is constant, the Steklov eigenvalue of the problem (1.5) on bounded domains in a Euclidean plane was

studied by Alessandrini and Magnanini in [1].

The Steklov eigenvalue problem for elliptic equations in divergence form on bounded domains in a

Euclidean plane has been studied in [1]. In the present paper, we will obtain the following upper bound of

the first nonzero eigenvalue of the problem (1.5) on a compact manifold that generalizes a result in [21].
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Theorem 1.1 Let (M, ⟨, ⟩) be an n-dimensional compact Riemannian manifold with a boundary. As-

sume that the m-dimensional Bakry–Emery Ricci curvature is bounded below by −k0 , where k0 is nonnegative,

and that the principal curvatures of ∂M are bounded below by a positive constant c and fν ≤ −(m− n)c . De-

note by λ1 the first nonzero eigenvalue of the f -Laplacian on functions of ∂M and let η1 be the first nonzero

eigenvalue of the eigenvalue problem (1.5) with A ≤ δI (in the matrix sense). Then we have

(2λ1 + k0)
2 ≥ 4(m− 1)λ1c

2, (1.6)

and

η1 ≤
2λ1 + k0 +

√
(2λ1 + k0)2 − 4(m− 1)λ1c2

2(m− 1)c
δ. (1.7)

Furthermore, if (1.6) or (1.7) take an equality sign, then M is isometric to an n-dimensional Euclidean ball

of radius 1
c and f is constant.

On the other hand, for the first nonzero eigenvalues of three fourth order Steklov eigenvalue problems

(1.2), (1.3), and (1.4), we prove the following:

Theorem 1.2 Let (M, ⟨, ⟩) be an n-dimensional compact Riemannian manifold with a boundary and

nonnegative m-dimensional Bakry–Emery Ricci curvature. Assume that Hf ≥ m−1
n−1 c ; then the first nonzero

eigenvalue q1 of the eigenvalue problem (1.2) satisfies

q1 ≥ mc, (1.8)

with equality holding if and only if M is isometric to an n-dimensional Euclidean ball of radius 1
c and f is

constant.

Theorem 1.3 Let (M, ⟨, ⟩) be an n-dimensional compact Riemannian manifold with a boundary. Then

the first nonzero eigenvalue q1 of the eigenvalue problem (1.2) satisfies

q1 ≤ Af

Vf
, (1.9)

where Af and Vf are f -area of ∂M and the volume of M , respectively. That is,

Af =

∫
∂M

e−fdµ, Vf =

∫
M

e−fdv.

Moreover, if in addition the m-dimensional Bakry–Emery Ricci curvature is nonnegative and there exists a

point x0 such that the f -mean curvature Hf (x0) ≥ (m−1)Af

m(n−1)Vf
, then q1 =

Af

Vf
implies that M is isometric to

an n-dimensional Euclidean ball and f is constant.

Theorem 1.4 Let (M, ⟨, ⟩) be an n-dimensional compact Riemannian manifold with a boundary and

nonnegative m-dimensional Bakry–Emery Ricci curvature. Assume that Hf ≥ m−1
n−1 c ; then the first nonzero

eigenvalue µ1 of the eigenvalue problem (1.3) satisfies

µ1 ≥ c (1.10)
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with equality holding if and only if M is isometric to an n-dimensional Euclidean ball of radius 1
c and f is

constant.

Theorem 1.5 Let (M, ⟨, ⟩) be an n-dimensional compact Riemannian manifold with a boundary and

nonnegative m-dimensional Bakry–Emery Ricci curvature. Assume that the principal curvatures of ∂M are

bounded below by a positive constant c and fν ≤ −(m − n)c ; then the first nonzero eigenvalue ξ1 of the

eigenvalue problem (1.4) satisfies

ξ1 >
mcλ1

m− 1
, (1.11)

where λ1 denotes the first nonzero eigenvalue of the f -Laplacian on functions of ∂M .

Remark. When m = n , we have that f is constant and Ricmf = Ric. Hence, Theorem 1.1 generalizes Theorem

1.4 of Xia and Wang in [21], which concerns exactly the same problem (i.e. exactly the same divergence form

operator) in case f constant. In particular, Theorem 1.2 and Theorem 1.3 generalize Theorem 1.2 and Theorem

1.3 of Wang and Xia in [20], respectively. Theorem 1.4 and Theorem 1.5 generalize Theorem 1.2 and Theorem

1.3 of Xia and Wang in [21], respectively.

Acknowledgements. The authors would like to thank the referee for some helpful comments, which made

this paper more readable.

2. Proof of results

Let ⟨, ⟩ be the Riemannian metric on M and that induced on ∂M . We denote ∇ and ∆ as the connection

and the Laplacian on M , respectively. For X,Y ∈ Γ(∂M), the second fundamental form of ∂M is defined by

II(X,Y ) = ⟨∇Xν, Y ⟩ and the shape operator of ∂M is related to II by II(X,Y ) = ⟨S(X), Y ⟩ . The eigenvalues
of S are called the principal curvatures and the mean curvature H of ∂M is given by H = 1

n−1 tr(S). Recently,

using the integration by parts for the Bochner formula for the f -Laplacian:

1

2
∆f |∇u|2 = |∇2u|2 + ⟨∇u,∇∆fu⟩+Ricf (∇u,∇u), (2.1)

Ma and Du [17] studied the f -Laplacian and extended the classical Reilly’s formula to

∫
M

[(∆fu)
2 − |∇2u|2 − Ricf (∇u,∇u)] e−fdv

=

∫
∂M

[2uν(∆fu) + (n− 1)Hf (uν)
2 + II(∇u,∇u)] e−fdµ,

(2.2)

where the f -mean curvature Hf given by Hf = 1
n−1 [tr(S) − fv] ; ∆ and ∇ represent the Laplacian and the

gradient on ∂M with respect to the induced metric on ∂M , respectively; dµ is the volume form on ∂M . Using

the inequality of |∇2u|2 ≥ 1
n (∆u)2 and

(a+ b)2 ≥ a2

1 + α
− b2

α
, ∀ α > 0
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we obtain (cf.[10, 15, 16])

|∇2u|2 +Ricf (∇u,∇u) ≥ 1

n
(∆u)2 +Ricf (∇u,∇u)

≥ 1

m
(∆fu)

2 +Ricmf (∇u,∇u),

(2.3)

where the equality case holds in the second inequality if and only if ∆u + n
m−n ⟨∇f,∇u⟩ = 0. Inserting (2.3)

into (2.2) yields ∫
M

[
m− 1

m
(∆fu)

2 − Ricmf (∇u,∇u)] e−fdv

≥
∫

∂M

[2uν(∆fu) + (n− 1)Hf (uν)
2 + II(∇u,∇u)] e−fdµ.

(2.4)

Proof of Theorem 1.1. Let u be the solution of the following Laplace equation

∆fu = 0 in M, u|∂M = z, (2.5)

where z is a first eigenfunction of ∂M corresponding to λ1 , that is, ∆fz = −λ1z . Substituting u into the

formula (2.4) and noticing the assumption on ∂M and that Ricmf ≥ −k0 , we have

k0

∫
M

|∇u|2 e−fdv

≥
∫

∂M

[2uν(∆fu) + (n− 1)Hf (uν)
2 + II(∇u,∇u)] e−fdµ

≥− 2λ1

∫
∂M

z uν e
−fdµ+ (m− 1)c

∫
∂M

(uν)
2 e−fdµ+ c

∫
∂M

|∇u|2 e−fdµ

=− 2λ1

∫
∂M

z uν e
−fdµ+ (m− 1)c

∫
∂M

(uν)
2 e−fdµ+ cλ1

∫
∂M

z2 e−fdµ.

(2.6)

By the divergence theorem, we have

∫
M

|∇u|2 e−fdv = −
∫
M

u∆fu e
−fdv +

∫
∂M

z uν e
−fdµ =

∫
∂M

z uν e
−fdµ. (2.7)

Therefore, (2.6) can be written as

−(2λ1 + k0)

∫
∂M

z uν e
−fdµ+ (m− 1)c

∫
∂M

(uν)
2 e−fdµ+ cλ1

∫
∂M

z2 e−fdµ ≤ 0, (2.8)
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which gives

0 ≥− (2λ1 + k0)

∫
∂M

z uν e
−fdµ+ (m− 1)c

∫
∂M

(uν)
2 e−fdµ+ cλ1

∫
∂M

z2 e−fdµ

=(m− 1)c

∫
∂M

[(
uν − 2λ1 + k0

2(m− 1)c
z

)2

+

(
λ1

m− 1
− (2λ1 + k0)

2

4(m− 1)2c2

)
z2

]
e−fdµ

≥
(
cλ1 −

(2λ1 + k0)
2

4(m− 1)c

) ∫
∂M

z2 e−fdµ.

(2.9)

Thus, from (2.9), we have

cλ1 −
(2λ1 + k0)

2

4(m− 1)c
≤ 0, (2.10)

and the inequality (1.6) is obtained.

Note that z is the eigenfunction of the f -Laplacian on ∂M and
∫

∂M

z e−fdµ = 0. It follows from the

variational characterization of η1 (cf. [1]) that

η1 ≤

∫
M

A(∇u,∇u) e−fdv∫
∂M

z2 e−fdµ
≤ δ

∫
M

|∇u|2 e−fdv∫
∂M

z2 e−fdµ

=δ

∫
∂M

z uν e
−fdµ∫

∂M

z2 e−fdµ
≤ δ


∫

∂M

(uν)
2 e−fdµ∫

∂M

z2 e−fdµ


1
2

.

(2.11)

By virtue of the Cauchy inequality, we have from (2.8) that

0 ≥− (2λ1 + k0)

∫
∂M

(uν)
2 e−fdµ

 1
2
∫
∂M

z2 e−fdµ

 1
2

+ (m− 1)c

∫
∂M

(uν)
2 e−fdµ+ cλ1

∫
∂M

z2 e−fdµ

(2.12)

and hence ∫
∂M

(uν)
2 e−fdµ

 1
2

≤ Cλ1,ko,m

∫
∂M

z2 e−fdµ

 1
2

, (2.13)

where

Cλ1,ko,m =
2λ1 + k0 +

√
(2λ1 + k0)2 − 4(m− 1)λ1c2

2(m− 1)c
.

Inserting (2.13) into (2.11) yields (1.7).
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If the equality holds in (1.6), then we have

∇2u =
∆u

n
⟨, ⟩; (2.14)

∆fu+
m

m− n
⟨∇f,∇u⟩ = ∆u+

n

m− n
⟨∇f,∇u⟩ = 0; (2.15)

Ricmf = −k0⟨, ⟩, fν = −(m− n)c, II = cI; (2.16)

uν =
2λ1 + k0
2(m− 1)c

z. (2.17)

The proof is trivial for m = n since f is constant. Hence, we assume m > n and obtain ∆u = 0 and

⟨∇f,∇u⟩ = 0 from ∆fu = 0 and (2.15). Taking an orthonormal frame {e1, · · · , en−1} tangent to ∂M , then

we have from (2.14)

0 =
n−1∑
i=1

∇2u(ei, ei) = ∆u+ (n− 1)Huν

=∆fu+ (n− 1)Hfuν

=− λ1z + (m− 1)c
2λ1 + k0
2(m− 1)c

z

=
k0
2

z,

(2.18)

which shows that k0 = 0 and λ1 = (m − 1)c2 . Then M is isometric to an n-dimensional Euclidean ball of

radius 1
c and f is constant from Huang and Ruan’s result (cf. [11, Theorem 1.6]). Similarly, if the equality

holds in (1.7), then the equality case in (2.12) should be

uν = Cλ1,ko,mz, (2.19)

which also gives that k0 = 0 and λ1 = (m−1)c2 . Consequently, M is isometric to an n -dimensional Euclidean

ball of radius 1
c and f is constant (cf. [11, Theorem 1.6]). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let u be an eigenfunction corresponding to the first eigenvalue q1 of the following

equation

(∆f )
2u = 0 in M, u = ∆fu− q

∂u

∂ν
= 0 on ∂M. (2.20)

That is,

q1 =

∫
M
(∆fu)

2 e−fdv∫
∂M

(uν)2 e−fdµ
. (2.21)

By virtue of (2.4) and the assumptions in Theorem 1.2, we have∫
M

[
m− 1

m
(∆fu)

2] e−fdv ≥
∫

∂M

(m− 1)c(uν)
2 e−fdµ. (2.22)
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Combining with (2.21) gives

q1 ≥ mc.

Now we assume that q1 = mc . In this case, the inequality (2.22) must take an equality sign. In particular,

we have

∇2u =
∆u

n
⟨, ⟩; (2.23)

∆fu+
m

m− n
⟨∇f,∇u⟩ = ∆u+

n

m− n
⟨∇f,∇u⟩ = 0; (2.24)

Ricmf (∇u,∇u) = 0, Hf =
m− 1

n− 1
c. (2.25)

Taking an orthonormal frame {e1, · · · , en−1, en} on M such that when restricted to ∂M , we have en = ν . By

(2.23), we obtain for i = 1, · · · , n− 1,

0 = ∇2u(ei, ν) = ei(uν), (2.26)

which shows that uν |∂M is constant and hence (∆fu)|∂M = q1uν = mcuν := ρ is also constant from (2.20). By

the divergence theorem and the fact that the function ∆fu is harmonic on M , we have

0 =

∫
M

[(∆fu)− ρ]∆f [(∆fu)− ρ] e−fdv

=−
∫
M

|∇[(∆fu)− ρ]|2 e−fdv

+

∫
∂M

[(∆fu)− ρ]
∂[(∆fu)− ρ]

∂ν
e−fdµ

=−
∫
M

|∇[(∆fu)− ρ]|2 e−fdv,

(2.27)

which means that ∆fu is constant on M . Without loss of generality, we assume that ∆fu = 1 and so we have

from (2.23), (2.24), and (2.25) and the Bochner formula for the f -Laplacian,

∆f

(
1

2
|∇u|2 − 1

m
u

)
=|∇2u|2 + ⟨∇u,∇∆fu⟩+Ricf (∇u,∇u)− 1

m
∆fu

=
1

m
(∆fu)

2 + ⟨∇u,∇∆fu⟩+Ricmf (∇u,∇u)− 1

m
∆fu

=0.

(2.28)
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Integrating both sides of (2.28) yields

0 =

∫
∂M

(
uνu,νν − 1

m
uν

)
e−fdµ

=

∫
∂M

(
m− 1

m
uν − (n− 1)Hfu

2
ν

)
e−fdµ

=
m− 1

m
Vf − (n− 1)Hf

V 2
f

Af
,

(2.29)

where we used the fact that u,νν + (n− 1)Hfuν = 1 from ∆fu = 1 and u|∂M = 0;

Af uν =

∫
∂M

uν e
−fdµ =

∫
M

∆fu e
−fdv = Vf .

Therefore, we derive from (2.29) that

Hf =
(m− 1)Af

m(n− 1)Vf
. (2.30)

Using the Corollary 1.2 in [11] completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let u be a special solution of the following Laplace equation

∆fu = 1 in M, u = 0 on ∂M. (2.31)

It follows from the Rayleigh–Ritz inequality of q1 that

q1 ≤
∫
M
(∆fu)

2 e−fdv∫
∂M

(uν)2 e−fdµ
=

Vf∫
∂M

(uν)2 e−fdµ
. (2.32)

Integrating both sides of ∆fu = 1 and using the divergence theorem, we get

Vf =

∫
M

∆fu e
−fdv =

∫
∂M

uν e
−fdµ ≤ (Af )

1
2

∫
∂M

(uν)
2 e−fdµ

 1
2

. (2.33)

Applying (2.33) into (2.32) gives

q1 ≤ Af

Vf
. (2.34)

When q1 =
Af

Vf
, (2.33) shows that

uν =
Vf

Af
on ∂M. (2.35)

We define

φ =
1

2
|∇u|2 − 1

m
u. (2.36)
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Under the assumption that the m-dimensional Bakry–Emery Ricci curvature is nonnegative, we have

∆fφ =|∇2u|2 + ⟨∇u,∇∆fu⟩+Ricf (∇u,∇u)− 1

m
∆fu

≥ 1

m
(∆fu)

2 + ⟨∇u,∇∆fu⟩+Ricmf (∇u,∇u)− 1

m
∆fu

=Ricmf (∇u,∇u)

≥0

(2.37)

and

φν |x0 =uνu,νν − 1

m
uν

=uν

(
m− 1

m
− (n− 1)Hf uν

)
≤0,

(2.38)

where we used the fact that u,νν + (n − 1)Hfuν = 1 from ∆fu = 1 and u|∂M = 0. The strong maximum

principal and Hopf lemma (cf.[9, pp. 34-35]) imply that φν |∂M > 0 unless φ is constant on M . Hence we

obtain φ is constant on M and hence

∆fφ = 0. (2.39)

That is, the equalities in (2.37) hold and

∆fu+
m

m− n
⟨∇f,∇u⟩ = ∆u+

n

m− n
⟨∇f,∇u⟩ = 0. (2.40)

If m > n , multiplying (2.40) with u and integrating on M with respect to e
n

m−n fdv give that

0 =

∫
M

u

(
∆u+

n

m− n
⟨∇f,∇u⟩

)
e

n
m−n fdv

=

∫
M

u div
(
e

n
m−n f∇u

)
dv

=−
∫
M

|∇u|2 e
n

m−n f dv +

∫
∂M

uuν e
n

m−n fdµ

=−
∫
M

|∇u|2 e
n

m−n f dv.

(2.41)

Therefore, we have that u is a constant function on M , which is a contradiction since ∆fu = 1.

Thus, we conclude that the equalities in (2.37) hold only when m = n , f is constant, and Ricmf = Ric.

Then by Wang and Xia’s arguments in [20], we complete the proof of Theorem 1.3.

Proof of Theorem 1.4. Let u be an eigenfunction corresponding to the first eigenvalue q1 of the equation (1.3).

That is,

(∆f )
2u = 0 in M, u =

∂2u

∂ν2
− µ1

∂u

∂ν
= 0 on ∂M. (2.42)
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Noticing that uν = ∂u
∂ν ̸= 0. Otherwise, 0 = uν = ⟨∇u, ν⟩ which combining with u|∂M = 0 implies that u is

constant on M . This is a contradiction.

By the divergence theorem and the boundary conditions in (2.42), we have

0 =

∫
M

u(∆f )
2u e−fdv

=

∫
∂M

u
∂(∆fu)

∂ν
e−fdµ−

∫
M

⟨∇u,∇∆fu⟩ e−fdv

=

∫
∂M

u
∂(∆fu)

∂ν
e−fdµ−

∫
∂M

uν∆fu e
−fdµ+

∫
M

(∆fu)
2 e−fdv,

(2.43)

which shows that ∫
M

(∆fu)
2 e−fdv =

∫
∂M

uν∆fu e
−fdµ. (2.44)

Inserting

∆fu|∂M =
∂2u

∂ν2
+ (n− 1)Hfuν = µ1uν + (n− 1)Hfuν (2.45)

into (2.44) gives

µ1

∫
∂M

u2
ν e

−fdµ =

∫
M

(∆fu)
2 e−fdv − (n− 1)

∫
∂M

Hfu
2
ν e

−fdµ. (2.46)

Applying u into the formula (2.4) and noticing the assumption that the m -dimensional Bakry–Emery

Ricci curvature is nonnegative, we have

m− 1

m

∫
M

(∆fu)
2 e−fdv

≥
∫

∂M

[2uν(∆fu) + (n− 1)Hf (uν)
2 + II(∇u,∇u)] e−fdµ

=(n− 1)

∫
∂M

Hf (uν)
2 e−fdµ.

(2.47)

Hence, we obtain from (2.46), (2.47), and (n− 1)Hf ≥ (m− 1)c that

µ1 ≥ c. (2.48)

Assume that µ1 = c . In this case, the inequalities in (2.4) and (2.47) must take an equality sign. In particular,

we have

∆fu+
m

m− n
⟨∇f,∇u⟩ = ∆u+

n

m− n
⟨∇f,∇u⟩ = 0. (2.49)
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If m > n , multiplying (2.49) with u and integrating on M with respect to e
n

m−n fdv give that

0 =

∫
M

u

(
∆u+

n

m− n
⟨∇f,∇u⟩

)
e

n
m−n fdv

=−
∫
M

|∇u|2 e
n

m−n f dv,

(2.50)

which shows that u is a constant function on M . This is a contradiction since ∆fu is a nonzero constant.

Thus, we conclude that the equalities hold only when m = n , f is constant, and Ricmf = Ric. Then by

Xia and Wang’s arguments in [21], we complete the proof of Theorem 1.4.

Proof of Theorem 1.5. Let u be an eigenfunction corresponding to the first eigenvalue ξ1 of the equation (1.4).

That is,

(∆f )
2u = 0 in M,

∂u

∂ν
=

∂(∆fu)

∂ν
+ ξ1u = 0 on ∂M. (2.51)

Let u|∂M = z . By virtue of (2.43), we have

ξ1

∫
∂M

z2 e−fdµ =

∫
M

(∆fu)
2 e−fdv. (2.52)

Substituting u into the formula (2.4) and noticing the assumption that the m-dimensional Bakry0-Emery Ricci

curvature is nonnegative, we have

m− 1

m

∫
M

(∆fu)
2 e−fdv

≥
∫

∂M

[2uν(∆fu) + (n− 1)Hf (uν)
2 + II(∇u,∇u)] e−fdµ

≥c

∫
∂M

|∇u|2 e−fdµ.

(2.53)

Integrating the boundary condition (2.51) gives

ξ1

∫
∂M

z e−fdµ = −
∫

∂M

∂(∆fu)

∂ν
e−fdµ = −

∫
M

(∆f )
2u e−fdv = 0, (2.54)

which shows that
∫

∂M

z e−fdµ = 0. Let λ1 denote the first nonzero eigenvalue of the ∆f on ∂M , i.e.

λ1 = inf
{∫

∂M
|∇φ|2 e−fdµ∫

∂M
φ2 e−fdµ

, φ is not identically zero and

∫
∂M

φe−fdµ = 0
}
.

Then we have ∫
∂M

|∇u|2 e−fdµ ≥ λ1

∫
∂M

z2 e−fdµ, (2.55)
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and (2.53) yields

m− 1

m

∫
M

(∆fu)
2 e−fdv ≥ cλ1

∫
∂M

z2 e−fdµ. (2.56)

Hence, we obtain (1.11) from (2.52) and (2.56).

Assume that ξ1 = mcλ1

m−1 occurs. In this case, the inequalities in (2.53) and (2.55) must take an equality

sign. In particular, we have

∇2u =
∆u

n
⟨, ⟩; (2.57)

∆fu+
m

m− n
⟨∇f,∇u⟩ = ∆u+

n

m− n
⟨∇f,∇u⟩ = 0; (2.58)

Ricmf (∇u,∇u) = 0, fν = −(m− n)c, II = cI. (2.59)

Taking an orthonormal frame {e1, · · · , en−1, en} on M such that when restricted to ∂M , we have en = ν . By

(2.57), we obtain for i = 1, · · · , n− 1,

0 = ∇2u(ei, ν) = ei(uν)− IIijuj = −IIijuj , (2.60)

which shows that II(∇z,∇z) = 0. This is impossible since II ≥ cI and z is not constant. We complete the

proof of Theorem 1.5.
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