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Abstract: We prove that there is a homeomorphism of the unit interval onto itself that is so singular that it maps some

set E of dimH E = 0 onto a set F of dimH [0, 1] \ F = 0.
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1. Introduction

Let E ⊂ Rd , s > 0, and δ > 0. A family of sets {Ui}∞i=1 is called a δ -covering of the set E if ∪∞
i=1Ui ⊃

E and 0 < |Ui| ≤ δ for all i , where |Ui| denotes the diameter of Ui . The s-dimension Hausdorff measure of

the set E is defined by

Hs(E) = lim
δ→0

Hs
δ(E), (1)

where

Hs
δ(E) = inf{

∑
|Ui|s : {Ui}∞i=1 is a δ -covering of E}.

There is a unique value of s such that Hs(E) jumps from ∞ to 0. This value, denoted by dimH E , is called

the Hausdorff dimension of E . Thus,

dimH E = sup{s : Hs(E) > 0} = inf{s : Hs(E) < ∞}. (2)

For the properties of the Hausdorff dimension we refer to [1].

A homeomorphism f : [0, 1] → [0, 1] is singular if it maps some set of Lebesgue measure zero onto a set

of Lebesgue measure 1. Singular homeomorphisms can be used to construct measurable sets that are not Borel.

They also act as examples of increasing functions satisfying

∫ 1

0

f ′(x)dx < f(1)− f(0).

We may give a finer description for the singularity of a homeomorphism by means of Hausdorff dimension.

We say that a homeomorphism is (α, β)-singular if it maps some set E of dimH E ≤ α onto a set F of
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dimH [0, 1] \ F ≤ β , where α, β ∈ [0, 1]. It is known that for any α, β ∈ (0, 1] there are (α, β)-singular

quasisymmetric homeomorphisms (see [4]). However, quasisymmetric homeomorphisms are not (0, 0)-singular

because they preserve sets of dimH = 0 by their Hölder-continuity (see [3]). In this note, we shall prove that

a general homeomorphism can be (0, 0)-singular.

Theorem 1 There is a homeomorphism f : [0, 1] → [0, 1] and a set E ⊂ [0, 1] such that dimH E = dimH [0, 1]\
f(E) = 0 .

2. Proof of Theorem 1

We start by recalling middle interval Cantor sets. Let E0 = [a, b] be a closed interval. Let {λi}∞i=1 be a

sequence of numbers in (0, 1). Removing an open interval of length λ1(b − a) from the middle of [a, b] , we

get a set E1 consisting of 2 intervals each of length 1−λ1

2 (b − a). Removing an open interval of length λ2|I|

from the middle of every component interval I of E1 , we get a set E2 consisting of 22 intervals each of length

(1−λ1)(1−λ2)
22 (b− a). Proceeding infinitely, we get a nested sequence of compact sets {Ei}∞i=0 . The set

E :=

∞∩
i=0

Ei (3)

is called a middle interval Cantor set in [a, b] . In this case, we also say that E is a {λi}∞i=1 -Cantor set.

Obviously, the set E is totally disconnected and has no isolated points. From the definition, the set En consists

of 2n disjoint closed intervals each of length

δn =
b− a

2n

n∏
i=1

(1− λi). (4)

The Hausdorff dimension of the {λi}∞i=1 -Cantor set E is

dimH E = lim inf
n→∞

n log 2

− log δn
. (5)

We refer to [2] for a proof of (5). For the { i
i+1}

∞
i=1 -Cantor set E in [a, b] it follows from (4) and (5) that

dimH E = lim inf
n→∞

n log 2

− log (b−a)
(n+1)!2n

= 0. (6)

We shall use this fact in the following construction.

For a {λi}∞i=1 -Cantor set C in [a, b] we denote by In(C) the set of components of En and let I(C) =

∪∞
n=1In(C). Denote by G(C) the set of components of [a, b] \ C . An element in I(C) will be called a basic

interval of C and an element in G(C) will be called a gap of C .

Now we introduce composite Cantor sets. Let C1 be a {λ(1)
i }∞i=1 -Cantor set in [0, 1]. For every gap

J ∈ G(C1) we take a {λ(2)
i }∞i=1 -Cantor set CJ in the closure J and write

C2 = C1 ∪
∪

J∈G(C1)

CJ ,
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G(C2) =
∪

J∈G(C1)

G(CJ),

I(C2) = I(C1) ∪
∪

J∈G(C1)

I(CJ).

Proceeding infinitely, we get three sequences {I(Ck)}∞k=1 , {G(Ck)}∞k=1 , and {Ck}∞k=1 . We call the set

C :=

∞∪
k=1

Ck (7)

a composite Cantor set in [0, 1]. Clearly, a composite Cantor set consists of a countable number of middle

interval Cantor sets. It is not a compact set.

Note that a composite Cantor set C may not be dense in [0, 1]. The following lemma gives some necessary

and sufficient conditions under which C is dense in [0, 1].

Lemma 1 Let C be a composite Cantor set in [0, 1] . The following statements are equivalent:

(i) C is dense in [0, 1] .

(ii) 1
2 ∈ C , where C is the closure of C .

(iii)
∏∞

k=1 λ
(k)
1 = 0 .

Proof. (i) ⇒ (ii) . This is obvious.

(ii) ⇒ (iii) . For every i ≥ 1 let Ji denote the gap of Ci in the midst of [0, 1]. Then

|Ji| =
i∏

j=1

λ
(j)
1 .

Let

xi =
1

2
(1−

i∏
j=1

λ
(j)
1 ), i ≥ 1.

We see that xi is the left endpoint of the gap Ji . By (ii) and the construction of C , we have limi→∞ xi =
1
2 ,

which implies
∞∏
k=1

λ
(k)
1 = 0.

(iii) ⇒ (i) . Let k ≥ 1 and let J ∈ G(Ck) be given. Denote by M(J) the middle point of J . We have

M(J) = inf J + 1
2 |J | . Let

xi = inf J +
1

2
(1−

i∏
j=1

λ
(k+j)
1 )|J |, i ≥ 1. (8)

We see that xi is the left endpoint of the gap of Ck+i in the midst of J . By (iii) , we have
∏∞

j=1 λ
(k+j)
1 = 0,

so limi→∞ xi = M(J). This implies M(J) ∈ C . Next we show that J ⊂ C . In fact, given u ∈ J \ C , we have
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from the construction of the composite Cantor set C that

dist(u,C) ≤ |xi −M(J)|

for all xi in (8), which gives u ∈ C , and thus J ⊂ C . Finally, since J ⊂ C for all J ∈ ∪∞
k=1G(Ck), it is easy

to see that C is dense in [0, 1]. 2

Proof of Theorem 1. Note that if X,Y are two dense composite Cantor sets in [0, 1] then we have a unique

increasing homeomorphism f : [0, 1] → [0, 1] such that f(X) = Y . Therefore, to prove Theorem 1, it suffices

to construct two dense composite Cantor sets X and Y in [0, 1] such that dimH X = dimH [0, 1] \ Y = 0.

The dense composite Cantor set X is constructed as follows: let all middle interval Cantor sets be chosen

to be { i
i+1}

∞
i=1 -Cantor sets, and then it follows from (6) that dimH X = 0 because X consists of a countable

number of sets of Hausdorff dimension zero. It is also clear that X is dense in [0, 1] by Lemma 1.

Finally we construct a dense composite Cantor set Y such that dimH [0, 1] \ Y = 0. We will use the

following simple fact repeatedly: for any s, α > 0 and for any closed interval I there is a {λi}∞i=1 -Cantor set

C in I with λi ∈ (0, 1
2 ) such that ∑

J∈G(C)

|J |s ≤ α. (9)

Let {si}∞i=1 and {αi}∞i=1 be two fixed sequences of positive numbers such that si is decreasing to zero and∑
αi = 1. The desired composite of Cantor sets Y can be inductively constructed as follows:

Choose a {λ(1)
i }∞i=1 -Cantor set C1 in [0, 1] with λ

(1)
i ∈ (0, 1

2 ) such that

∑
J∈G(C1)

|J |s1 ≤ 1.

Let {Ji}∞i=1 be an enumeration of members of G(C1). For every Ji choose a {λ(2)
i }∞i=1 -Cantor set CJi in the

closure Ji with λ
(2)
i ∈ (0, 1

2 ) such that ∑
J∈G(CIi

)

|J |s2 ≤ αi.

Take C2 = C1 ∪ ∪∞
i=1CJi

. Since
∑

αi = 1 is assumed, it follows that

∑
J∈G(C2)

|J |s2 =
∞∑
i=1

∑
J∈G(CJi

)

|J |s2 ≤ 1.

Proceeding infinitely, we get an increasing sequence {Ck}∞k=1 of sets such that

∑
J∈G(Ck)

|J |sk ≤ 1 for all k ≥ 1 . (10)

Let Y = ∪∞
k=1Ck . Then Y is a composite of Cantor sets and Y is dense in [0, 1] by Lemma 1. To complete

this proof we are going to show dimH [0, 1] \ Y = 0. By the construction, G(Ck) is a covering of [0, 1] \ Y and
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every member of G(Ck) has diameter of at most 2−k . Therefore,

Hsi
2−k([0, 1] \ Y ) ≤

∑
J∈G(Ck)

|J |si

for all i, k ≥ 1. Given i ≥ 1, since sk has been assumed to be decreasing, it follows from (10) that

Hsi
2−k([0, 1] \ Y ) ≤

∑
J∈G(Ck)

|J |sk ≤ 1

for any k > i , and so Hsi([0, 1] \ Y ) ≤ 1. Since si is also assumed to tend to zero, we get dimH [0, 1] \ Y = 0.

This completes the proof of Theorem 1. 2
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