

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

A remark on singularity of homeomorphisms and Hausdorff dimension

Chun WEI^{1,*}, Sheng-you WEN²

¹Department of Mathematics, South China University of Technology, Guangzhou, P.R. China ²Department of Mathematics, Hubei University, Wuhan, P.R. China

Received: 16.01.2015	•	Accepted/Published Online: 14.10.2015	•	Final Version: 16.06.2016
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: We prove that there is a homeomorphism of the unit interval onto itself that is so singular that it maps some set E of dim_H E = 0 onto a set F of dim_H $[0, 1] \setminus F = 0$.

Key words: Singularity, homeomorphism, Hausdorff dimension

1. Introduction

Let $E \subset \mathbb{R}^d$, s > 0, and $\delta > 0$. A family of sets $\{U_i\}_{i=1}^{\infty}$ is called a δ -covering of the set E if $\bigcup_{i=1}^{\infty} U_i \supset E$ and $0 < |U_i| \le \delta$ for all i, where $|U_i|$ denotes the diameter of U_i . The *s*-dimension Hausdorff measure of the set E is defined by

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E), \tag{1}$$

where

$$\mathcal{H}^{s}_{\delta}(E) = \inf\{\sum |U_{i}|^{s} : \{U_{i}\}_{i=1}^{\infty} \text{ is a } \delta \text{-covering of } E\}.$$

There is a unique value of s such that $\mathcal{H}^{s}(E)$ jumps from ∞ to 0. This value, denoted by $\dim_{H} E$, is called the Hausdorff dimension of E. Thus,

$$\dim_H E = \sup\{s : \mathcal{H}^s(E) > 0\} = \inf\{s : \mathcal{H}^s(E) < \infty\}.$$
(2)

For the properties of the Hausdorff dimension we refer to [1].

A homeomorphism $f:[0,1] \rightarrow [0,1]$ is singular if it maps some set of Lebesgue measure zero onto a set of Lebesgue measure 1. Singular homeomorphisms can be used to construct measurable sets that are not Borel. They also act as examples of increasing functions satisfying

$$\int_0^1 f'(x) dx < f(1) - f(0).$$

We may give a finer description for the singularity of a homeomorphism by means of Hausdorff dimension. We say that a homeomorphism is (α, β) -singular if it maps some set E of $\dim_H E \leq \alpha$ onto a set F of

^{*}Correspondence: hbxt1986v@163.com

Supported by the NSFC (No. 11271114) and the Fundamental Research Funds for the Central Universities (No. 2015ZM193). 2010 AMS Mathematics Subject Classification: 28A80, 60G30.

 $\dim_H[0,1] \setminus F \leq \beta$, where $\alpha, \beta \in [0,1]$. It is known that for any $\alpha, \beta \in (0,1]$ there are (α, β) -singular quasisymmetric homeomorphisms (see [4]). However, quasisymmetric homeomorphisms are not (0,0)-singular because they preserve sets of $\dim_H = 0$ by their Hölder-continuity (see [3]). In this note, we shall prove that a general homeomorphism can be (0,0)-singular.

Theorem 1 There is a homeomorphism $f : [0,1] \to [0,1]$ and a set $E \subset [0,1]$ such that $\dim_H E = \dim_H [0,1] \setminus f(E) = 0$.

2. Proof of Theorem 1

We start by recalling middle interval Cantor sets. Let $E_0 = [a, b]$ be a closed interval. Let $\{\lambda_i\}_{i=1}^{\infty}$ be a sequence of numbers in (0, 1). Removing an open interval of length $\lambda_1(b - a)$ from the middle of [a, b], we get a set E_1 consisting of 2 intervals each of length $\frac{1-\lambda_1}{2}(b-a)$. Removing an open interval of length $\lambda_2|I|$ from the middle of every component interval I of E_1 , we get a set E_2 consisting of 2² intervals each of length $\frac{(1-\lambda_1)(1-\lambda_2)}{2^2}(b-a)$. Proceeding infinitely, we get a nested sequence of compact sets $\{E_i\}_{i=0}^{\infty}$. The set

$$E := \bigcap_{i=0}^{\infty} E_i \tag{3}$$

is called a middle interval Cantor set in [a, b]. In this case, we also say that E is a $\{\lambda_i\}_{i=1}^{\infty}$ -Cantor set. Obviously, the set E is totally disconnected and has no isolated points. From the definition, the set E_n consists of 2^n disjoint closed intervals each of length

$$\delta_n = \frac{b-a}{2^n} \prod_{i=1}^n (1-\lambda_i). \tag{4}$$

The Hausdorff dimension of the $\{\lambda_i\}_{i=1}^{\infty}$ -Cantor set E is

$$\dim_H E = \liminf_{n \to \infty} \frac{n \log 2}{-\log \delta_n}.$$
(5)

We refer to [2] for a proof of (5). For the $\{\frac{i}{i+1}\}_{i=1}^{\infty}$ -Cantor set E in [a, b] it follows from (4) and (5) that

$$\dim_{H} E = \liminf_{n \to \infty} \frac{n \log 2}{-\log \frac{(b-a)}{(n+1)! 2^{n}}} = 0.$$
 (6)

We shall use this fact in the following construction.

For a $\{\lambda_i\}_{i=1}^{\infty}$ -Cantor set C in [a, b] we denote by $\mathcal{I}_n(C)$ the set of components of E_n and let $\mathcal{I}(C) = \bigcup_{n=1}^{\infty} \mathcal{I}_n(C)$. Denote by $\mathcal{G}(C)$ the set of components of $[a, b] \setminus C$. An element in $\mathcal{I}(C)$ will be called a basic interval of C and an element in $\mathcal{G}(C)$ will be called a gap of C.

Now we introduce composite Cantor sets. Let C_1 be a $\{\lambda_i^{(1)}\}_{i=1}^{\infty}$ -Cantor set in [0,1]. For every gap $J \in \mathcal{G}(C_1)$ we take a $\{\lambda_i^{(2)}\}_{i=1}^{\infty}$ -Cantor set C_J in the closure \overline{J} and write

$$C_2 = C_1 \cup \bigcup_{J \in \mathcal{G}(C_1)} C_J,$$

$$\mathcal{G}(C_2) = \bigcup_{J \in \mathcal{G}(C_1)} \mathcal{G}(C_J),$$
$$\mathcal{I}(C_2) = \mathcal{I}(C_1) \cup \bigcup_{J \in \mathcal{G}(C_1)} \mathcal{I}(C_J).$$

Proceeding infinitely, we get three sequences $\{\mathcal{I}(C_k)\}_{k=1}^{\infty}$, $\{\mathcal{G}(C_k)\}_{k=1}^{\infty}$, and $\{C_k\}_{k=1}^{\infty}$. We call the set

$$C := \bigcup_{k=1}^{\infty} C_k \tag{7}$$

a composite Cantor set in [0,1]. Clearly, a composite Cantor set consists of a countable number of middle interval Cantor sets. It is not a compact set.

Note that a composite Cantor set C may not be dense in [0, 1]. The following lemma gives some necessary and sufficient conditions under which C is dense in [0, 1].

Lemma 1 Let C be a composite Cantor set in [0,1]. The following statements are equivalent:

- (i) C is dense in [0,1].
- (ii) $\frac{1}{2} \in \overline{C}$, where \overline{C} is the closure of C.
- (iii) $\prod_{k=1}^{\infty} \lambda_1^{(k)} = 0.$

Proof. (i) \Rightarrow (ii). This is obvious.

(ii) \Rightarrow (iii). For every $i \geq 1$ let J_i denote the gap of C_i in the midst of [0,1]. Then

$$|J_i| = \prod_{j=1}^i \lambda_1^{(j)}.$$

Let

$$x_i = \frac{1}{2}(1 - \prod_{j=1}^i \lambda_1^{(j)}), \quad i \ge 1.$$

We see that x_i is the left endpoint of the gap J_i . By (ii) and the construction of C, we have $\lim_{i\to\infty} x_i = \frac{1}{2}$, which implies

$$\prod_{k=1}^{\infty} \lambda_1^{(k)} = 0.$$

(iii) \Rightarrow (i). Let $k \ge 1$ and let $J \in \mathcal{G}(C_k)$ be given. Denote by M(J) the middle point of J. We have $M(J) = \inf J + \frac{1}{2}|J|$. Let

$$x_i = \inf J + \frac{1}{2} (1 - \prod_{j=1}^i \lambda_1^{(k+j)}) |J|, \quad i \ge 1.$$
(8)

We see that x_i is the left endpoint of the gap of C_{k+i} in the midst of J. By (iii), we have $\prod_{j=1}^{\infty} \lambda_1^{(k+j)} = 0$, so $\lim_{i\to\infty} x_i = M(J)$. This implies $M(J) \in \overline{C}$. Next we show that $J \subset \overline{C}$. In fact, given $u \in J \setminus C$, we have from the construction of the composite Cantor set C that

$$\operatorname{dist}(u, C) \le |x_i - M(J)|$$

for all x_i in (8), which gives $u \in \overline{C}$, and thus $J \subset \overline{C}$. Finally, since $J \subset \overline{C}$ for all $J \in \bigcup_{k=1}^{\infty} \mathcal{G}(C_k)$, it is easy to see that C is dense in [0,1].

Proof of Theorem 1. Note that if X, Y are two dense composite Cantor sets in [0, 1] then we have a unique increasing homeomorphism $f : [0, 1] \to [0, 1]$ such that f(X) = Y. Therefore, to prove Theorem 1, it suffices to construct two dense composite Cantor sets X and Y in [0, 1] such that $\dim_H X = \dim_H [0, 1] \setminus Y = 0$.

The dense composite Cantor set X is constructed as follows: let all middle interval Cantor sets be chosen to be $\{\frac{i}{i+1}\}_{i=1}^{\infty}$ -Cantor sets, and then it follows from (6) that $\dim_H X = 0$ because X consists of a countable number of sets of Hausdorff dimension zero. It is also clear that X is dense in [0, 1] by Lemma 1.

Finally we construct a dense composite Cantor set Y such that $\dim_H[0,1] \setminus Y = 0$. We will use the following simple fact repeatedly: for any $s, \alpha > 0$ and for any closed interval I there is a $\{\lambda_i\}_{i=1}^{\infty}$ -Cantor set C in I with $\lambda_i \in (0, \frac{1}{2})$ such that

$$\sum_{J \in \mathcal{G}(C)} |J|^s \le \alpha.$$
(9)

Let $\{s_i\}_{i=1}^{\infty}$ and $\{\alpha_i\}_{i=1}^{\infty}$ be two fixed sequences of positive numbers such that s_i is decreasing to zero and $\sum \alpha_i = 1$. The desired composite of Cantor sets Y can be inductively constructed as follows:

Choose a $\{\lambda_i^{(1)}\}_{i=1}^{\infty}$ -Cantor set C_1 in [0,1] with $\lambda_i^{(1)} \in (0,\frac{1}{2})$ such that

$$\sum_{J \in \mathcal{G}(C_1)} |J|^{s_1} \le 1$$

Let $\{J_i\}_{i=1}^{\infty}$ be an enumeration of members of $\mathcal{G}(C_1)$. For every J_i choose a $\{\lambda_i^{(2)}\}_{i=1}^{\infty}$ -Cantor set C_{J_i} in the closure $\overline{J_i}$ with $\lambda_i^{(2)} \in (0, \frac{1}{2})$ such that

$$\sum_{J \in \mathcal{G}(C_{I_i})} |J|^{s_2} \le \alpha_i$$

Take $C_2 = C_1 \cup \bigcup_{i=1}^{\infty} C_{J_i}$. Since $\sum \alpha_i = 1$ is assumed, it follows that

$$\sum_{J \in \mathcal{G}(C_2)} |J|^{s_2} = \sum_{i=1}^{\infty} \sum_{J \in \mathcal{G}(C_{J_i})} |J|^{s_2} \le 1.$$

Proceeding infinitely, we get an increasing sequence $\{C_k\}_{k=1}^{\infty}$ of sets such that

$$\sum_{I \in \mathcal{G}(C_k)} |J|^{s_k} \le 1 \text{ for all } k \ge 1.$$
(10)

Let $Y = \bigcup_{k=1}^{\infty} C_k$. Then Y is a composite of Cantor sets and Y is dense in [0,1] by Lemma 1. To complete this proof we are going to show $\dim_H[0,1] \setminus Y = 0$. By the construction, $\mathcal{G}(C_k)$ is a covering of $[0,1] \setminus Y$ and

every member of $\mathcal{G}(C_k)$ has diameter of at most 2^{-k} . Therefore,

$$\mathcal{H}_{2^{-k}}^{s_i}([0,1] \setminus Y) \le \sum_{J \in \mathcal{G}(C_k)} |J|^{s_i}$$

for all $i, k \ge 1$. Given $i \ge 1$, since s_k has been assumed to be decreasing, it follows from (10) that

$$\mathcal{H}_{2^{-k}}^{s_i}([0,1] \setminus Y) \le \sum_{J \in \mathcal{G}(C_k)} |J|^{s_k} \le 1$$

for any k > i, and so $\mathcal{H}^{s_i}([0,1] \setminus Y) \leq 1$. Since s_i is also assumed to tend to zero, we get $\dim_H[0,1] \setminus Y = 0$. This completes the proof of Theorem 1.

Acknowledgment

The authors thank the referee for his or her helpful suggestions.

References

- [1] Falconer KJ. The Geometry of Fractal Sets. Cambridge, UK: Cambridge University Press, 1985.
- [2] Feng DJ, Rao H, Wu J. The net measure properties for symmetric Cantor sets and their applications. Progress in Natural Sciences 1997; 7: 172-178.
- [3] Heinonen J. Lectures on Analysis on Metric Spaces. New York, NY, USA: Springer-Verlag, 2001.
- [4] Tukia P. Hausdorff dimension and quasisymmetrical mappings. Math Scand 1989; 65: 152-160.