Turkish Journal of Mathematics Turk J Math

(2016) 40: 784 — 788

© TUBITAK

T U B | TAK Research Article doi:10.3906 /mat-1501-34

http://journals.tubitak.gov.tr/math/

A remark on singularity of homeomorphisms and Hausdorff dimension
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Abstract: We prove that there is a homeomorphism of the unit interval onto itself that is so singular that it maps some
set E of dimyg E =0 onto a set F of dimg[0,1]\ F =0.
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1. Introduction

Let E C RY, s> 0,and § > 0. A family of sets {U;}$2, is called a §-covering of the set E if U, U; D
E and 0 < |U;| < ¢ for all i, where |U;| denotes the diameter of U;. The s-dimension Hausdorff measure of
the set E is defined by

H(E) = lim Hi(E), (1)

where

H3(E) = inf{z |U;|° - {U;}2, is a d-covering of E'}.

There is a unique value of s such that H*(FE) jumps from oo to 0. This value, denoted by dimy F, is called
the Hausdorff dimension of F. Thus,

dimg E =sup{s: H*(E) > 0} =inf{s: H*(E) < oo}. (2)

For the properties of the Hausdorff dimension we refer to [1].

A homeomorphism f : [0,1] — [0, 1] is singular if it maps some set of Lebesgue measure zero onto a set
of Lebesgue measure 1. Singular homeomorphisms can be used to construct measurable sets that are not Borel.
They also act as examples of increasing functions satisfying

/0 f(@)dz < f(1) — £(0).

We may give a finer description for the singularity of a homeomorphism by means of Hausdorff dimension.

We say that a homeomorphism is (¢, 8)-singular if it maps some set E of dimyg E < « onto a set F of
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dimg[0,1] \ F < 8, where «,8 € [0,1]. It is known that for any «,8 € (0,1] there are (a,()-singular
quasisymmetric homeomorphisms (see [1]). However, quasisymmetric homeomorphisms are not (0, 0)-singular
because they preserve sets of dimy = 0 by their Holder-continuity (see [3]). In this note, we shall prove that

a general homeomorphism can be (0,0)-singular.

Theorem 1 There is a homeomorphism f :[0,1] = [0,1] and a set E C [0,1] such that dimyg F = dimg[0, 1]\
7(E) =0.

2. Proof of Theorem 1
We start by recalling middle interval Cantor sets. Let Ey = [a,b] be a closed interval. Let {\;}2; be a

sequence of numbers in (0,1). Removing an open interval of length Ai(b — @) from the middle of [a,b], we

1-X\1

51 (b —a). Removing an open interval of length Ao|I|

get a set F; consisting of 2 intervals each of length

from the middle of every component interval I of E;, we get a set E, consisting of 22 intervals each of length

(1=X1)(1—=X2)

52 (b — a). Proceeding infinitely, we get a nested sequence of compact sets {E;}52,. The set

E:=()E (3)
i=0
is called a middle interval Cantor set in [a,b]. In this case, we also say that F is a {);}32,-Cantor set.

Obviously, the set E is totally disconnected and has no isolated points. From the definition, the set F,, consists

of 2" disjoint closed intervals each of length

e | (B! ()

The Hausdorff dimension of the {\;}{2,-Cantor set E is

nlog2

dimy F = lim inf .
n—oo —logdy,

We refer to [2] for a proof of (5). For the {H%}fil -Cantor set F in [a,b] it follows from (4) and (5) that

log 2
dimy E = liminf % = 0. (6)
n—oo  _ IOg W

We shall use this fact in the following construction.

For a {\;}$2,-Cantor set C in [a,b] we denote by Z,,(C) the set of components of E,, and let Z(C) =
U ,Z,(C). Denote by G(C') the set of components of [a,b] \ C. An element in Z(C') will be called a basic
interval of C' and an element in G(C) will be called a gap of C.

Now we introduce composite Cantor sets. Let Cj be a {)\21) o0, -Cantor set in [0,1]. For every gap

J € G(Cy) we take a {Az(?)};'il—Cantor set C; in the closure J and write

cG=cu |J ¢y,
Jeg(Cy)
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G(C)= |J gy,

Jeg(Cy)

I(C) =Z(Cyu ) z(Cy).
Jeg(Cy)

Proceeding infinitely, we get three sequences {Z(Cy)}3,, {G(Cr)}72,, and {Ci}2,. We call the set
C = U C}.C (7)
k=1

a composite Cantor set in [0,1]. Clearly, a composite Cantor set consists of a countable number of middle
interval Cantor sets. It is not a compact set.
Note that a composite Cantor set C' may not be dense in [0, 1]. The following lemma gives some necessary

and sufficient conditions under which C' is dense in [0, 1].

Lemma 1 Let C be a composite Cantor set in [0,1]. The following statements are equivalent:
(i) C is dense in [0,1].
(i) 1 € C, where C is the closure of C'.

(iif) [Tz, AT = 0.

Proof. (i) = (ii). This is obvious.
(ii) = (iii). For every i > 1 let J; denote the gap of C; in the midst of [0,1]. Then
il =TT

j=1

Let

We see that x; is the left endpoint of the gap J;. By (ii) and the construction of C', we have lim; ;o 2; = %,

which implies
o0
[T =o.
k=1

(iii) = (i). Let k£ > 1 and let J € G(C)) be given. Denote by M (J) the middle point of J. We have
M(J) =inf J + 1|J|. Let

. 1 (k) :
:ciflan+§(1fl_[1)\1 NI, i>1. (8)
j:

We see that x; is the left endpoint of the gap of Cj4; in the midst of J. By (iii), we have Hj’;l )\gkﬂ) =0,
so lim; o x; = M(J). This implies M (J) € C'. Next we show that J C C. In fact, given u € J \ C, we have
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from the construction of the composite Cantor set C' that
dist(u, C) < |x; — M(J)|

for all z; in (8), which gives u € C, and thus J C C. Finally, since J C C for all J € U2 G(Cy), it is easy
to see that C is dense in [0, 1]. O

Proof of Theorem 1. Note that if X,Y are two dense composite Cantor sets in [0, 1] then we have a unique
increasing homeomorphism f : [0,1] — [0,1] such that f(X) =Y. Therefore, to prove Theorem 1, it suffices
to construct two dense composite Cantor sets X and Y in [0, 1] such that dimy X = dimg[0,1]\ Y =0.

The dense composite Cantor set X is constructed as follows: let all middle interval Cantor sets be chosen

to be {H_Ll}g’il—Cantor sets, and then it follows from (6) that dimy X = 0 because X consists of a countable

number of sets of Hausdorff dimension zero. It is also clear that X is dense in [0,1] by Lemma 1.
Finally we construct a dense composite Cantor set Y such that dimg[0,1]\Y = 0. We will use the

following simple fact repeatedly: for any s,a > 0 and for any closed interval I there is a {);}5°,-Cantor set

C in I with \; € (0,4) such that
> W< 9)

JeG(C)

Let {s;}32; and {a;}2; be two fixed sequences of positive numbers such that s; is decreasing to zero and

> a; = 1. The desired composite of Cantor sets ¥ can be inductively constructed as follows:

Choose a {)\El)};’il-Can‘cor set C1 in [0,1] with )\21) € (0, 3) such that

o<

JeG(Ch)

Let {J;}52; be an enumeration of members of G(C1). For every J; choose a {)\Z(-Q)}g‘il—Cantor set Cy, in the

closure .J; with )\§2) € (0,3) such that

> P <o
JeG(Cr,)
Take Cy = C; UUR,Cy, . Since > a; =1 is assumed, it follows that

)DIEEED S SEIF Pt

JEG(C2) i=1JeG(Cy,)

Proceeding infinitely, we get an increasing sequence {Cj}72 , of sets such that

> I < 1 forall k>1. (10)
JEG(Ck)

Let Y = U2 ,Cr. Then Y is a composite of Cantor sets and Y is dense in [0,1] by Lemma 1. To complete

this proof we are going to show dimpg[0,1]\ Y = 0. By the construction, G(C}) is a covering of [0,1]\ Y and
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every member of G(C}) has diameter of at most 27%. Therefore,

Si

SR(OINY) < Y1

JEG(C)

for all i,k > 1. Given i > 1, since s; has been assumed to be decreasing, it follows from (10) that

S0 I\Y) < > PR

JEG(Ck)

for any k > i, and so H®* ([0,1] \ V) < 1. Since s; is also assumed to tend to zero, we get dimg[0,1]\ Y = 0.
This completes the proof of Theorem 1. O
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