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Abstract: In this paper, we intend to study idempotents of the Green algebra (complexified Green ring) of any finite

dimensional pointed rank one Hopf algebra of nilpotent type over the complex number field. We first determine all one

dimensional representations of the quotient algebra of the Green algebra modulo its Jacobson radical. This gives rise to

all primitive idempotents of the quotient algebra. Then we present explicitly primitive idempotents of the Green algebra

by lifting the ones of the quotient algebra. Finally, as an example, we describe all primitive idempotents of the Green

algebra of the Taft algebra T3 .
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1. Introduction

As we all know, the finite dimensional module category of any finite dimensional Hopf algebra is a tensor

category, where the tensor product of any two indecomposable modules can always be decomposed as a direct

sum of indecomposable modules. However, there is a less obvious way to obtain this decomposition. One

method of addressing this problem is to consider the tensor product as the multiplication of the Green ring (or

the representation ring), and to study the ring-theoretical properties of the Green ring, due to J. A. Green for

the study of the modular representations of a finite group [4]. A lot of work have been done in this direction,

see e.g. [1, 3, 12, 18].

According to the Krull–Schmidt theorem, one knows that the Green ring of a Hopf algebra is a free

Z -module with the isomorphism classes of indecomposable modules as a basis, see e.g. [2, 11, 16]. It is natural

to think about how nilpotent elements, idempotent elements, etc., of the Green ring are expressed as a linear

combination of the basis. The problem has been considered in many special cases. For instance, the authors in

[12] presented all nilpotent elements of the Green rings of the generalized Taft algebras as a linear combination

of a basis. For an acyclic quiver Q , the authors in [9] studied idempotents of the Green ring of Q and gave a

general technique for constructing such idempotents and for decomposing the Green ring into a direct product

of ideals. For any semisimple almost cocommutative Hopf algebra, all primitive idempotents of its complexified

Green ring (Green algebra) were obtained in [19], where the characters of the Green algebra were used to give

a linear expression of idempotents.

In [17], we studied the Green ring of any finite dimensional pointed rank one Hopf algebra of nilpotent
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type. It turned out that the Jacobson radical of the Green ring is a principal ideal generated by a special

element expressed linearly by a basis and unfortunately the Green ring has only the trivial idempotents. In this

paper, we turn to the study of idempotents of the complexified Green ring (Green algebra) over the complex

number field C .

The paper is organized as follows. In Section 2 we recall the algebra and coalgebra structure of any finite

dimensional pointed rank one Hopf algebra of nilpotent type, and present its Green ring in terms of generators

and relations. In section 3, we first determine all one dimensional representations of the quotient algebra of the

Green algebra modulo its Jacobson radical. Note that the quotient algebra is commutative semisimple over the

complex number field. Each representation of the quotient algebra determines a primitive idempotent of the

quotient algebra, and vice versa. This gives rise to all primitive idempotents of the quotient algebra. After that,

we obtain the primitive idempotents of the Green algebra by lifting those of the quotient algebra. In section 4,

as an example, we completely determine primitive idempotents of the Green algebra of the Taft algebra T3 .

Throughout, N , Z , and C stand for the sets of natural numbers, integers, and complex numbers,

respectively. The symbol δi,j is the Kronecker delta. All algebras considered are associative with unity 1 over

the complex number field C . The complex primitive l -th root of unity is usually written as cos 2π
l + i sin 2π

l ,

where i2 = −1. If V is a finite dimensional vector space over C , its dimension as a vector space is denoted

dimV . For standard facts about Hopf algebras and related representation theory, we refer the reader to [8, 13].

2. Preliminaries

In this section, we recall some basic facts about finite dimensional pointed rank one Hopf algebras of nilpotent

type and present the Green rings of such Hopf algebras in terms of generators and relations. We refer to [10, 17]

for more details.

2.1. Hopf algebra structure of H

Throughout, G is a finite group, g is an element in the center of G , χ is a C-linear character of G subject

to χn = 1, where n is the order of χ(g). Then l , the order of χ , is divisible by n . Let H be a Hopf algebra

constructed through the group (G,χ, g). More explicitly, H is generated as an algebra by y and all h in G

such that CG is a subalgebra of H and

yn = 0, yh = χ(h)hy, for h ∈ G.

H is endowed with a Hopf algebra structure, where the comultiplication
a
, the counit ε , and the antipode S

are given respectively by i
(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,i

(h) = h⊗ h, ε(h) = 1, S(h) = h−1,

for all h ∈ G.

The Hopf algebra H is indeed a finite dimensional pointed rank one Hopf algebra of nilpotent type with

a C-basis {yih|h ∈ G, 0 ≤ i ≤ n− 1} ; see [10, 17]. Thus dimH = n|G| , where |G| is the order of G .

Typical examples of such Hopf algebras include the (generalized) Taft algebras [2, 12, 15], the Radford

Hopf algebras [14], the half quantum groups [5], etc. What we need to emphasize is that any finite dimensional

pointed rank one Hopf algebra of nilpotent type can always be obtained from this approach [10, Theorem 1].
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Observe that if the order of χ(g) is n = 1, then H is nothing but the group algebra CG . To avoid this, we

always assume that n ≥ 2 throughout this paper. In this situation χ(g) ̸= 1; this implies that g ̸= 1 and

χ ̸= ε .

2.2. Indecomposable representations of H

Since the Jacobson radical J of H is generated by y and H/J ∼= CG , a complete set of nonisomorphic simple

CG -modules forms a complete set of nonisomorphic simple H -modules. In the sequel, we fix such a complete

set {Vi | i ∈ Ω} consisting of nonisomorphic simple CG -modules (and also simple H -modules). Note that

0 ∈ Ω as we denote V0 = C , the trivial H -module.

Let x be a variable. For any k ∈ N and i ∈ Ω, consider xkVi as a vector space in the obvious way. Then

xkVi becomes a CG -module defined by

h(xkv) = χ−k(h)xkhv,

for any h ∈ G and v ∈ Vi . For 1 ≤ j ≤ n , we define an action of y on the direct sum

M(j, i) := Vi ⊕ xVi ⊕ · · · ⊕ xj−1Vi

as follows:

y(xkv) =

{
xk+1v, 0 ≤ k ≤ j − 2,

0, k = j − 1,

for any v ∈ Vi . Then M(j, i) becomes an H -module with dimM(j, i) = j dim(Vi). It is easy to see that

M(1, i) ∼= Vi . In particular, the set {M(j, i) | i ∈ Ω, 1 ≤ j ≤ n} forms a complete set of finite dimensional

indecomposable H -modules up to isomorphism [17, Theorem 2.5(4)].

2.3. The Green ring of H

Let F (H) be the free abelian group generated by the isomorphism classes [M ] of finite dimensional H -modules

M . The abelian group F (H) becomes a ring if we endow F (H) with a multiplication given by the tensor

product [M ][N ] = [M ⊗N ] . The Green ring (or representation ring) r(H) of the Hopf algebra H is defined to

be the quotient ring of F (H) modulo the relations [M ⊕N ] = [M ] + [N ] . The identity of the associative ring

r(H) is represented by the trivial H -module [V0] . Note that r(H) has a Z -basis consisting of the isomorphism

classes of indecomposable H -modules [17]. For brevity and simplicity we denote by M [j, i] the isomorphism

class of indecomposable H -module M(j, i) in r(H). In particular, we set 1 = [V0] and a = [Vχ−1 ] . Then the

order of a is l . The following proposition comes from [17, Proposition 4.1].

Proposition 2.1 The following hold in the Green ring r(H) of H :

(1) M [j, i] = [Vi]M [j, 0] = M [j, 0][Vi] , for i ∈ Ω and 1 ≤ j ≤ n .

(2) M [2, 0]M [j, 0] = M [j, 0]M [2, 0] = M [j + 1, 0] + aM [j − 1, 0] , for 2 ≤ j ≤ n− 1 .

(3) M [2, 0]M [n, 0] = M [n, 0]M [2, 0] = (1 + a)M [n, 0] .

(4) r(H) is a commutative ring generated by [Vi] for i ∈ Ω and M [2, 0] over Z .
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It can be deduced from Proposition 2.1 (3) that

M [s, 0]M [n, 0] = (1 + a+ · · ·+ as−1)M [n, 0], for 1 ≤ s ≤ n. (2.1)

Now we are ready to give the structure of the Green ring r(H) in terms of generators and relations. Let Z[y, z]
be the polynomial ring with variables y and z over Z and Fi(y, z) the Dickson polynomials (of the second

type) defined recursively as follows (see e.g. [7]):

F1(y, z) = 1, F2(y, z) = z, Fi(y, z) = zFi−1(y, z)− yFi−2(y, z), i ≥ 3. (2.2)

Then the Green ring r(H) can be described as follows (see [17, Theorem 4.3]).

Theorem 2.2 The Green ring r(H) is isomorphic to the quotient ring r(CG)[z]/I , where r(CG)[z] is the

polynomial ring with variable z over the Green ring r(CG) of the group algebra CG , and I is the ideal of

r(CG)[z] generated by (1 + a− z)Fn(a, z) .

The Jacobson radical of r(H) is a principal ideal generated by the element M [n, 0]θ , where θ =

(1− a)(1 + an + a2n + · · ·+ a(
l
n−1)n). Moreover, the square of M [n, 0]θ is equal to zero by (2.1).

The Green ring r(H) of H can be embedded into the Green ring of a finite dimensional pointed rank

one Hopf algebra of nonnilpotent type [18, Section 4]. Note that the latter Green ring has only the trivial

idempotents [18, Theorem 6.5]. In view of this, r(H) has only the trivial idempotents as well.

3. Idempotents of the Green algebras

Since the Green ring r(H) has only the trivial idempotents, in this section, we intend to study idempotents of

the complexified Green ring R(H) := C⊗Zr(H), called the Green algebra of H . We first determine all primitive

idempotents of the quotient algebra R(H)/J(R(H)), where J(R(H)) is the Jacobson radical of R(H). Then

idempotents of the quotient algebra are candidates to be lifted to the idempotents of R(H).

3.1. One dimensional representations of the quotient algebra

Since the Green algebra R(CG) := C⊗Z r(CG) is commutative semisimple over the field C , there are |Ω| simple

R(CG)-modules and each of them is of dimension one. Let {Wi | i ∈ Ω} be the set of all nonisomorphic (one

dimensional) simple R(CG)-modules and {ei | i ∈ Ω} the set of all primitive orthogonal idempotents of R(CG)

satisfying eiWj = δi,jWj , for i, j ∈ Ω. We denote by ω = cos 2π
l + i sin 2π

l a primitive l -th root of unity. Note

that the order of a is l . Then the action of a on Wj is a scalar multiple by ωtj , for some 0 ≤ tj ≤ l−1. Thus,

a =
∑
j∈Ω

ωtjej .

According to the exponent tj , one can divide the index set Ω into three parts:

Ω1 = {j | j ∈ Ω, tj = 0},

Ω2 = {j | j ∈ Ω, tj ̸= 0 and
l

n
∤ tj},
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Ω3 = {j | j ∈ Ω, tj ̸= 0 and
l

n
| tj}.

Then Ω = Ω1 ∪ Ω2 ∪ Ω3 , which is the disjoint union of subsets of Ω.

In order to describe simple modules over R(H)/J(R(H)), we need to determine all distinct roots of the

equation

(1 + ωtj − z)Fn(ω
tj , z) = 0, (3.1)

for any j ∈ Ω.

Lemma 3.1 Let α = cos π
n + i sin π

n . Then the distinct roots of the equation (3.1) can be described as follows:

(1) If j ∈ Ω3 , then the equation (3.1) has n− 1 distinct roots:

αj,k =
√
ωtj (αk + α−k), for 1 ≤ k ≤ n− 1.

(2) If j ∈ Ω1 ∪ Ω2 , then the equation (3.1) has n distinct roots:

αj,k =
√
ωtj (αk + α−k), for 1 ≤ k ≤ n− 1 and αj,n = ωtj + 1.

Proof Let bj = cos(
tjπ
l + 3π

2 ) + i sin(
tjπ
l + 3π

2 ). Then b2j = −ωtj . The relationship between the polynomials

Fk(ω
tj , z) and the Fibonacci polynomials Fk(−1, z) are established by induction on k as follows:

Fk(ω
tj , z) = bk−1

j Fk(−1, b−1
j z), for k ≥ 1.

In particular, Fn(ω
tj , z) = bn−1

j Fn(−1, b−1
j z). Since the distinct roots of the equation Fn(−1, z) = 0 are

2i cos kπ
n = i(αk + α−k), for 1 ≤ k ≤ n− 1, see e.g. [6], it follows that the distinct roots of Fn(ω

tj , z) = 0 are

αj,k = 2bji cos
kπ

n

= (cos
π

2
+ i sin

π

2
)(cos(

tjπ

l
+

3π

2
) + i sin(

tjπ

l
+

3π

2
))(αk + α−k)

= (cos
tjπ

l
+ i sin

tjπ

l
)(αk + α−k)

=
√
ωtj (αk + α−k),

for 1 ≤ k ≤ n − 1. Here
√
ωtj stands for cos

tjπ
l + i sin

tjπ
l . This implies that the equation (3.1) has roots

ωtj +1 and
√
ωtj (αk +α−k), for 1 ≤ k ≤ n− 1. Now ωtj +1 =

√
ωtj (αk +α−k) if and only if cos

tjπ
l = cos kπ

n

if and only if k = s and tj =
ls
n , for a unique 1 ≤ s ≤ n− 1. We obtain the desired results. 2

Let Wj,k be a simple R(H)-module lifted by Wj . That is, Wj,k is the same as Wj as an R(CG)-module,

while the generator M [2, 0] of R(H) that acts on Wj is the scalar multiple by αj,k , which is a root of the

equation (3.1) by Lemma 3.1. It follows that

{Wj,k | j ∈ Ω1 ∪ Ω2, 1 ≤ k ≤ n} ∪ {Wj,k | j ∈ Ω3, 1 ≤ k ≤ n− 1}
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forms a complete set of simple R(H)-modules up to isomorphism. Obviously, the set above is also a complete

set of simple R(H)/J(R(H))-modules since every simple R(H)-module is annihilated by the Jacobson radical

J(R(H)) of R(H). For any x ∈ R(H), the image of x under the natural map R(H) → R(H)/J(R(H)) is

denoted by x . For any simple R(H)/J(R(H))-module Wj,k , there exists a unique algebra morphism Φj,k from

R(H)/J(R(H)) to C such that

Φj,k(ei) = δi,j , Φj,k(a) = ωtj and Φj,k(M [2, 0]) = αj,k. (3.2)

Conversely, every algebra morphism from R(H)/J(R(H)) to C is determined in this way since R(H)/J(R(H))

is commutative semisimple over C . Hence there is a one to one correspondence between the set of nonisomorphic

simple R(H)/J(R(H))-modules and the set of distinct algebra morphisms from R(H)/J(R(H)) to C .

Lemma 3.2 For the algebra morphism Φj,k defined above, we have the following:

(1) If j ∈ Ω1 ∪ Ω2 ∪ Ω3 and 1 ≤ k ≤ n− 1 , then

Φj,k(M [s, 0]) = (
√
ωtj )s−1α

ks − α−ks

αk − α−k
,

for 1 ≤ s ≤ n . Moreover, Φj,k(M [n, 0]) = 0 .

(2) If j ∈ Ω1 ∪ Ω2 and k = n , then

Φj,n(M [s, 0]) =

{
1−ωstj

1−ωtj
, j ∈ Ω2,

s, j ∈ Ω1,

for 1 ≤ s ≤ n .

Proof (1) By induction on s . If s = 1, it is trivial since M [1, 0] is the identity of R(H)/J(R(H)). If s = 2,

then Φj,k(M [2, 0]) = αj,k =
√
ωtj (αk + α−k) by (3.2). Suppose it holds for s ≤ i . To prove the case s = i+ 1,

we have by Proposition 2.1 (2) that

Φj,k(M [i+ 1, 0])

= Φj,k(M [2, 0])Φj,k(M [i, 0])− Φj,k(a)Φj,k(M [i− 1, 0])

=
√
ωtj (αk + α−k)(

√
ωtj )i−1((αk)i−1 + (αk)i−3 + · · ·+ (αk)1−i)

− ωtj (
√
ωtj )i−2((αk)i−2 + (αk)i−4 + · · ·+ (αk)2−i)

= (
√
ωtj )i((αk)i + (αk)i−2 + · · ·+ (αk)−i)

= (
√
ωtj )i

αk(i+1) − α−k(i+1)

αk − α−k
.

Moreover,

Φj,k(M [n, 0]) = (
√
ωtj )n−1α

kn − α−kn

αk − α−k
= 0

because α = cos π
n + i sin π

n .
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(2) If j ∈ Ω1 ∪ Ω2 and k = n , it follows from (3.2) that

Φj,n(M [2, 0]) = αj,n = ωtj + 1.

Now the result follows by induction on s . 2

3.2. Two bases of the quotient algebra

Let Ej,k belong to R(H) such that Ej,k is a primitive idempotent of R(H)/J(R(H)) and Φi,s(Ej,k) = δi,jδs,k .

Then

{Ej,k | j ∈ Ω1 ∪ Ω2, 1 ≤ k ≤ n} ∪ {Ej,k | j ∈ Ω3, 1 ≤ k ≤ n− 1}

forms an orthogonal basis of R(H)/J(R(H)). Moreover, there is another basis of R(H)/J(R(H)) that we need.

Lemma 3.3 We have the following:

(1) The set {ejM [k, 0] | j ∈ Ω, 1 ≤ k ≤ n} forms a basis of R(H) .

(2) The set {ejM [n, 0] | j ∈ Ω3} forms a basis of J(R(H)) .

(3) The set {ejM [k, 0] | j ∈ Ω1 ∪ Ω2, 1 ≤ k ≤ n} ∪ {ejM [k, 0] | j ∈ Ω3, 1 ≤ k ≤ n − 1} forms a basis of

R(H)/J(R(H)) .

Proof (1) Observe from (2.2) that the k -th Dickson polynomial Fk(a, z) is of degree k − 1 with the leading

coefficient 1 in the polynomial algebra R(CG)[z] . Let I be the ideal of R(CG)[z] generated by the element

(1+a− z)Fn(a, z). Then the quotient algebra R(CG)[z]/I has a C-basis ejFk(a, z), for j ∈ Ω and 1 ≤ k ≤ n .

The Green algebra R(H) is isomorphic to R(CG)[z]/I (see [17, Theorem 4.3]), where the isomorphism is given

by

R(H) → R(CG)[z]/I, ejM [k, 0] 7→ ejFk(a, z).

We conclude that ejM [k, 0] for j ∈ Ω and 1 ≤ k ≤ n forms a basis of the Green algebra R(H).

(2) If j ∈ Ω3 , then

1 + ωtj + ω2tj + · · ·+ ω(n−1)tj =
1− ωntj

1− ωtj
= 0.

Note that M [n, 0]2 = (1 + a+ · · ·+ an−1)M [n, 0] and eja = ωtjej . Then

(ejM [n, 0])2 = ejM [n, 0]2

= ej(1 + a+ a2 + · · ·+ an−1)M [n, 0]

= ej(1 + ωtj + ω2tj + · · ·+ ω(n−1)tj )M [n, 0]

= 0.

This implies that ejM [n, 0] ∈ J(R(H)) for j ∈ Ω3 . Moreover, it forms a basis of J(R(H)) since ejM [n, 0] for

j ∈ Ω3 is linear independent by Part (1), and the dimension of J(R(H)) is equal to the cardinality of Ω3 by

[17, Proposition 5.2].

(3) It follows immediately from Part (1) and Part (2). 2
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3.3. Basis transformation

In the following, we shall present the primitive orthogonal idempotents Ej,k as a linear combination of the basis

of R(H)/J(R(H)) given in Lemma 3.3 (3).

Let Λ =
∑

i,k βi,kEi,k be an arbitrary element of R(H)/J(R(H)) for βi,k ∈ C . The equality Φi,k(Ej,s) =

δi,jδk,s implies that Φi,k(Λ) = βi,k . It follows that

Λ =
∑
i,k

Φi,k(Λ)Ei,k.

By replacing Λ with ejM [s, 0], we obtain that

ejM [s, 0] =
∑
i,k

Φi,k(ejM [s, 0])Ei,k =
∑
k

Φj,k(M [s, 0])Ej,k, (3.3)

where the sum
∑

k runs from 1 to n if j ∈ Ω1 ∪ Ω2 , and from 1 to n− 1 if j ∈ Ω3 .

For any j ∈ Ω1 ∪ Ω2 ∪ Ω3 , we consider the following matrix:

Aj =


Φj,1(M [1, 0]) Φj,2(M [1, 0]) · · · Φj,n−1(M [1, 0])

Φj,1(M [2, 0]) Φj,2(M [2, 0]) · · · Φj,n−1(M [2, 0])
...

...
. . .

...

Φj,1(M [n− 1, 0]) Φj,2(M [n− 1, 0]) · · · Φj,n−1(M [n− 1, 0])

 .

By Lemma 3.2, the (s, k)-entry of the matrix Aj is

Φj,k(M [s, 0]) = (
√
ωtj )s−1α

ks − α−ks

αk − α−k
,

where 1 ≤ k ≤ n−1 and αk−α−k ̸= 0. Let B be the matrix with (k, s)-entry αks−α−ks for 1 ≤ k, s ≤ n−1.

Let Cj and D be two diagonal matrices given respectively by

Cj = diag(1,
√
ωtj , (

√
ωtj )2, · · · , (

√
ωtj )n−2),

and

D = diag(α− α−1, α2 − α−2, · · · , αn−1 − α−(n−1)).

It is clear that B is symmetric, Aj = CjBD−1 and Aj is invertible with the inverse A−1
j = DB−1C−1

j .

Suppose the (k, s)-entry of the matrix B−1 is θk,s , for 1 ≤ k, s ≤ n − 1. Then the (k, s)-entry of the matrix

A−1
j is

β
(j)
k,s = (

√
ωtj )1−s(αk − α−k)θk,s,

for 1 ≤ k, s ≤ n−1. We are ready to present the primitive orthogonal idempotents Ej,k as a linear combination

of the basis of R(H)/J(R(H)) given in Lemma 3.3 (3).

Case 1: j ∈ Ω3 and 1 ≤ k ≤ n− 1. Then the linear relations (3.3) can be written as follows:
ejM [1, 0]

ejM [2, 0]
...

ejM [n− 1, 0]

 = Aj


Ej,1

Ej,2

...
Ej,n−1

 . (3.4)
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Observe that the (k, s)-entry of the matrix A−1
j is β

(j)
k,s . It follows from (3.4) that the idempotents Ej,k could

be expressed as a linear combination as follows:

Ej,k =

n−1∑
s=1

β
(j)
k,sejM [s, 0] = (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sejM [s, 0], (3.5)

for j ∈ Ω3 and 1 ≤ k ≤ n− 1.

Case 2: j ∈ Ω1 ∪ Ω2 and 1 ≤ k ≤ n . Then the linear relations (3.3) can be written as follows:
ejM [1, 0]

ejM [2, 0]
...

ejM [n, 0]

 =

(
Aj b
0 δ

)
Ej,1

Ej,2

...
Ej,n

 , (3.6)

where

(
Aj b
0 δ

)
is a block matrix with the entries determined by Lemma 3.2. More explicitly, the column

vector

b =


1

1 + ωtj

...
1 + ωtj + ω2tj + · · ·+ ω(n−2)tj

 ,

the row vector 0 is a zero vector, and the scalar δ = 1 + ωtj + ω2tj + · · ·+ ω(n−1)tj ̸= 0. Similarly, the matrix(
Aj b
0 δ

)
is invertible with the inverse given by

(
Aj b
0 δ

)−1

=

(
A−1

j −δ−1A−1
j b

0 δ−1

)
,

where −δ−1A−1
j b is a column vector with the k -th entry

−δ−1
n−1∑
s=1

(1 + ωtj + · · ·+ ω(s−1)tj )β
(j)
k,s,

for 1 ≤ k ≤ n− 1. Now the idempotents Ej,k for j ∈ Ω1 ∪Ω2 and 1 ≤ k ≤ n− 1 could be expressed as follows:

Ej,k =
n−1∑
s=1

β
(j)
k,sejM [s, 0]− δ−1

n−1∑
s=1

(1 + ωtj + · · ·+ ω(s−1)tj )β
(j)
k,sejM [n, 0]

=
n−1∑
s=1

β
(j)
k,s(ejM [s, 0]− 1 + ωtj + · · ·+ ω(s−1)tj

1 + ωtj + · · ·+ ω(n−1)tj
ejM [n, 0]) (3.7)

= (αk − α−k)
n−1∑
s=1

(
√
ωtj )1−sθk,s(ejM [s, 0]− 1 + ωtj + · · ·+ ω(s−1)tj

1 + ωtj + · · ·+ ω(n−1)tj
ejM [n, 0]).

The idempotents Ej,k for j ∈ Ω1 ∪ Ω2 and k = n could be expressed as follows:

Ej,n = δ−1ejM [n, 0] =
1

1 + ωtj + · · ·+ ω(n−1)tj
ejM [n, 0]. (3.8)
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3.4. Liftings of idempotents

We have obtained the primitive orthogonal idempotents Ej,k as a linear combination of a basis of R(H)/J(R(H))

as shown in (3.5), (3.7), and (3.8) for each case. In the following, we delete the upper bar in the equations (3.5),

(3.7), and (3.8) and obtain the elements Ej,k in R(H) as follows:

• Ej,k := (αk − α−k)
∑n−1

s=1 (
√
ωtj )1−sθk,sejM [s, 0], for j ∈ Ω3 and 1 ≤ k ≤ n− 1

• Ej,k := (αk − α−k)
∑n−1

s=1 (
√
ωtj )1−sθk,sej(M [s, 0] − 1+ωtj+···+ω(s−1)tj

1+ωtj+···+ω(n−1)tj
M [n, 0]), for j ∈ Ω1 ∪ Ω2 and

1 ≤ k ≤ n− 1.

• Ej,k := 1

1+ωtj+···+ω(n−1)tj
ejM [n, 0], for j ∈ Ω1 ∪ Ω2 and k = n .

Now the idempotents of R(H) can be described explicitly as follows.

Theorem 3.4 Let ej,k be the idempotent of R(H) satisfying ej,k = Ej,k .

(1) If j ∈ Ω1 ∪ Ω2 , then ej,k = Ej,k , for 1 ≤ k ≤ n .

(2) If j ∈ Ω3 , then ej,k = Ej,k + γj,kejM [n, 0] , for 1 ≤ k ≤ n− 1 , where

γj,k = (1− 2δ
k,

ntj
l

)
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ).

Proof (1) Note that ej,k is the idempotent of R(H) such that ej,k = Ej,k . It follows that ej,k − Ej,k ∈
J(R(H)). For any i ̸= j , we obtain that eiej,k ∈ eiJ(R(H)) ⊆ J(R(H)) since ei(ej,k −Ej,k) ∈ eiJ(R(H)) and

eiEj,k = 0. It follows that eiej,k = 0 because eiej,k is an idempotent as well. Hence ej,k belongs to ejR(H).

By Lemma 3.3 (2), we have that

ej,k − Ej,k ∈ ejR(H) ∩ J(R(H)) = ejJ(R(H))

=

{
sp{ejM [n, 0]}, j ∈ Ω3;

0, j ∈ Ω1 ∪ Ω2.
(3.9)

Therefore, Part (1) is proved.

(2) By (3.9), we denote by ej,k = Ej,k+γj,kejM [n, 0] for j ∈ Ω3 and γj,k ∈ C . Note that (J(R(H)))2 = 0.

We have

Ej,k + γj,kejM [n, 0] = (Ej,k + γj,kejM [n, 0])2 = E2
j,k + 2γj,kejM [n, 0]Ej,k.

This implies that

E2
j,k − Ej,k = γj,k(ejM [n, 0]− 2ejM [n, 0]Ej,k).
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Note that a =
∑

j∈Ω ωtjej and eja = ωtjej . We have

ejM [n, 0]Ej,k

= (αk − α−k)
n−1∑
s=1

(
√
ωtj )1−sθk,sejM [n, 0]M [s, 0]

= (αk − α−k)
n−1∑
s=1

(
√
ωtj )1−sθk,sej(1 + a+ · · ·+ as−1)M [n, 0] (3.10)

= (αk − α−k)
n−1∑
s=1

(
√
ωtj )1−sθk,s(1 + ωtj + · · ·+ ω(s−1)tj )ejM [n, 0]

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,s

ωstj − 1

ωtj − 1
ejM [n, 0].

Note that j ∈ Ω3 implies that l
n | tj . Suppose tj =

l
np for some integer p ; then

√
ωtj = cos

tjπ

l
+ i sin

tjπ

l
= cos

pπ

n
+ i sin

pπ

n
= αp = α

ntj
l .

Now (3.10) can be written as

ejM [n, 0]Ej,k = (αk − α−k)
n−1∑
s=1

α
(1−s)ntj

l θk,s
α

2sntj
l − 1

α
2ntj

l − 1
ejM [n, 0]

=
αk − α−k

α
ntj
l − α−

ntj
l

ejM [n, 0]
n−1∑
s=1

θk,s(α
sntj

l − α−
sntj

l )

=
αk − α−k

α
ntj
l − α−

ntj
l

ejM [n, 0]δ
k,

ntj
l

= δ
k,

ntj
l

ejM [n, 0];

here
∑n−1

s=1 θk,s(α
sntj

l − α−
sntj

l ) = δ
k,

ntj
l

since B−1B = E , the identity matrix. Hence,

E2
j,k − Ej,k = γj,k(1− 2δ

k,
ntj
l

)ejM [n, 0]. (3.11)

The rest is to determine the coefficient of the term ejM [n, 0] in E2
j,k − Ej,k . Note that Ej,k has no term

ejM [n, 0]. It suffices to consider the coefficient of the term ejM [n, 0] in E2
j,k . Note that

E2
j,k = ((αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sejM [s, 0])2

= (αk − α−k)2
n−1∑
s,t=1

(
√
ωtj )2−s−tθk,sθk,tejM [s, 0]M [t, 0].
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By [17, Proposition 4.2], the term ejM [n, 0] appears in ejM [s, 0]M [t, 0] if and only if s + t − 1 ≥ n . In this

case, it is straightforward to check that the term ejM [n, 0] in ejM [s, 0]M [t, 0] is

∑
s+t−1≥n

ej(

s+t−1−n∑
q=0

aq)M [n, 0] =
∑

s+t−1≥n

(

s+t−1−n∑
q=0

ωqtj )ejM [n, 0]

=
∑

s+t−1≥n

1− ω(s+t−n)tj

1− ωtj
ejM [n, 0] =

∑
s+t−1≥n

1− ω(s+t)tj

1− ωtj
ejM [n, 0].

We conclude that the coefficient of the term ejM [n, 0] in E2
j,k is

(αk − α−k)2
∑

s+t−1≥n

(
√
ωtj )2−s−tθk,sθk,t

1− ω(s+t)tj

1− ωtj

=
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l )

since
√
ωtj = α

ntj
l . Comparing the scalars of the equation (3.11), we conclude that

α
ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ) = γj,k(1− 2δ
k,

ntj
l

).

Therefore,

γj,k = (1− 2δ
k,

ntj
l

)
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ).

We complete the proof. 2

4. An example

As an example, we shall determine all primitive idempotents of the Green algebra of Taft algebra T3 .

4.1. Taft algebra T3

Let α = cos π
3 + i sin π

3 and ω = α2 . Then ω is a primitive 3rd root of unity. The Taft algebra T3 is generated

over the ground field C by two elements g and y subject to the relations (cf. [2, 15])

g3 = 1, y3 = 0, yg = ωgy.

T3 is a Hopf algebra with comultiplication
a
, counit ε , and the antipode S given respectively by

i
(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,

i
(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.
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Note that dimT3 = 9 and {giyj | 0 ≤ i, j ≤ 2} forms a C-basis for T3 . Let G be the cyclic group

generated by g and χ a C-linear character of G such that χ(g) = ω . Then T3 is the pointed rank one Hopf

algebra associated to the group datum (G,χ, g) and {M(j, i) | i ∈ Ω, 1 ≤ j ≤ 3} forms a complete set of

indecomposable T3 -modules up to isomorphism, where Ω = {0, 1, 2} .
The Green ring r(T3) of T3 is commutative with a Z -basis M [j, i] for 0 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Denote by a one of M [1, i] for i ∈ Ω such that the character of M(1, i) as a simple CG -module is χ−1 . The

multiplication formulas of Green ring r(T3) is stated as follows:

a3 = 1, M [j, i] = aiM [j, 0]

M [2, 0]M [2, 0] = a+M [3, 0],

M [2, 0]M [3, 0] = (1 + a)M [3, 0],

M [3, 0]M [3, 0] = (1 + a+ a2)M [3, 0].

By Theorem 2.2, the Green ring r(T3) is isomorphic to the quotient ring

Z[a, z]/(a3 − 1, (1 + a− z)F3(a, z))

whose idempotents are trivial. Let R(T3) be the complexified Green ring. That is, R(T3) is isomorphic to the

algebra C[a, z]/(a3 − 1, (1 + a − z)F3(a, z)). In the following, we follow the notations given in Section 3 and

determine all primitive idempotents of R(T3).

4.2. Idempotents of the Green algebra R(T3)

Let R(CG) be the complexified Green ring of the group algebra CG . Then R(CG) is isomorphic to C[a]/(a3−1),

which is a subalgebra of R(T3). It is obvious that all primitive idempotents of C[a]/(a3 − 1) are

ej =
1

3
(1 + ω−ja+ ω−2ja2),

for 0 ≤ j ≤ 2, see e.g. [16, Equation (2.1)]. It follows that a = e0+ωe1+ω2e2 . Let Wj for 0 ≤ j ≤ 2 be all (one

dimensional) simple modules over R(CG) such that the generator a acts on Wj is a scalar multiple by ωj (i.e.

tj = j in this case). Then the subsets Ω1,Ω2 , and Ω3 of Ω given respectively in Section 3 become Ω1 = {0} ,
Ω2 = ∅ , and Ω3 = {1, 2} . Let Wi,j be the same as Wj as a simple R(CG)-module while the generator z acts

on it as the scalar multiple by αi(αj + α−j) for 0 ≤ i ≤ 2 and 1 ≤ j ≤ 2. Moreover, let W0,3 be W0 as an

R(CG)-module and z acts on W0,3 as the scalar multiple by 2. Then {Wi,j | 0 ≤ i ≤ 2, 1 ≤ j ≤ 2} ∪ {W0,3}
forms all simple R(T3)-modules up to isomorphism.

Now the matrices B , Cj for 0 ≤ j ≤ 2 and D given in Section 3 can be written directly as follows:

B = (α− α−1)

(
1 1
1 −1

)
, Cj =

(
1 0
0 αj

)
, D =

(
α− α−1 0

0 α2 − α−2

)
.

It follows that

Aj = CjBD−1 =

(
1 1
αj −αj

)
,
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Let Ei,j be in R(T3) such that Eij is an idempotent of R(T3)/J(R(T3)) determined by the simple

module Wi,j , namely, Ei,j ·Wk,l = δi,kδj,lWk,l . Then the equations (3.4) and (3.6) become the following:

(
ejM [1, 0]

ejM [2, 0]

)
= Aj

(
Ej,1

Ej,2

)
, (4.1)

for 1 ≤ j ≤ 2, and  e0M [1, 0]

e0M [2, 0]

e0M [3, 0]

 =

(
A0 b
0 δ

) E0,1

E0,2

E0,3

 , (4.2)

where b is the column vector
(
1
2

)
and δ = 3. Since Aj and

(
A0 b
0 δ

)
are both invertible with the inverse

matrices given respectively by

A−1
j =

1

2

(
1 α−j

1 −α−j

)
,

for 0 ≤ j ≤ 2, and (
A0 b
0 δ

)−1

=

(
A−1

0 − 1
3A

−1
0 b

0 1
3

)
=

1

6

3 3 −3
3 −3 1
0 0 2

 .

In view of this, all primitive idempotents of R(T3)/J(R(T3)) are completely determined by (4.1) and (4.2), and

they can be expressed explicitly as follows:

• Ej,1 = 1
2ejM [1, 0] + α−j

2 ejM [2, 0], for 1 ≤ j ≤ 2,

• Ej,2 = 1
2ejM [1, 0]− α−j

2 ejM [2, 0], for 1 ≤ j ≤ 2,

• E0,1 = 1
2e0M [1, 0] + 1

2e0M [2, 0]− 1
2e0M [3, 0],

• E0,2 = 1
2e0M [1, 0]− 1

2e0M [2, 0] + 1
6e0M [3, 0],

• E0,3 = 1
3e0M [3, 0].

In the following, we shall lift the idempotents Ei,j of the quotient algebra R(T3)/J(R(T3)) to the Green

algebra R(T3). We first delete the upper bar in the above equations and obtain the element Ej,k in R(H) as

follows:

Ej,1 := ej(
1

2
M [1, 0] +

α−j

2
M [2, 0]), for 1 ≤ j ≤ 2,

Ej,2 := ej(
1

2
M [1, 0]− α−j

2
M [2, 0]), for 1 ≤ j ≤ 2,

E0,1 := e0(
1

2
M [1, 0] +

1

2
M [2, 0]− 1

2
M [3, 0]),

E0,2 := e0(
1

2
M [1, 0]− 1

2
M [2, 0] +

1

6
M [3, 0]),
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E0,3 :=
1

3
e0M [3, 0].

We need to compute the scalar γj,k described in Theorem 3.4. Note that the (k, s)-entry of the matrix B−1 is

θk,s . Then (
θ1,1 θ1,2
θ2,1 θ2,2

)
= B−1 =

1

2(α− α−1)

(
1 1
1 −1

)
.

Now by Theorem 3.4, for 1 ≤ j, k ≤ 2, we have

γj,k = (1− 2δk,j)
αj(αk − α−k)2

αj − α−j

∑
s+t−1≥3

θk,sθk,t(α
(s+t)j − α−(s+t)j)

= (1− 2δk,j)
αj(αk − α−k)2

αj − α−j
θk,2θk,2(α

4j − α−4j)

= (1− 2δk,j)
αj(αk − α−k)2

αj − α−j
(

1

2(α− α−1)
)2(α4j − α−4j)

=


α
4 , (j, k) = (1, 1)
−α

4 , (j, k) = (1, 2)
α2

4 , (j, k) = (2, 1)

−α2

4 , (j, k) = (2, 2)

= (−1)k−1α
j

4
.

It follows from Theorem 3.4 that all primitive idempotents ei,j of R(T3) can be presented explicitly as

follows:

• ej,1 = Ej,1 + γj,1ejM [3, 0] = ej(
1
2M [1, 0] + α−j

2 M [2, 0] + αj

4 M [3, 0]), for 1 ≤ j ≤ 2,

• ej,2 = Ej,2 + γj,2ejM [3, 0] = ej(
1
2M [1, 0]− α−j

2 M [2, 0]− αj

4 M [3, 0]), for 1 ≤ j ≤ 2,

• e0,1 = E0,1 = e0(
1
2M [1, 0] + 1

2M [2, 0]− 1
2M [3, 0]),

• e0,2 = E0,2 = e0(
1
2M [1, 0]− 1

2M [2, 0] + 1
6M [3, 0]),

• e0,3 = E0,3 = 1
3e0M [3, 0].

For instance, to see that e2j,2 = ej,2 , by using the equalities eja = ωjej = α2jej and 1 + α2j + α4j = 0 for
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1 ≤ j ≤ 2, we have that

e2j,2 = e2j (
1

2
M [1, 0]− α−j

2
M [2, 0]− αj

4
M [3, 0])2

= ej(
1 + α−2ja

4
M [1, 0]− α−j

2
M [2, 0])

+ ej((
α−2j − αj + 1 + a

4
+

α2j(1 + a+ a2)

16
)M [3, 0])

= ej(
1

2
M [1, 0]− α−j

2
M [2, 0])

+ ej((
α−2j − αj + 1 + α2j

4
+

α2j(1 + α2j + α4j)

16
)M [3, 0])

= ej(
1

2
M [1, 0]− α−j

2
M [2, 0]− αj

4
M [3, 0])

= ej,2.
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