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Abstract: In this paper, we use the Brouwer degree to prove existence results of positive solutions for the following

difference systems:

Dk∆
2(Ak−1 −A0

k−1)− (Ak −A0
k) +Nkf(k,Ak) = 0, k ∈ [2, n− 1]Z,

∆2Nk−1 +∆[g(k,Ak,∆Ak−1)Nk]− w2(Nk − 1) = 0, k ∈ [2, n− 1]Z,

∆A1 = 0 = ∆An−1, ∆N1 = 0 = ∆Nn−1,

where the assumptions on w, Dk, A
0
k, f , and g are motivated by some mathematical models for the burglary of houses.

Key words: Neumann problems, Brouwer degree, positive solution, models for house burglary

1. Introduction

Let Z denote the integer set for a, b ∈ Z with a < b , [a, b]Z := {a, a + 1, · · · , b}. Let R+ = {x ∈ R : x > 0} ,
R+

0 = {x ∈ R : x ≥ 0} .
Due to wide applications in many fields such as science, economics, neural networks, ecology, and

cybernetics, the theory of nonlinear difference equations has been widely studied since the 1970s; see, for

example, [1,9]. At the same time, boundary value problems of difference equations have received much attention

from many authors; see [1,2,3,5,9–11,17] and the references therein.

In this paper, we are concerned with the existence of positive solutions of the following difference systems:

Dk∆
2(Ak−1 −A0

k−1)− (Ak −A0
k) +Nkf(k,Ak) = 0, k ∈ [2, n− 1]Z,

∆2Nk−1 +∆[g(k,Ak,∆Ak−1)Nk]− w2(Nk − 1) = 0, k ∈ [2, n− 1]Z,

∆A1 = 0 = ∆An−1, ∆N1 = 0 = ∆Nn−1,

(1)

where w > 0 is a constant, D = (D2, · · · , Dn−1) ∈ Rn−2 and Dk > 0, k ∈ [2, n−1]Z ; A
0 = (A0

1, · · · , A0
n) ∈ Rn

and A0
k > 0, k ∈ [1, n]Z ; f : [2, n− 1]Z × R+

0 → R and g : [2, n]Z × R+ × R → R are continuous functions.
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A solution of (1) is a couple of real vector functions (A,N) ∈ Rn × Rn satisfying the system and the

boundary conditions. We are interested in positive solutions of this problem, i.e. in solutions (A,N) such that

Ak > 0 and Nk ≥ 0 with Nk ̸≡ 0 for all k ∈ [1, n]Z .

This problem is motivated by the following differential system:

D(x)(A−A0(x))′′ −A+A0(x) +Nf(x,A) = 0, x ∈ (0, L),

N ′′ + [g(x,A,A′)N ]′ − w2(N − 1) = 0, x ∈ (0, L),

A′(0) = 0 = A′(L), N ′(0) = 0 = N ′(L),

(2)

where L > 0; see [8]. In fact, system (2) with f = ψ(x)A(1− A) (here ψ is a positive continuous function in

[0, L]) and g = − 2A′

A is a one-dimensional version of a problem that arises in the pioneering work of [4,6,14,15]

where a very successful model for burglary of houses was obtained by Short et al. See also the related papers

[4,6,14,15]. In most of these models, D represents a measure of the degree of spreading of the attractiveness

generated by any given burglary event, A0 the static component of attractiveness, A the attractiveness for a

house to be burgled, and N the density of burglars. In addition, w = w2

w1
, where w2 and w1 are the mean

lifetime of dynamic attractiveness and an active burglar, respectively. Thus, in the discrete case, the restrictions

Ak > 0 and Nk ≥ 0 with Nk ̸≡ 0 for all k ∈ [1, n]Z appear as natural.

However, the discrete analogue of systems (2) has received almost no attention. In this article, we will

discuss it in detail. We assume that the following conditions are satisfied:

(H1) g(2, y, 0) = 0, g(n, y, 0) = 0 for all y ∈ R+ .

(H2) There exists R > oscA0 such that for all k ∈ [2, n− 1]Z ,

f(k,Ak) ≥ 0, 0 ≤ Ak ≤ R and f(k,Ak) ≤ 0, Ak ≥ R.

Here oscA0 = maxk∈[1,n]Z A
0
k −mink∈[1,n]Z A

0
k .

(H3) Let A0 −D∆2A0 be a positive function and there exists R > 0 such that for all k ∈ [2, n− 1]Z ,

f(k,Ak) ≥ 0, 0 ≤ Ak ≤ R and f(k,Ak) ≤ 0, Ak ≥ R.

Our main result for systems (1) is:

Theorem 1 Assume that (H1)–(H2) or (H1) and (H3) hold. Then the systems (1) have at least one positive

solution.

The purpose of this paper is to show that analogues of the existence results of solutions for differential

problems proved in [8] hold for the corresponding difference systems. However, some basic ideas from differential

calculus are not necessarily available in the field of difference equations, such as the intermediate value theorem,

the mean value theorem, and Rolle’s theorem. Thus, new challenges are faced and innovation is required. The

proof is elementary and relies on Brouwer degree theory [7,12].

The paper is organized as follows. In Section 2 we establish important a priori estimates. Section 3

introduces the associated linear operators. Finally, Section 4 contains the proof of the main result and its

applications.

We end this section with some notations. Let n ∈ N, n ≥ 4 be fixed and (x1, x2, · · · , xn−1, xn)
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∈ Rn . Define (∆x1, · · · ,∆xn−1) ∈ Rn−1 and (∆2x1, · · · ,∆2xn−2) ∈ Rn−2 by

∆xm = xm+1 − xm, m ∈ [1, n− 1]Z

and

∆2xm−1 = xm+1 − 2xm + xm−1, m ∈ [2, n− 1]Z.

Let us introduce the vector space

V n−2 = {x ∈ Rn : ∆x1 = 0 = ∆xn−1} (3)

endowed with the orientation of Rn . Its elements can be associated to the coordinates
(x2, · · · , xn−1) and correspond to the elements of Rn of the form

(x2, x2, · · · , xn−1, xn−1).

We use the norm ∥x∥ := maxk∈[2,n−1]Z |xk| in V n−2 , and maxk∈[1,n−2]Z |xk| in Rn−2 .

2. The a priori estimates

In order to use Brouwer degree theory to study systems (1), we first introduce the homotopy corresponding to

the systems (1) for λ ∈ [0, 1],

−Dk∆
2(Ak−1 −A0

k−1) +Ak −A0
k = λNkf(k,Ak), k ∈ [2, n− 1]Z, ∆A1 = 0 = ∆An−1, (4)

−∆2Nk−1 + w2Nk = w2 + λ∆[g(k,Ak,∆Ak−1)Nk], k ∈ [2, n− 1]Z, ∆N1 = 0 = ∆Nn−1. (5)

In fact, for λ = 1, (4)–(5) reduces to (1), and for λ = 0, (4)–(5) reduces to the nonhomogeneous

decoupled linear system

−Dk∆
2(Ak−1 −A0

k−1) +Ak −A0
k = 0, k ∈ [2, n− 1]Z, ∆A1 = 0 = ∆An−1, (6)

−∆2Nk−1 + w2Nk = w2, k ∈ [2, n− 1]Z, ∆N1 = 0 = ∆Nn−1. (7)

For convenience, we write, for all B ∈ Rp ,

minB := min
k∈[1,p]Z

Bk and maxB := max
k∈[1,p]Z

Bk.

Lemma 1 Let (A,N) be any possible solution of (4)–(5) for some λ ∈ [0, 1]. Then

n−1∑
k=2

Nk = n− 2. (8)

Proof. Summing the equation of (5) from k = 2 to n − 1, and combining (H1) with Neumann boundary

conditions, we have

n−1∑
k=2

∆2Nk−1 = 0
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and
n−1∑
k=2

∆[g(k,Ak,∆Ak−1)Nk] =
n−1∑
k=2

[g(k + 1, Ak+1,∆Ak)Nk+1 − g(k,Ak,∆Ak−1)Nk] = 0.

Thus, w2
∑n−1

k=2 Nk = w2
∑n−1

k=2 1 = (n− 2)w2, and hence (8) holds. 2

Lemma 2 Assume that (H2) holds. Let (A,N) be any possible positive solution of (4)–(5) for some λ ∈ [0, 1].

Then for all k ∈ [2, n− 1]Z,

0 < A0,1 := min{minA0, R− oscA0} ≤ Ak ≤ max{maxA0, R+ oscA0} =: A1,1. (9)

Proof. Let (A,N) be a possible positive solution of (4)–(5) for some λ ∈ [0, 1]. Suppose that there exists

j ∈ [2, n − 1]Z such that Aj − A0
j ≥ R −minA0 , namely Aj ≥ R −minA0 + A0

j ≥ R . From the assumption

(H2), it is deduced that

0 ≥ Dj∆
2(Aj−1 −A0

j−1) = Aj −A0
j − λNjf(j, Aj) ≥ Aj −A0

j .

Then for all k ∈ [2, n− 1]Z ,

Ak −A0
k ≤ Aj −A0

j ≤ 0,

and hence

maxA ≤ maxA0.

Similarly, suppose that there exists j ∈ [2, n − 1]Z such that Aj − A0
j ≤ R − maxA0 , namely Aj ≤

R− (maxA0 −A0
j ) ≤ R . From the assumption (H2), it deduces that

0 ≤ Dj∆
2(Aj−1 −A0

j−1) = Aj −A0
j − λNjf(j, Aj) ≤ Aj −A0

j .

Then for all k ∈ [2, n− 1]Z ,

0 ≤ Ak −A0
k ≤ Aj −A0

j ,

and hence

minA ≥ minA0.

Consequently, the result follows easily. 2

Lemma 3 Assume that (H3) holds. Let (A,N) be any possible positive solution of (4)–(5) for some λ ∈ [0, 1].

Then for all k ∈ [2, n− 1]Z,

0 < A0,2 := min{min (A0 −D∆2A0), R} ≤ Ak ≤ max{max (A0 −D∆2A0), R} =: A1,2. (10)

Proof. Let (A,N) be a possible positive solution of (4)–(5) for some λ ∈ [0, 1]. Suppose that there exists

j ∈ [2, n− 1]Z such that Aj ≥ R . Then, by virtue of (H3), we obtain that

0 ≥ Dj∆
2Aj−1 = Dj∆

2A0
j−1 +Aj −A0

j − λNjf(j, Aj) ≥ Dj∆
2A0

j−1 +Aj −A0
j ,

and so

maxA = Aj ≤ A0
j −Dj∆

2A0
j−1 ≤ max (A0 −D∆2A0).
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Similarly, suppose that there exists j ∈ [2, n− 1]Z such that Aj ≤ R . Then, using the assumption (H3),

0 ≤ Dj∆
2Aj−1 = Dj∆

2A0
j−1 +Aj −A0

j − λNjf(j, Aj) ≤ Dj∆
2A0

j−1 +Aj −A0
j ,

and so

minA = Aj ≥ A0
j −Dj∆

2A0
j−1 ≥ min (A0 −D∆2A0).

Consequently, the result follows easily.

2

From now on, we respectively write A and A for A0,1 and A1,1 or A0,2 and A1,2 depending on the

assumption made on f . Set max |f | := max[2,n−1]Z×[A,A] |f |. Moreover, there exists M1 > 0 (depending on A

and A) such that −M1 ≤ ∆Ak ≤ M1 , k ∈ [1, n − 1]Z since A ≤ Ak ≤ A . However, it is also interesting that

we give another a priori bound of ∆Ak .

Lemma 4 Let (A,N) be any possible positive solution of (4)–(5) for some λ ∈ [0, 1]. Then for all k ∈ [2, n−1]Z,

|∆Ak| ≤ (n− 2)max∆2A0 +
n− 2

minD
[A1 +maxA0 +max |f |] :=M2. (11)

Proof. Let (A,N) be a possible positive solution of (4)–(5) for some λ ∈ [0, 1]; it follows from (4) that, for all

k ∈ [2, n− 1]Z,

|∆2Ak−1| ≤ |∆2A0
k−1|+

1

Dk
[Ak +A0

k +Nk|f(k,Ak)|],

and hence, using the Neumann boundary conditions, (8) as well as (9) or (10),

|∆Ak| = |
k∑

j=2

∆2Ak−1| ≤ (n− 2)max∆2A0 +
n− 2

minD
[A+maxA0 +max |f |].

2

Lemma 5 Let (A,N) be any possible positive solution of (4)–(5) for some λ ∈ [0, 1]. Then for all k ∈ [2, n−1]Z,

Nk ≤ 1 + 2w2(n− 2)2 + (n− 2) max
[2,n−1]Z×[A,A]×[−M,M ]

|g| := N, (12)

where M := max{M1, M2} .
Proof. Summing the equation of (5), and using the boundary conditions and (H1), we get, for all k ∈ [2, n−1]Z,

∆Nk = w2
k∑

j=2

Nj − w2(k − 1)− λ
k∑

j=2

∆[g(j, Aj ,∆Aj−1)Nj ],

and by using (8), we have

|∆Nk| ≤ 2w2(n− 2) + |g(k + 1, Ak+1,∆Ak)|Nk+1. (13)

From Lemma 1, it is deduced that there exists j ∈ [2, n− 1]Z such that Nj ≤ 1. Combining this with (13), for

all k ∈ [2, n− 1]Z , we have

Nk − 1 ≤ Nk −Nj =
k−1∑
l=j

∆Nl ≤
k−1∑
l=j

|∆Nl| ≤ 2w2(n− 2)2 + (n− 2) max
[2,n−1]Z×[A,A]×[−M,M ]

|g|,

and so (12) holds. 2
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3. The associated linear operators

Lemma 6 For each function h = (h2, · · · , hn−1), the problem

−Dk∆
2Ak−1 +Ak = hk, k ∈ [2, n− 1]Z, ∆A1 = 0 = ∆An−1 (14)

has a unique solution. Moreover, if hk > 0 for all k ∈ [2, n− 1]Z , then Ak > 0, k ∈ [1, n]Z .

Proof. Let us consider the homogeneous problem

−Dk∆
2Bk−1 +Bk = 0, k ∈ [2, n− 1]Z, ∆B1 = 0 = ∆Bn−1. (15)

If B has a positive maximum at some j ∈ [2, n− 1]Z , then

0 ≥ Dj∆
2Bj−1 = Bj > 0,

a contradiction. Similarly, if B has a negative maximum at some j ∈ [2, n−1]Z , we can also get a contradiction.

Thus, B ≡ 0 is a unique solution of (15). Since the homogeneous problem only has the trivial solution, the

standard linear theory implies that (14) has a unique solution.

Moreover, if hk > 0 for all k ∈ [2, n − 1]Z and A has a nonpositive minimum at some j ∈ [2, n − 1]Z ,

then ∆2Aj−1 ≥ 0, and

0 ≤ Dj∆
2Aj−1 = Aj − hj < 0,

a contradiction. Consequently, Ak > 0, k ∈ [1, n]Z . 2

From Lemma 6, for each function h = (h2, · · · , hn−1), let us define the linear operator

K : Rn−2 → V n−2, (16)

such that A = Kh is the unique solution of (14).

Let u and v be unique solutions of initial value problems

−∆2uk−1 + w2uk = 0, k ∈ [2, n− 1]Z, un−1 = 1, ∆un−1 = 0 (17)

and

−∆2vk−1 + w2vk = 0, k ∈ [2, n− 1]Z, v1 = 1, ∆v1 = 0 (18)

respectively. By a simple computation, we have

uk =
1

φ(1, 0)
[φ(T + 1, k)− φ(T, k)], k ∈ [1, n]Z,

vk =
1

φ(1, 0)
[φ(k, 0)− φ(k − 1, 0)], k ∈ [1, n]Z,

where

φ(k, j) = ρk−j − ρj−k, ρ =
2 + w2 + w

√
w2 + 4

2
> 1.

Thus, we can easily get the following standard result and the proof is omitted.
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Lemma 7 Let u and v be unique solutions of initial value problems (17) and (18), respectively. Then:

(i) uk > 0, k ∈ [1, n]Z , and ∆uk < 0, k ∈ [1, n− 2]Z;

(ii) vk > 0, k ∈ [1, n]Z , and ∆vk > 0, k ∈ [2, n− 1]Z. 2

Lemma 8 For each function h = (h2, · · · , hn−1), the problem

−∆2Nk−1 + w2Nk = hk, k ∈ [2, n− 1]Z, ∆N1 = 0 = ∆Nn−1

has a unique solution N given by

Nk =

n−1∑
j=2

G(k, j)hj , k ∈ [1, n]Z,

where

G(k, j) =
1

∆v(n− 1)

{
vjuk, 2 ≤ j ≤ k ≤ n,
ujvk, 1 ≤ k ≤ j ≤ n− 1.

Proof. The proof of Lemma 8 is standard and therefore is omitted. 2

An immediate consequence of Lemma 8 is the following existence result.

Corollary 1 The problem (7) has the unique solution N ≡ 1. 2

4. Proof of Theorem 1 and its applications

As mentioned in the introduction, our approach to the search of positive solutions of (1) is based on the Brouwer

degree. Accordingly, we transform (1) into a fixed-point problem for a associated operator. To this end, we

present now the vector space E := V n−2 × V n−2 with the usual norm ∥(A,N)∥E = ∥A∥+ ∥∆A∥+ ∥N∥ . Let
us define the operator

F : {(A,N, λ) ∈ E × [0, 1] | Ak > 0, Nk ≥ 0 with Nk ̸≡ 0, k ∈ [2, n− 1]Z} → E

by

F(A,N, λ) =

(
K[−D∆2A0 +A0 + λNf(·,A)],

−λ
∑n−1

j=2 ∆[G(k, j)]g(j, Aj ,∆Aj−1)Nj + w2
∑n−1

j=2 G(k, j)

)
.

Lemma 9 For any fixed λ ∈ [0, 1], (A,N) is a positive solution of problems (4)–(5) if and only if (A,N) is a

fixed point of the continuous operator F .

Proof. Using Lemma 6, together with (16), (4) is equivalent to

A = K[−D∆2A0 +A0 + λNf(·,A)].
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On the other hand, using Lemma 8, combining Neumann boundary conditions with (H1), (5) is equivalent to

Nk =
n−1∑
j=2

G(k, j)
(
λ∆[g(j, Aj ,∆Aj−1)Nj ] + w2

)

=λ
n−1∑
j=2

∆[G(k, j)g(j, Aj ,∆Aj−1)Nj ]− λ
n−1∑
j=2

∆[G(k, j)]g(j, Aj ,∆Aj−1)Nj + w2
n−1∑
j=2

G(k, j)

=− λ
n−1∑
j=2

∆[G(k, j)]g(j, Aj ,∆Aj−1)Nj + w2
n−1∑
j=2

G(k, j).

Consequently, the proof of Lemma 9 is complete. 2

Proof of Theorem 1. Fix 0 < R0 < A, R1 > A, R2 > M,R3 > N . Let us consider the bounded set Ω ⊂ E

defined by

Ω = {(A,N) ∈ E : R0 < Ak < R1, |∆Ak| < R2, 0 ≤ Nk < R3 (k ∈ [2, n− 1]Z)}.

It follows from Lemmas 1–5 and 9 that, for any λ ∈ [0, 1] and the possible fixed point (A,N) of F , one

has (A,N) ̸∈ ∂Ω. Indeed, any possible solution in Ω belongs to Ω. Therefore, using the homotopy invariance

of the topological degree, we conclude that

deg[I −F(·, 1),Ω, 0] = deg[I −F(·, 0),Ω, 0].

Since

I −F(·, 0) = I −
(
K(−D∆2A0 +A0), w2

n−1∑
j=2

G(·, j)
)
,

and
(
K(−D∆2A0 +A0), w2

∑n−1
j=2 G(·, j)

)
∈ Ω, we have

deg[I −F(·, 0),Ω, 0] = 1,

and so
deg[I −F(·, 1),Ω, 0] = 1.

Thus, F(·, 1) has at least one fixed point in Ω. By virtue of Lemma 9 with λ = 1, the systems (1) have at

least one positive solution in Ω. 2

Finally, we provide an application of the existence results of the positive solution obtained in Theorem 1

to the search for positive solutions for the model problem

Dk∆
2(Ak−1 −A0

k−1)− (Ak −A0
k) + ψkNkAk(1−Ak) = 0, k ∈ [2, n− 1]Z,

∆2Nk−1 +∆[
∆Ak−1

Ak
Nk]− w2(Nk − 1) = 0, k ∈ [2, n− 1]Z,

∆A1 = 0 = ∆An−1, ∆N1 = 0 = ∆Nn−1,

(19)

where ψk > 0, k ∈ [2, n− 1]Z.
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Corollary 2 Assume that Dk and w satisfy all of the conditions in Theorem 1. Furthermore, let A0
k > 0, k ∈

[1, n]Z and one of the following conditions,

(i) oscA0 < 1;

(ii) min(A0 −D∆2A0) > 0,

hold. Then the systems (19) have at least one positive solution.
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