Turk J Math
(2016) 40: 1058 - 1070
(C) TÜBİTAK
doi:10.3906/mat-1506-92

A characterization of derivations on uniformly mean value Banach algebras

Amin HOSSEINI*
Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran

Received: 29.06.2015 • Accepted/Published Online: 15.12.2015 \quad Final Version: 21.10.2016

Abstract

In this paper, a uniformly mean value Banach algebra (briefly UMV-Banach algebra) is defined as a new class of Banach algebras, and we characterize derivations on this class of Banach algebras. Indeed, it is proved that if \mathcal{A} is a unital UMV-Banach algebra such that either $a=0$ or $b=0$ whenever $a b=0$ in \mathcal{A}, and if $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation such that $a \delta(a)=\delta(a) a$ for all $a \in \mathcal{A}$, then the following assertions are equivalent: (i) δ is continuous; (ii) $\delta\left(e^{a}\right)=e^{a} \delta(a)$ for all $a \in \mathcal{A}$; (iii) δ is identically zero.

Key words: Derivation, mean value property, uniformly mean value property, classical mean value theorem, Gelfand transform

1. Introduction

Throughout this paper, \mathcal{A} denotes an associative complex Banach algebra. If the algebra \mathcal{A} is unital, then 1 stands for its unit element. An algebra \mathcal{A} is said to be a domain if $\mathcal{A} \neq\{0\}$, and either $a=0$ or $b=0$, whenever $a b=0$ in \mathcal{A}. A commutative algebra that is also a domain is called an integral domain. Recall that a derivation of an algebra \mathcal{A} is a linear mapping δ from a subalgebra $D(\delta)$, the domain of δ, into \mathcal{A} that satisfies the Leibniz rule $\delta(a b)=\delta(a) b+a \delta(b)$ for all pairs $a, b \in D(\delta)$. If \mathcal{A} contains the unit element $\mathbf{1}$, we will always assume $1 \in D(\delta)$ (see [18]). Now we offer the concepts and symbols that will be used in the coming pages. Let \mathcal{G} be an open subset of \mathbb{C}. A map $f: \mathcal{G} \subseteq \mathbb{C} \rightarrow \mathcal{A}$ is said to be differentiable at point z_{0} of \mathcal{G} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists. This limit is called the derivative of f at the point z_{0} and is denoted by $f^{\prime}\left(z_{0}\right)$. For example, the function $f_{a}:[\alpha, \beta] \subset \mathbb{R} \rightarrow \mathcal{A}$ defined by $f_{a}(t)=e^{t a}$, where a is an arbitrary fixed element of \mathcal{A}, is continuous on $[\alpha, \beta]$ and also is differentiable on open interval (α, β) such that $f_{a}^{\prime}(t)=a e^{t a}$. $\operatorname{By} C^{*}(a)$ we denote the C^{*}-subalgebra generated by $\{a\}$. Let a be an arbitrary element of \mathcal{A}. Then the spectrum of a is denoted by $\mathfrak{S}(a)$ and is defined as the set of all complex numbers λ such that $\lambda \mathbf{1}-a$ is not invertible in \mathcal{A}. If a is a self-adjoint element of \mathcal{A}, then $\mathfrak{S}(a) \subseteq[-\|a\|,\|a\|] \subset \mathbb{R}$. The set of all continuous functions from $\mathfrak{S}(a)$ into \mathbb{C} is denoted by $C(\mathfrak{S}(a))$ and it is well known that if a is a normal element, then the Gelfand transform $G: C^{*}(a) \rightarrow C(\mathfrak{S}(a))$ is an isometric $*$-isomorphism. If $f \in C(\mathfrak{S}(a))$, then $f(a)=G^{-1}(f)$ and furthermore, if $I: \mathfrak{S}(a) \rightarrow \mathbb{C}$ is the inclusion map, then $G^{-1}(I)=a$. The unit element of $C(\mathfrak{S}(a))$ is denoted by \mathfrak{i} and we have $\mathfrak{i}(x)=1$ for all $x \in \mathfrak{S}(a)$. The mentioned definitions and concepts can all be found in $[6,18]$, and the

[^0]
HOSSEINI/Turk J Math

reader is referred to these sources for more general information on Banach algebras and C^{*}-algebras. As is well known, the class of derivations is a very important class of linear mappings both in theory and applications and was studied intensively. Recently, a number of authors [1, 4, 8, 9, 14] have studied various generalized notions of derivations in the context of Banach algebras. Such mappings have been extensively studied in pure algebra; cf. $[1,3,9,16,25,26]$. In 1955, Singer and Wermer [20] obtained a fundamental result that started investigation into the range of derivations on Banach algebras. The result states that every continuous derivation on a commutative Banach algebra maps the algebra into its Jacobson radical. In the same paper, they conjectured that the assumption of continuity is superfluous. This is called the Singer-Wermer conjecture. In 1988, Thomas [22] proved the conjecture. According to this result, every derivation on a commutative, semisimple Banach algebra is zero. Since then, a number of authors have presented many noncommutative versions of the SingerWermer theorem (e.g., see [4, 12, 13, 23]). A result of Johnson and Sinclair [10] states that every derivation on a semisimple Banach algebra is continuous and hence the Singer-Wermer theorem implies that it must be zero. The question of under which conditions all derivations are zero on a given Banach algebra has attracted much attention of authors (for instance, see $[5,7,12,13,15,16,19,24,26]$). The current research is focused on this topic. Indeed, this study is an attempt to offer a new approach for investigation of this subject. This article introduces a new type of Banach algebras and it will be shown that, under certain conditions, derivations are zero on such Banach algebras.

An element a of \mathcal{A} has the mean value property (MV-property, briefly) if for every closed interval $[\alpha, \beta] \subset \mathbb{R}$ there exists a function $h_{\alpha, \beta}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\sum_{n=1}^{\infty} \frac{(\beta a)^{n}}{n!}-\sum_{n=1}^{\infty} \frac{(\alpha a)^{n}}{n!}=(\beta-\alpha) \sum_{n=1}^{\infty} \frac{h_{\alpha, \beta}(a)^{n-1} a^{n}}{(n-1)!}
$$

In the case that \mathcal{A} is unital the above-mentioned formula turns to $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{a h_{\alpha, \beta}(a)}$. A Banach algebra \mathcal{A} is called MV-Banach algebra if every element of \mathcal{A} has the MV-property.

An element a of \mathcal{A} has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subset \mathbb{R}$ there exists a real number $c_{\alpha, \beta} \in(\alpha, \beta)$ such that

$$
\sum_{n=1}^{\infty} \frac{(\beta a)^{n}}{n!}-\sum_{n=1}^{\infty} \frac{(\alpha a)^{n}}{n!}=(\beta-\alpha) \sum_{n=1}^{\infty} \frac{c_{\alpha, \beta}^{n-1} a^{n}}{(n-1)!}
$$

It is evident that, if \mathcal{A} is unital, then the previous formula is turns to $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$. A Banach algebra \mathcal{A} is called UMV-Banach algebra if every element of \mathcal{A} has the UMV-property. As a proposition, we prove that if a is an element of a unital Banach algebra \mathcal{A} such that the function $R_{a}(z)=(z \mathbf{1}-a)^{-1}$ satisfies $R_{a}(\beta)-R_{a}(\alpha)=(\beta-\alpha) R_{a}^{\prime}(c)$ for some $c \in(\alpha, \beta) \subset \mathbb{R}$, then there exists a real number t_{0} such that $a=t_{0} \mathbf{1}$. The main purpose of this study is to prove the following result:
Let \mathcal{A} be a unital domain and δ be a derivation on \mathcal{A}. Furthermore, assume that a is an element of \mathcal{A} with the UMV-property such that $e^{c_{0,1} a} \delta(a)=\delta(a) e^{c_{0,1} a}$, where $c_{0,1} \in(0,1) \subset \mathbb{R}$ is achieved from UMV-property for a. If $\delta\left(e^{a}\right)=e^{a} \delta(a)$ and $\delta\left(e^{c_{0,1} a}\right)=c_{0,1} e^{c_{0,1} a} \delta(a)$, then $\delta(a)=0$.

Using the above-mentioned result, the following corollary can be achieved:
Let the UMV-Banach algebra \mathcal{A} be a unital domain and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation. If $a \delta(a)=\delta(a) a$ for all $a \in \mathcal{A}$, then the following assertions are equivalent.
(i) δ is continuous;
(ii) $\delta\left(e^{a}\right)=e^{a} \delta(a)$ for all $a \in \mathcal{A}$;
(iii) δ is identically zero.

2. Main results

Theorem 2.1 Let C^{*} - algebra \mathcal{A} be unital, and $\delta: D(\delta) \subseteq \mathcal{A} \rightarrow \mathcal{A}$ be a closed derivation. Suppose a is a self-adjoint element of $D(\delta)$ such that $C^{*}(a) \subseteq D(\delta)$ and a $\delta(a)=\delta(a) a$. Furthermore, assume that $f(a) \delta(g(a))=0$, where f, g are two functions with respect to a, implies that either $f(a)=0$ or $\delta(g(a))=0$. Then there exists a continuous, nondifferentiable function $h: \mathfrak{S}(a) \bigcup\{0\} \subseteq[-\|a\|,\|a\|] \rightarrow(0,1)$ satisfying $e^{x}-1=x e^{x h(x)}$ such that $\delta(h(a))=0$ if and only if $\delta(a)=0$.

Proof If $a=0$, then there is nothing to be proved. Let a be a nonzero self-adjoint element of $D(\delta)$ such that $C^{*}(a) \subseteq D(\delta)$. For $x \in \mathfrak{S}(a)-\{0\}$, define the map $f_{x}:[\alpha, \beta] \subset \mathbb{R} \rightarrow \mathbb{R}$ by $f_{x}(t)=e^{t x}$. Evidently, f_{x} is continuous on $[\alpha, \beta]$ and is differentiable on open interval (α, β). Hence, by the classical mean value theorem for f_{x} on $[0,1]$, there exists an element c_{x} in $(0,1)$ such that $f_{x}(1)-f_{x}(0)=x e^{x c_{x}}$, i.e. $e^{x}-1=x e^{x c_{x}}$. Now we define $h: \mathfrak{S}(a)-\{0\} \rightarrow(0,1)$ by $h(x)=c_{x}$. In the next step, it is shown that h is well-defined. Let $x_{1}=x_{2}(\in \mathfrak{S}(a)-\{0\})$. We have $x_{1} e^{x_{1} c_{x_{1}}}=e^{x_{1}}-1=e^{x_{2}}-1=x_{2} e^{x_{2} c_{x_{2}}}$. Thus, $c_{x_{1}}=c_{x_{2}}$, i.e. $h\left(x_{1}\right)=h\left(x_{2}\right)$. The equality $e^{x}-1=x e^{x h(x)}$ shows that $h(x)=\frac{1}{x} \ln \left(\frac{e^{x}-1}{x}\right)$. Obviously, h is continuous on $\mathfrak{S}(a)-\{0\}$. Note that

$$
\begin{aligned}
\lim _{x \rightarrow 0} h(x) & =\lim _{x \rightarrow 0} \frac{1}{x} \ln \left(\frac{e^{x}-1}{x}\right)=\lim _{x \rightarrow 0} \frac{\frac{x e^{x}-e^{x}+1}{x^{2}}}{\frac{e^{x}-1}{x}} \\
& =\lim _{x \rightarrow 0} \frac{x e^{x}-e^{x}+1}{x\left(e^{x}-1\right)}=\lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}-e^{x}}{e^{x}-1+x e^{x}} \\
& =\lim _{x \rightarrow 0} \frac{x e^{x}}{e^{x}-1+x e^{x}}=\lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}}{e^{x}+e^{x}+x e^{x}} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence, we define the function h by

$$
h(x)=\left\{\begin{array}{cc}
\frac{1}{x} \ln \left(\frac{e^{x}-1}{x}\right) & x \neq 0 \\
\frac{1}{2} & x=0
\end{array}\right.
$$

It is clear that h is a nondifferentiable, continuous function on $\mathfrak{S}(a) \cup\{0\} \subseteq[-\|a\|,\|a\|]$. If $f(x)=1+$ $\sum_{n=1}^{\infty} \frac{(t x)^{n}}{n!}=e^{t x}$, then $G^{-1}(f)=\mathbf{1}+\sum_{n=1}^{\infty} \frac{(t a)^{n}}{n!}=e^{t a}$, where G is the Gelfand transform. Furthermore, we have

$$
\begin{aligned}
e^{h I}(x) & =\sum_{n=0}^{\infty} \frac{h^{n} I^{n}}{n!}(x) \\
& =\sum_{n=0}^{\infty} \frac{(h(x) x)^{n}}{n!} \\
& =e^{h(x) x}
\end{aligned}
$$

HOSSEINI/Turk J Math

It follows from the equality $e^{x}-1=x e^{h(x) x}$ that $\left(e^{I}-\mathfrak{i}\right)(x)=\left(I e^{h I}\right)(x)$, and hence

$$
e^{I}-\mathfrak{i}=I e^{I h}
$$

By applying the Gelfand transform on the previous equality, we have $e^{a}-\mathbf{1}=a e^{a h(a)}$. Therefore, $\delta\left(e^{a}-\mathbf{1}\right)=$ $\delta\left(a e^{a h(a)}\right)$ and it implies that

$$
\begin{equation*}
\delta\left(e^{a}\right)=\delta(a) e^{a h(a)}+a \delta\left(e^{a h(a)}\right) \tag{2.1}
\end{equation*}
$$

Since $a \delta(a)=\delta(a) a$, it is seen that $\delta\left((a h(a))^{n}\right)=n(a h(a))^{n-1} \delta(a h(a))$. Therefore, we have

$$
\begin{equation*}
\delta\left(e^{a h(a)}\right)=e^{a h(a)} \delta(a h(a))=e^{a h(a)}[a \delta(h(a))+h(a) \delta(a)] \tag{*}
\end{equation*}
$$

However, $\delta\left(e^{a h(a)}\right)$ can also be calculated in a different way. Let $P(x)$ be a polynomial of variable x. Then it is easily seen that $P(a) \in D(\delta)$ and $\delta(P(a))=P^{\prime}(a) \delta(a)$, where P^{\prime} is the derivative of P. A straightforward verification shows that the function

$$
e^{x h(x)}=\left\{\begin{array}{cc}
\frac{e^{x}-1}{x} & x \neq 0 \\
1 & x=0
\end{array}\right.
$$

is differentiable. Indeed,

$$
e^{I h} \in C^{\prime}(\mathfrak{S}(a) \cup\{0\})
$$

For $e^{I h}$, take a sequence $\left\{P_{n}\right\}$ of polynomials on $\mathfrak{S}(a) \cup\{0\}$ such that $\left\|P_{n}-e^{I h}\right\| \rightarrow 0$ and $\left\|P_{n}^{\prime}-\left(e^{I h}\right)^{\prime}\right\| \rightarrow 0$. So, $\left\|P_{n}(a)-e^{a h(a)}\right\| \rightarrow 0$ and $\left\|\delta\left(P_{n}(a)\right)-(a h(a))^{\prime} e^{a h(a)} \delta(a)\right\| \rightarrow 0$. The closedness of δ implies that $e^{a h(a)} \in D(\delta)$ and

$$
\delta\left(e^{a h(a)}\right)=(a h(a))^{\prime} e^{a h(a)} \delta(a) \quad(* *)
$$

Comparing ($*$) and ($* *$), we obtain

$$
e^{a h(a)}(a \delta(h(a))+h(a) \delta(a))=e^{a h(a)}(a h(a))^{\prime} \delta(a)
$$

Thus, we have

$$
a \delta(h(a))=\left((a h(a))^{\prime}-h(a)\right) \delta(a) \quad(* * *)
$$

If $\delta(a)=0$, then it follows from $(* * *)$ that $a \delta(h(a))=0$, and it is obtained from our assumption in this theorem that $\delta(h(a))=0$. Now we are going to show that $\delta(h(a))=0$ implies that $\delta(a)=0$. If $\delta(h(a))=0$, then it follows from $(*)$ that $\delta\left(e^{a h(a)}\right)=e^{a h(a)} h(a) \delta(a)$. Having put $e^{a h(a)} h(a) \delta(a)$ instead of $\delta\left(e^{a h(a)}\right)$ in (2.1), we conclude that $\left(e^{a}-a h(a) e^{a h(a)}-e^{a h(a)}\right) \delta(a)=0$. By reusing our assumption, it can be concluded that $\delta(a)=0$ or $e^{a}-a h(a) e^{a h(a)}-e^{a h(a)}=0$. Suppose that $e^{a}-a h(a) e^{a h(a)}-e^{a h(a)}=0$. Hence, $k=G\left(e^{a}-a h(a) e^{a h(a)}-e^{a h(a)}\right)=e^{I}-I h e^{I h}-e^{I h}$ is a zero function on $\mathfrak{S}(a) \cup\{0\} \subseteq[-\|a\|,\|a\|]$. It means that

$$
k(x)=e^{x}-x h(x) e^{x h(x)}-e^{x h(x)}=0
$$

for all $x \in \mathfrak{S}(a) \cup\{0\}$. Clearly, $k(0)=0$. Moreover, we have

$$
k(x)=e^{x}-\left(\frac{e^{x}-1}{x}\right)-\left(\frac{e^{x}-1}{x}\right) \ln \left(\frac{e^{x}-1}{x}\right)
$$

HOSSEINI/Turk J Math

for all $x \in \mathfrak{S}(a)-\{0\}$. By using MATLAB software, the function k on the closed interval [-2,2] was drawn, and it was observed that this function is not zero. Hence,

$$
e^{a}-e^{h(a) a}-a h(a) e^{h(a) a} \neq 0
$$

and consequently, $\delta(a)=0$. This completes the proof of the theorem.

Definition 2.2 An element a of \mathcal{A} has the mean value property (MV-property, briefly) if for every closed interval $[\alpha, \beta] \subset \mathbb{R}$ there exists a function $h_{\alpha, \beta}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\sum_{n=1}^{\infty} \frac{(\beta a)^{n}}{n!}-\sum_{n=1}^{\infty} \frac{(\alpha a)^{n}}{n!}=(\beta-\alpha) \sum_{n=1}^{\infty} \frac{h_{\alpha, \beta}(a)^{n-1} a^{n}}{(n-1)!}
$$

In the case that \mathcal{A} is unital the above-mentioned formula turns to $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{a h_{\alpha, \beta}(a)}$. A Banach algebra \mathcal{A} is called $M V$-Banach algebra if every element of \mathcal{A} has the $M V$-property.

An element a of \mathcal{A} has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subset \mathbb{R}$ there exists a real number $c_{\alpha, \beta} \in(\alpha, \beta)$ such that

$$
\sum_{n=1}^{\infty} \frac{(\beta a)^{n}}{n!}-\sum_{n=1}^{\infty} \frac{(\alpha a)^{n}}{n!}=(\beta-\alpha) \sum_{n=1}^{\infty} \frac{c_{\alpha, \beta}^{n-1} a^{n}}{(n-1)!}
$$

It is evident that, if \mathcal{A} is unital, then the previous formula becomes $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$. A Banach algebra \mathcal{A} is called UMV-Banach algebra if every element of \mathcal{A} has the UMV-property.

Below we offer some examples about the uniformly mean value property and mean value property.
Let a be an idempotent element of a unital Banach algebra \mathcal{A}, i.e. $a^{2}=a$. We have

$$
\begin{aligned}
e^{t a} & =\sum_{n=0}^{\infty} \frac{t^{n} a^{n}}{n!}=\mathbf{1}+\sum_{n=1}^{\infty} \frac{t^{n} a}{n!} \\
& =\mathbf{1}+\sum_{n=0}^{\infty} \frac{t^{n} a}{n!}-a \\
& =e^{t} a-a+\mathbf{1}
\end{aligned}
$$

for all $t \in \mathbb{R}$. Hence,

$$
e^{\beta a}-e^{\alpha a}=e^{\beta} a-a+1-\left(e^{\alpha} a-a+\mathbf{1}\right)=\left(e^{\beta}-e^{\alpha}\right) a
$$

According to the classical mean value theorem for the function $f(t)=e^{t}$ on $[\alpha, \beta]$, there exists an element $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $e^{\beta}-e^{\alpha}=(\beta-\alpha) e^{c_{\alpha, \beta}}$. So, $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) e^{c_{\alpha, \beta}} a$. Now we show that $e^{c_{\alpha, \beta}} a=a e^{c_{\alpha, \beta} a}$. We have

$$
a e^{c_{\alpha, \beta} a}=a\left(e^{c_{\alpha, \beta}} a-a+\mathbf{1}\right)=e^{c_{\alpha, \beta}} a^{2}-a^{2}+a=e^{c_{\alpha, \beta}} a-a+a=e^{c_{\alpha, \beta}} a
$$

Thus, $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$, and this means that a has the UMV-property.

HOSSEINI/Turk J Math

As another example, let α, β, t_{0} be arbitrary fixed real numbers. We define the function $f_{t_{0}}:[\alpha, \beta] \subset$ $\mathbb{R} \rightarrow \mathbb{R}$ by $f_{t_{0}}(x)=t_{0} x$. Clearly, $f_{t_{0}}$ is a continuous function and so $f_{t_{0}} \in C([\alpha, \beta])$, where $C([\alpha, \beta])$ denotes the set of all continuous functions from $[\alpha, \beta]$ into \mathbb{C}. It is well known that if $h, g \in C([\alpha, \beta])$, then $(h+g)(x)=h(x)+g(x)$ and $(h g)(x)=h(x) g(x)$ for all $x \in[\alpha, \beta]$. We therefore have $e^{s f_{t_{0}}}=\sum_{n=0}^{\infty} \frac{s^{n} f_{t_{0}}^{n}}{n!}(x)=$ $\sum_{n=0}^{\infty} \frac{s^{n} t_{0}{ }^{n} x^{n}}{n!}=e^{s t_{0} x}$ for all $s \in \mathbb{R}$. Now we define the function $F_{t_{0} x}:[\alpha, \beta] \rightarrow \mathbb{R}$ by $F_{t_{0} x}(s)=e^{s t_{0} x}$. It is evident that $F_{t_{0} x}$ is a continuous function on $[\alpha, \beta]$ and differentiable on (α, β). It follows from the classical mean value theorem that there exists a number $c \in(\alpha, \beta)$ such that $F_{t_{0} x}(\beta)-F_{t_{0} x}(\alpha)=(\beta-\alpha) F_{t_{0} x}^{\prime}(c)$. Hence, $e^{t_{0} x \beta}-e^{t_{0} x \alpha}=(\beta-\alpha) t_{0} x e^{t_{0} x c}$. In fact, we have $e^{\beta f_{t_{0}}}(x)-e^{\alpha f_{t_{0}}}(x)=(\beta-\alpha)\left(f_{t_{0}} e^{c f_{t_{0}}}\right)(x)$ and since x was an arbitrary element of $[\alpha, \beta], e^{\beta f_{t_{0}}}-e^{\alpha f_{t_{0}}}=(\beta-\alpha) f_{t_{0}} e^{c f_{t_{0}}}$. Thus, $f_{t_{0}}$ has the UMV-property in $C([\alpha, \beta])$.

In the following, we provide an example of the MV-property. We denote the vector space of all 2×2 matrices with real entries by $\mathcal{M}_{2}(\mathbb{R})$. Clearly, $\mathcal{M}_{2}(\mathbb{R})$ is a Banach algebra with the norm $\left\|\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\right\|=$ $\left|a_{11}\right|+\left|a_{12}\right|+\left|a_{21}\right|+\left|a_{22}\right|$. Let $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ be an element of $\mathcal{M}_{2}(\mathbb{R})$. Obviously, $A^{n}=\left[\begin{array}{cc}a^{n} & 0 \\ 0 & b^{n}\end{array}\right]$ for each positive integer n. Hence, if t is a real number, then

$$
\begin{aligned}
e^{t A}=\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!} & =\sum_{n=0}^{\infty} \frac{1}{n!}\left[\begin{array}{cc}
t^{n} a^{n} & 0 \\
0 & t^{n} b^{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{t^{n} a^{n}}{n!} & 0 \\
0 & \sum_{n=0}^{\infty} \frac{t^{n} b^{n}}{n!}
\end{array}\right]=\left[\begin{array}{cc}
e^{t a} & 0 \\
0 & e^{t b}
\end{array}\right]
\end{aligned}
$$

Define $f_{a}(x)=e^{a x}$ and $g_{b}(x)=e^{b x}$. Applying the classical mean value theorem on f_{a} and g_{b}, we have $f_{a}(\beta)-f_{a}(\alpha)=(\beta-\alpha) f_{a}^{\prime}\left(c_{a}\right)$ and $g_{b}(\beta)-g_{b}(\alpha)=(\beta-\alpha) g_{b}^{\prime}\left(c_{b}\right)$, where c_{a} and c_{b} are two elements in (α, β). It means that $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{a} a}$ and $e^{\beta b}-e^{\alpha b}=(\beta-\alpha) b e^{c_{b} b}$. Therefore,

$$
e^{\beta A}-e^{\alpha A}=\left[\begin{array}{cc}
e^{\beta a}-e^{\alpha a} & 0 \tag{*}\\
0 & e^{\beta b}-e^{\alpha b}
\end{array}\right]=\left[\begin{array}{cc}
(\beta-\alpha) a e^{c_{a} a} & 0 \\
0 & (\beta-\alpha) b e^{c_{b} b}
\end{array}\right] .
$$

Now we define the function $h: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(\mathbb{R})$ as follows:

$$
h\left(\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\right)=\left[\begin{array}{cc}
c_{a} & 0 \\
0 & c_{b}
\end{array}\right]
$$

Thus,

$$
\begin{align*}
(\beta-\alpha) A e^{A h(A)} & =(\beta-\alpha)\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] e^{\left(\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{cc}
c_{a} & 0 \\
0 & c_{b}
\end{array}\right]\right)} \\
& =(\beta-\alpha)\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] e^{\left[\begin{array}{cc}
a c_{a} & 0 \\
0 & b c_{b}
\end{array}\right]} \\
& =(\beta-\alpha)\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{cc}
e^{a c_{a}} & 0 \\
0 & e^{b c_{b}}
\end{array}\right] \\
& =(\beta-\alpha)\left[\begin{array}{cc}
a e^{a c_{a}} & 0 \\
0 & b e^{b c_{b}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
(\beta-\alpha) a e^{c_{a} a} & 0 \\
0 & (\beta-\alpha) b e^{b c_{b}}
\end{array}\right] . \tag{**}
\end{align*}
$$

Comparing $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, we conclude that

$$
e^{\beta A}-e^{\alpha A}=(\beta-\alpha) A e^{A h(A)}
$$

It means that A has the mean value property (or MV-property).
Next we will present a UMV-Banach algebra. Let \mathcal{E} be a Banach algebra. The annihilator of \mathcal{E} is denoted by $\operatorname{ann}(\mathcal{E})$, and $\operatorname{ann}(\mathcal{E})=\{b \in \mathcal{E} \mid \mathcal{E} b=\{0\}=b \mathcal{E}\}$. Let \mathcal{A} be a unital Banach algebra. Set

$$
\mathcal{B}=\left[\begin{array}{cc}
\mathbb{R} & \mathcal{A} \\
\mathcal{A} & \mathbb{R}
\end{array}\right]=\left\{\left[\begin{array}{ll}
r & a \\
b & s
\end{array}\right]: a, b \in \mathcal{A} \text { and } r, s \in \mathbb{R}\right\}
$$

We should consider \mathcal{B} as a Banach algebra with point-wise addition, scalar multiplication, product, and norm, which are defined as follows.
$\left[\begin{array}{ll}r & a \\ b & s\end{array}\right] \bullet\left[\begin{array}{ll}t & c \\ d & u\end{array}\right]=\left[\begin{array}{ll}r t & a c \\ b d & s u\end{array}\right]$ and $\left\|\left[\begin{array}{cc}r & a \\ b & s\end{array}\right]\right\|=|r|+|s|+\|a\|+\|b\|$.
It is well known that the $\operatorname{ann}(\mathcal{A})$ is a closed bi-ideal of \mathcal{A}. Hence,

$$
\mathcal{D}=\left\{\left[\begin{array}{ll}
r & a \\
b & r
\end{array}\right]: a, b \in \operatorname{ann}(\mathcal{A}) \text { and } r \in \mathbb{R}\right\}
$$

is a Banach subalgebra of \mathcal{B}. Clearly, if $X=\left[\begin{array}{ll}r & a \\ b & r\end{array}\right]$ then $X^{n}=\left[\begin{array}{cc}r^{n} & 0 \\ 0 & r^{n}\end{array}\right]$ for all natural number $n \geq 2$. Suppose that $[\alpha, \beta] \subset \mathbb{R}$. Then $\sum_{n=1}^{\infty} \frac{(\beta X)^{n}}{n!}=\left[\begin{array}{cc}\sum_{n=1}^{\infty} \frac{(\beta r)^{n}}{n!} & \beta a \\ \beta b & \sum_{n=1}^{\infty} \frac{(\beta r)^{n}}{n!}\end{array}\right]=\left[\begin{array}{cc}e^{\beta r}-1 & \beta a \\ \beta b & e^{\beta r}-1\end{array}\right]$. Similarly, $\sum_{n=1}^{\infty} \frac{(\alpha X)^{n}}{n!}=\left[\begin{array}{cc}e^{\alpha r}-1 & \alpha a \\ \alpha b & e^{\alpha r}-1\end{array}\right]$. According to the classical mean value theorem, there exists an element $c \in(\alpha, \beta)$ such that

$$
e^{\beta r}-e^{\alpha r}=(\beta-\alpha) r e^{c r}
$$

HOSSEINI/Turk J Math

Hence, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(\beta X)^{n}}{n!}-\sum_{n=1}^{\infty} \frac{(\alpha X)^{n}}{n!} & =\left[\begin{array}{cc}
e^{\beta r}-e^{\alpha r} & (\beta-\alpha) a \\
(\beta-\alpha) b & e^{\beta r}-e^{\alpha r}
\end{array}\right] \\
& =\left[\begin{array}{cc}
(\beta-\alpha) r e^{c r} & (\beta-\alpha) a \\
(\beta-\alpha) b & (\beta-\alpha) r e^{c r}
\end{array}\right] \\
& =(\beta-\alpha)\left[\begin{array}{cc}
r e^{c r} & a \\
b & r e^{c r}
\end{array}\right]
\end{aligned}
$$

At this point, we show that $(\beta-\alpha) \sum_{n=1}^{\infty} \frac{c^{n-1} X^{n}}{(n-1)!}=(\beta-\alpha)\left[\begin{array}{cc}r e^{c r} & a \\ b & r e^{c r}\end{array}\right]$. Note that

$$
\begin{aligned}
(\beta-\alpha) \sum_{n=1}^{\infty} \frac{c^{n-1} X^{n}}{(n-1)!} & =(\beta-\alpha)\left(\left[\begin{array}{cc}
r & a \\
b & r
\end{array}\right]+\left[\begin{array}{cc}
c r^{2} & 0 \\
0 & c r^{2}
\end{array}\right]+\left[\begin{array}{cc}
\frac{c^{2} r^{3}}{2!} & 0 \\
0 & \frac{c^{2} r^{3}}{2!}
\end{array}\right]+\ldots\right) \\
& =(\beta-\alpha)\left[\begin{array}{cc}
r+c r^{2}+\frac{c^{2} r^{3}}{2!}+\ldots & a \\
b & r r^{2}+\frac{c^{2} r^{3}}{2!}+\ldots
\end{array}\right] \\
& =(\beta-\alpha)\left[\begin{array}{cc}
r e^{c r} & a \\
b & r e^{c r}
\end{array}\right]
\end{aligned}
$$

Thus, every element of \mathcal{D} has the mean value property and it means that \mathcal{D} is a UMV-Banach algebra.
In the following proposition, we characterize the unital Banach algebras for which the resolvent function $R_{a}(z)=(z 1-a)^{-1}$ satisfies the classical mean value theorem for real numbers.

Proposition 2.3 Let a be an element of the unital Banach algebra \mathcal{A} such that the resolvent function $R_{a}(z)=(z 1-a)^{-1}$ has the following property:

$$
R_{a}(\beta)-R_{a}(\alpha)=(\beta-\alpha) R_{a}^{\prime}(c)
$$

for some $c \in(\alpha, \beta) \subset \mathbb{R}$. Then there exists a real number t_{0} such that $a=t_{0} \mathbf{1}$.
Proof It is evident that the derivative of resolvent function R_{a} at point $z_{0} \in \mathbb{C}-\mathfrak{S}(a)$ is

$$
R_{a}^{\prime}\left(z_{0}\right)=-\left(z_{0} \mathbf{1}-a\right)^{-2}
$$

By hypothesis, there exists an element c in open interval (α, β) such that

$$
(\beta \mathbf{1}-a)^{-1}-(\alpha \mathbf{1}-a)^{-1}=(\beta-\alpha) R_{a}^{\prime}(c)
$$

and it means that

$$
(\beta \mathbf{1}-a)^{-1}-(\alpha \mathbf{1}-a)^{-1}=-(\beta-\alpha)(c \mathbf{1}-a)^{-2}
$$

This equation with the fact that $A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}$ implies that

$$
(\beta \mathbf{1}-a)^{-1}(\alpha-\beta)(\alpha \mathbf{1}-a)^{-1}=(\alpha-\beta)(c \mathbf{1}-a)^{-2}
$$

HOSSEINI/Turk J Math

This equation together with the fact that $(A B)^{-1}=B^{-1} A^{-1}$ implies that

$$
((\alpha \mathbf{1}-a)(\beta \mathbf{1}-a))^{-1}=\left((c \mathbf{1}-a)^{2}\right)^{-1}
$$

Hence,

$$
\alpha \beta \mathbf{1}-\alpha a-\beta a+a^{2}=c^{2} \mathbf{1}-2 c a+a^{2}
$$

Consequently,

$$
a=\frac{\alpha \beta-c^{2}}{\alpha+\beta-2 c} \mathbf{1}
$$

Theorem 2.4 Let \mathcal{A} be a unital domain and δ be a derivation on \mathcal{A}. Furthermore, assume that a is an element of \mathcal{A} with the UMV-property satisfying $e^{c_{0,1} a} \delta(a)=\delta(a) e^{c_{0,1} a}$, where $c_{0,1} \in(0,1) \subset \mathbb{R}$ is obtained from UMV-property for a. If $\delta\left(e^{a}\right)=e^{a} \delta(a)$ and $\delta\left(e^{c_{0,1} a}\right)=c_{0,1} e^{c_{0,1} a} \delta(a)$, then $\delta(a)=0$.
Proof If $a=0$, then there is nothing to be proved. Let a be a nonzero element of \mathcal{A} with the UMV-property. Hence, there exists an element $c_{0,1}=c$ of $(0,1)$ such that

$$
\begin{equation*}
e^{a}-\mathbf{1}=a e^{c a} \tag{2.2}
\end{equation*}
$$

By assumption, $\delta\left(e^{c a}\right)=c e^{c a} \delta(a)$; therefore, we have $e^{a} \delta(a)-\delta(\mathbf{1})=\delta(a) e^{c a}+a\left(c e^{c a} \delta(a)\right)$. This equality together with the fact that $e^{c a} \delta(a)=\delta(a) e^{c a}$ implies that

$$
\left(e^{a}-e^{c a}-c a e^{c a}\right) \delta(a)=0
$$

Using the fact that \mathcal{A} is a domain, we conclude that either $\delta(a)=0$ or $e^{a}-c a e^{c a}-e^{c a}=0$. We will show that if $e^{a}-c a e^{c a}-e^{c a}=0$, then $\delta(a)=0$. Reusing the UMV-property for a on the closed interval [c,1], we obtain an element $c_{c, 1}=c_{1}$ in $(c, 1)$ such that

$$
e^{a}-e^{c a}=(1-c) a e^{c_{1} a} .
$$

Thus,

$$
\begin{equation*}
e^{a}-e^{c a}-a e^{c_{1} a}+c a e^{c_{1} a}=0 \tag{2.3}
\end{equation*}
$$

The previous equation together with the fact that $e^{a}-e^{c a}=c a e^{c a}$ implies that

$$
\begin{equation*}
c a e^{c a}-a e^{c_{1} a}+c a e^{c_{1} a}=0 \tag{2.4}
\end{equation*}
$$

Replacing c_{1} by $c+h$ in (2.4), we get

$$
c a e^{c a}-a e^{(c+h) a}+c a e^{(c+h) a}=0
$$

and hence,

$$
a e^{c a}\left[c \mathbf{1}-e^{h a}+c e^{h a}\right]=0
$$

HOSSEINI/Turk J Math

Since \mathcal{A} is a domain and $a e^{c a}$ is nonzero, $c \mathbf{1}-e^{h a}+c e^{h a}=0$. Hence, we have $e^{h a}=\frac{c}{1-c} \mathbf{1}$. Based on the spectral mapping theorem, it is achieved that $\mathfrak{S}\left(e^{h a}\right)=e^{\mathfrak{S}(h a)}$. First note that $\mathfrak{S}\left(e^{h a}\right)=\mathfrak{S}\left(\frac{c}{1-c} \mathbf{1}\right)=\left\{\frac{c}{1-c}\right\}$. So,

$$
\begin{equation*}
\left\{\frac{c}{1-c}\right\}=\mathfrak{S}\left(e^{h a}\right)=e^{h \mathfrak{S}(a)} \tag{2.5}
\end{equation*}
$$

If λ is an arbitrary element of $\mathfrak{S}(a)$, then the previous relation implies that $e^{h \lambda}=\frac{c}{1-c} \in \mathbb{R}$ and it shows that λ is a real number. Since λ was arbitrary, $\mathfrak{S}(a) \subset \mathbb{R}$. Suppose that $\beta_{1}, \beta_{2} \in \mathfrak{S}(a)$. It follows from (2.5) that $e^{h \beta_{1}}=\frac{c}{1-c}=e^{h \beta_{2}}$ and consequently, $\beta_{1}=\beta_{2}$. It means that $\mathfrak{S}(a)$ contains only one element such as $\beta \in \mathbb{R}$. Thus, $\mathfrak{S}(h a)=h \mathfrak{S}(a)=\{h \beta\}$. Additionally, it follows from (2.5) that $\frac{c}{1-c}=e^{h \beta}$ and thus, $e^{h a}=e^{h \beta} \mathbf{1}$. It is clear that $\mathfrak{S}(h a)$ is contained in the open strip: $-\pi<\operatorname{Im}(\lambda)<\pi$. So, by Proposition 2.10 of [21], we obtain that $\log (\exp (h a))=h a$, i.e. $\log \left(e^{h a}\right)=h a$. We know that $e^{h a}=e^{h \beta} \mathbf{1}$. Therefore,

$$
h a=\log \left(e^{h a}\right)=\log \left(e^{h \beta} \mathbf{1}\right)=h \beta \mathbf{1}
$$

This equation demonstrates that $a=\beta \mathbf{1}$ and consequently, $\delta(a)=0$.
An immediate but noteworthy corollary to Theorem 2.4 is:
Corollary 2.5 Let the UMV-Banach algebra \mathcal{A} be a unital domain and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation. If $a \delta(a)=\delta(a)$ a for all $a \in \mathcal{A}$, then the following assertions are equivalent:
(i) δ is continuous;
(ii) $\delta\left(e^{a}\right)=e^{a} \delta(a)$ for all $a \in \mathcal{A}$;
(iii) δ is identically zero.

Proof $(i) \Rightarrow(i i)$ and $(i i i) \Rightarrow(i)$ are clear. According to Theorem 2.4, (iii) is an immediate conclusion from (ii).

In the next results, like most authors, we denote the commutator $a b-b a$ by $[a, b]$ for all pairs $a, b \in \mathcal{A}$.
Corollary 2.6 Let \mathcal{A} be a unital domain and a be an element of \mathcal{A} with the UMV-property satisfying $e^{c_{0,1} a}[a, x]=[a, x] e^{c_{0,1} a}$ for some $x \in \mathcal{A}$ and for $c_{0,1} \in(0,1)$, which is obtained from the UMV-property for a. If $\left[e^{a}, x\right]=e^{a}[a, x]$ and $\left[e^{c_{0,1} a}, x\right]=c_{0,1} e^{c_{0,1} a}[a, x]$, then $[a, x]=0$.
Proof Define $\delta_{x}: \mathcal{A} \rightarrow \mathcal{A}$ by $\delta_{x}(a)=[a, x]$. Obviously, δ_{x} is a continuous derivation. At this point, Theorem 2.4 is just what we need to complete the proof.

If δ is a continuous derivation on \mathcal{A} such that $a \delta(a)=\delta(a) a$ for all $a \in \mathcal{A}$, then a straightforward verification shows that $\delta\left(e^{a}\right)=e^{a} \delta(a)$. In Corollary 2.5, under certain circumstances, the converse of this result has been investigated. This allows us to offer the following problem.

Problem 2.7 Let $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation such that $\delta\left(e^{a}\right)=e^{a} \delta(a)$ for all $a \in \mathcal{A}$. Is δ a continuous operator?

Theorem 2.8 Let \mathcal{A} be a unital domain and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation such that a $\delta(a)=\delta(a) a$ and $\delta\left(e^{a}\right)=e^{a} \delta(a)$ for all $a \in \mathcal{A}$. If there exists a continuous, injective linear mapping from \mathcal{A} into \mathbb{R}, then δ is identically zero.

HOSSEINI/Turk J Math

Proof Let a be a nonzero fixed element of \mathcal{A}. We define a function $f_{a}:[\alpha, \beta] \subset \mathbb{R} \rightarrow \mathcal{A}$ by $f_{a}(t)=e^{t a}$. It is well known that f_{a} is continuous on $[\alpha, \beta]$ and is differentiable on (α, β). Let $F: \mathcal{A} \rightarrow \mathbb{R}$ be a continuous, injective linear mapping. Put $H=F o f_{a}$ to get a function from $[\alpha, \beta]$ into \mathbb{R}. Let x_{0} be an arbitrary element of $[\alpha, \beta]$, and then $\lim _{x \rightarrow x_{0}} H(x)=\lim _{x \rightarrow x_{0}}\left(F o f_{a}\right)(x)=F\left(\lim _{x \rightarrow x_{0}} f_{a}(x)\right)=H\left(x_{0}\right)$. It means that H is continuous. Moreover, we have

$$
\begin{aligned}
H^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{H(x)-H\left(x_{0}\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{F\left(f_{a}(x)\right)-F\left(f_{a}\left(x_{0}\right)\right)}{x-x_{0}} \\
& =F\left(\lim _{x \rightarrow x_{0}} \frac{f_{a}(x)-f_{a}\left(x_{0}\right)}{x-x_{0}}\right) \\
& =\left(\text { Fof }_{a}^{\prime}\right)\left(x_{0}\right),
\end{aligned}
$$

for all $x_{0} \in(\alpha, \beta)$. It means that H is differentiable on (α, β). Since $H=F o f_{a}$ is continuous on $[\alpha, \beta]$ and differentiable on (α, β), the classical mean value theorem ensures that there is an element $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $H(\beta)-H(\alpha)=(\beta-\alpha) H^{\prime}\left(c_{\alpha, \beta}\right)$, i.e. $F\left(f_{a}(\beta)-f_{a}(\alpha)-(\beta-\alpha) f_{a}^{\prime}\left(c_{\alpha, \beta}\right)\right)=0$. Since F is injective, $f_{a}(\beta)-f_{a}(\alpha)=(\beta-\alpha) f_{a}^{\prime}\left(c_{\alpha, \beta}\right)$. So, we have $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$. It means that a has the UMVproperty and since a was arbitrary, \mathcal{A} is a UMV-Banach algebra. Finally, Corollary 2.5 completes the proof.

In the following two theorems, we present some results on the range of a derivation.
Theorem 2.9 Let $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan derivation and \mathcal{P} be a primitive ideal of \mathcal{A}. If $[a, \delta(a)] \in \mathcal{P}$ for all $a \in \mathcal{A}$ and $\delta(\mathcal{P}) \subseteq \mathcal{P}$, then $\delta(\mathcal{A}) \subseteq \mathcal{P}$.
Proof Let us define $\Delta: \frac{\mathcal{A}}{\mathcal{P}} \rightarrow \frac{\mathcal{A}}{\mathcal{P}}$ by $\Delta(a+\mathcal{P})=\delta(a)+\mathcal{P}$. One can easily show that Δ is a Jordan derivation. By Proposition 1.4.34 (ii) of [6], \mathcal{P} is closed and so $\frac{\mathcal{A}}{\mathcal{P}}$ is a semisimple Banach algebra. Note that every Jordan derivation on a semisimple Banach algebra is an ordinary derivation (see Corollary 5 of [2]). So, Δ is a derivation. Since $[\Delta(x), x]=0$ for all $x \in \frac{\mathcal{A}}{\mathcal{P}}$ is equivalent to $[\Delta(x), y]=0$ for all $x, y \in \frac{\mathcal{A}}{\mathcal{P}}$ by [[13], Proposition 2], we see that Δ is a left derivation on semisimple Banach algebra $\frac{\mathcal{A}}{\mathcal{P}}$. The proof is completed by Corollary 3.7 of [11].

Theorem 2.10 Suppose that \mathcal{A} is a unital, commutative UMV-Banach algebra, and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous derivation. Then $\delta(\mathcal{A}) \subseteq \mathcal{P}$, where \mathcal{P} is an arbitrary minimal prime closed ideal of \mathcal{A}.
Proof We know that minimal prime closed ideals in commutative algebras are invariant under derivations (see [17]). Clearly, $\frac{\mathcal{A}}{\mathcal{P}}$ is a UMV-Banach algebra and further, it is an integral domain. A linear mapping $\Delta: \frac{\mathcal{A}}{\mathcal{P}} \rightarrow \frac{\mathcal{A}}{\mathcal{P}}$ defined by $\Delta(a+\mathcal{P})=\delta(a)+\mathcal{P}$ is a continuous derivation, and it follows from Corollary 2.5 that Δ is identically zero. It implies that $\delta(a) \in \mathcal{P}$ for all $a \in \mathcal{A}$, and consequently, $\delta(\mathcal{A}) \subseteq \mathcal{P}$.

In the next theorem, we will add another statement to the equivalent assertions below, which have been stated in [17].

Theorem 2.11 The following statements are equivalent:
(i) Every derivation on a UMV-Banach algebra has a nilpotent separating ideal;

HOSSEINI/Turk J Math

(ii) Every derivation on a semiprime UMV-Banach algebra is continuous;
(iii) Every derivation on a prime UMV-Banach algebra is continuous;
(iv) Every derivation on an integral domain UMV-Banach algebra is continuous;
(v) Every derivation on an integral domain UMV-Banach algebra is identically zero.

Conjecture 2.12 Let \mathcal{A} be a unital Banach algebra and a be an element of \mathcal{A} with the UMV-property. Then $\mathfrak{S}(a) \subset \mathbb{R}$. It seems that the same is also true for the $M V$-property.

Acknowledgments

The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper. Furthermore, I would like to extend my sincere thanks to Professor Madjid Eshaghi Gordji for his valuable suggestions to improve this paper.

References

[1] Ali S. On $(\sigma-\tau)$-derivations in prime rings. Arch Math 2002; 18: 259-264.
[2] Bres̆ar M. Jordan derivations on semiprime rings. P Am Math Soc 1988; 104: 1003-1006.
[3] Bres̆ar M. On the distance of the compositions of two derivations to the generalized derivations. Glasgow Math J 1991; 33: 89-93.
[4] Bres̆ar M, Villena AR. The noncommutative Singer-Wermer conjecture and ϕ-derivations. J London Math Soc 2002; 66: 710-720.
[5] Bres̆ar M, Vukman J. On left derivations and related mappings. P Am Math Soc 1990; 110: 7-16.
[6] Dales HG. Banach Algebras and Automatic Continuity. Oxford, UK: Oxford University Press, 2000.
[7] Hosseini A, Hassani M, Niknam A. On the range of a derivation. Iran J Sci Technol Trans A Sci 2014; 38: 111-115.
[8] Hosseini A, Hassani M, Niknam A, Hejazian S. Some results on σ-derivations. Ann Funct Anal 2011; 2: 75-84.
[9] Hvala B. Generalized derivations in rings. Comm Algebra 1988; 26: 1147-1166.
[10] Johnson BE, Sinclair AM. Continuity of derivations and a problem of Kaplansky. Am J Math 1968; 90: 1067-1073.
[11] Jung Y. On left derivations and derivations of Banach algebras. Bull Korean Math Soc 1998; 35: 659-667.
[12] Kim GH. A result concerning derivations in noncommutative Banach algebras. Sci Math Jpn 2001; 4: 193-196.
[13] Mathieu M. Where to find the image of a derivation. Banach Center Publ 1994; 30: 237-249.
[14] Mirzavaziri M, Moslehian MS. Automatic continuity of σ-derivations in C^{*}-algebras. P Am Math Soc 2006; 134: 3319-3327.
[15] Park KH, Jung YS, Bae JH. Derivations in Banach algebras. Int J Math Math Sci 2002; 2: 579-583.
[16] Posner EC. Derivations in prime rings. P Am Math Soc 1957; 8: 1093-1100.
[17] Runde V. Automatic continuity of derivations and epimorphisms. Pacific J Math 1991; 147: 365-374.
[18] Sakai S. Operator Algebras in Dynamical Systems. Cambridge, UK: Cambridge University Press, 1991.
[19] Shahzad N. Jordan and left derivations on locally C^{*}-algebras. Southeast Asian Bull Math 2007; 31: 1183-1190.
[20] Singer IM, Wermer J. Derivations on commutative normed algebras. Math Ann 1955; 129: 260-264.
[21] Takesaki M. Theory of Operator Algebras I. New York, NY, USA: Springer-Verlag, 2001.
[22] Thomas MP. The image of a derivation is contained in the radical. Ann Math 1988; 128: 435-460.

HOSSEINI/Turk J Math

[23] Thomas MP. Primitive ideals and derivations on noncommutative Banach algebras. Pacific J Math 1993; 159: 139-152.
[24] Vukman J. On automorphisms and derivations of operator algebras. Glas Mat 1984; 19: 135-138.
[25] Vukman J. On derivations in prime rings and Banach algebras. P Am Math Soc 1992; 116: 877-884.
[26] Vukman J. Some remarks on derivations in semiprime rings and standard operator algebras. Glas Mat 2011; 46: 43-48.

[^0]: *Correspondence: hosseini.amin82@gmail.com
 2010 AMS Mathematics Subject Classification: 47B47, 13N15, 17B40.

