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Abstract: In this paper, a uniformly mean value Banach algebra (briefly UMV-Banach algebra) is defined as a new

class of Banach algebras, and we characterize derivations on this class of Banach algebras. Indeed, it is proved that if

A is a unital UMV-Banach algebra such that either a = 0 or b = 0 whenever ab = 0 in A , and if δ : A → A is a

derivation such that aδ(a) = δ(a)a for all a ∈ A , then the following assertions are equivalent:

(i) δ is continuous;

(ii) δ(ea) = eaδ(a) for all a ∈ A ;

(iii) δ is identically zero.

Key words: Derivation, mean value property, uniformly mean value property, classical mean value theorem, Gelfand

transform

1. Introduction

Throughout this paper, A denotes an associative complex Banach algebra. If the algebra A is unital, then

1 stands for its unit element. An algebra A is said to be a domain if A ̸= {0} , and either a = 0 or b = 0,

whenever ab = 0 in A . A commutative algebra that is also a domain is called an integral domain. Recall that

a derivation of an algebra A is a linear mapping δ from a subalgebra D(δ), the domain of δ , into A that

satisfies the Leibniz rule δ(ab) = δ(a)b + aδ(b) for all pairs a, b ∈ D(δ). If A contains the unit element 1, we

will always assume 1 ∈ D(δ) (see [18]). Now we offer the concepts and symbols that will be used in the coming

pages. Let G be an open subset of C . A map f : G ⊆ C → A is said to be differentiable at point z0 of G if

limz→z0
f(z)−f(z0)

z−z0
exists. This limit is called the derivative of f at the point z0 and is denoted by f

′
(z0). For

example, the function fa : [α, β] ⊂ R → A defined by fa(t) = eta , where a is an arbitrary fixed element of A ,

is continuous on [α, β] and also is differentiable on open interval (α, β) such that f
′

a(t) = aeta . By C∗(a) we

denote the C∗ -subalgebra generated by {a} . Let a be an arbitrary element of A . Then the spectrum of a is

denoted by S(a) and is defined as the set of all complex numbers λ such that λ1− a is not invertible in A . If

a is a self-adjoint element of A , then S(a) ⊆ [−∥a∥, ∥a∥] ⊂ R . The set of all continuous functions from S(a)

into C is denoted by C(S(a)) and it is well known that if a is a normal element, then the Gelfand transform

G : C∗(a) → C(S(a)) is an isometric ∗− isomorphism . If f ∈ C(S(a)), then f(a) = G−1(f) and furthermore,

if I : S(a) → C is the inclusion map, then G−1(I) = a . The unit element of C(S(a)) is denoted by i and we

have i(x) = 1 for all x ∈ S(a). The mentioned definitions and concepts can all be found in [6, 18], and the
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reader is referred to these sources for more general information on Banach algebras and C∗ -algebras. As is well

known, the class of derivations is a very important class of linear mappings both in theory and applications and

was studied intensively. Recently, a number of authors [1, 4, 8, 9, 14] have studied various generalized notions of

derivations in the context of Banach algebras. Such mappings have been extensively studied in pure algebra; cf.

[1, 3, 9, 16, 25, 26]. In 1955, Singer and Wermer [20] obtained a fundamental result that started investigation

into the range of derivations on Banach algebras. The result states that every continuous derivation on a

commutative Banach algebra maps the algebra into its Jacobson radical. In the same paper, they conjectured

that the assumption of continuity is superfluous. This is called the Singer–Wermer conjecture. In 1988, Thomas

[22] proved the conjecture. According to this result, every derivation on a commutative, semisimple Banach

algebra is zero. Since then, a number of authors have presented many noncommutative versions of the Singer–

Wermer theorem (e.g., see [4, 12, 13, 23]). A result of Johnson and Sinclair [10] states that every derivation on

a semisimple Banach algebra is continuous and hence the Singer–Wermer theorem implies that it must be zero.

The question of under which conditions all derivations are zero on a given Banach algebra has attracted much

attention of authors (for instance, see [5, 7, 12, 13, 15, 16, 19, 24, 26]). The current research is focused on this

topic. Indeed, this study is an attempt to offer a new approach for investigation of this subject. This article

introduces a new type of Banach algebras and it will be shown that, under certain conditions, derivations are

zero on such Banach algebras.

An element a of A has the mean value property (MV-property, briefly) if for every closed interval

[α, β] ⊂ R there exists a function hα,β : A → A such that

∞∑
n=1

(βa)n

n!
−

∞∑
n=1

(αa)n

n!
= (β − α)

∞∑
n=1

hα,β(a)
n−1an

(n− 1)!
.

In the case that A is unital the above-mentioned formula turns to eβa − eαa = (β − α)aeahα,β(a) . A Banach

algebra A is called MV-Banach algebra if every element of A has the MV-property.

An element a of A has the uniformly mean value property (UMV-property, briefly) if for every closed

interval [α, β] ⊂ R there exists a real number cα,β ∈ (α, β) such that

∞∑
n=1

(βa)n

n!
−

∞∑
n=1

(αa)n

n!
= (β − α)

∞∑
n=1

cn−1
α,β an

(n− 1)!
.

It is evident that, if A is unital, then the previous formula is turns to eβa − eαa = (β − α)aecα,βa . A Banach

algebra A is called UMV-Banach algebra if every element of A has the UMV-property. As a proposition, we

prove that if a is an element of a unital Banach algebra A such that the function Ra(z) = (z1− a)−1 satisfies

Ra(β)−Ra(α) = (β − α)R
′

a(c) for some c ∈ (α, β) ⊂ R , then there exists a real number t0 such that a = t01 .

The main purpose of this study is to prove the following result:

Let A be a unital domain and δ be a derivation on A . Furthermore, assume that a is an element of A with

the UMV-property such that ec0,1aδ(a) = δ(a)ec0,1a , where c0,1 ∈ (0, 1) ⊂ R is achieved from UMV-property

for a . If δ(ea) = eaδ(a) and δ(ec0,1a) = c0,1e
c0,1aδ(a), then δ(a) = 0.

Using the above-mentioned result, the following corollary can be achieved:

Let the UMV-Banach algebra A be a unital domain and δ : A → A be a derivation. If aδ(a) = δ(a)a for all

a ∈ A , then the following assertions are equivalent.

(i) δ is continuous;
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(ii) δ(ea) = eaδ(a) for all a ∈ A ;

(iii) δ is identically zero.

2. Main results

Theorem 2.1 Let C∗ − algebra A be unital, and δ : D(δ) ⊆ A → A be a closed derivation. Suppose a

is a self-adjoint element of D(δ) such that C∗(a) ⊆ D(δ) and aδ(a) = δ(a)a . Furthermore, assume that

f(a)δ(g(a)) = 0 , where f , g are two functions with respect to a , implies that either f(a) = 0 or δ(g(a)) = 0 .

Then there exists a continuous, nondifferentiable function h : S(a)
∪
{0} ⊆ [−∥a∥, ∥a∥] → (0, 1) satisfying

ex − 1 = xexh(x) such that δ(h(a)) = 0 if and only if δ(a) = 0 .

Proof If a = 0, then there is nothing to be proved. Let a be a nonzero self-adjoint element of D(δ) such

that C∗(a) ⊆ D(δ). For x ∈ S(a)− {0} , define the map fx : [α, β] ⊂ R → R by fx(t) = etx . Evidently, fx is

continuous on [α, β] and is differentiable on open interval (α, β). Hence, by the classical mean value theorem

for fx on [0,1], there exists an element cx in (0,1) such that fx(1)− fx(0) = xexcx , i.e. ex − 1 = xexcx . Now

we define h : S(a) − {0} → (0, 1) by h(x) = cx . In the next step, it is shown that h is well-defined. Let

x1 = x2(∈ S(a)−{0}). We have x1e
x1cx1 = ex1 − 1 = ex2 − 1 = x2e

x2cx2 . Thus, cx1
= cx2

, i.e. h(x1) = h(x2).

The equality ex − 1 = xexh(x) shows that h(x) = 1
x ln( e

x−1
x ). Obviously, h is continuous on S(a)− {0} . Note

that

lim
x→0

h(x) = lim
x→0

1

x
ln(

ex − 1

x
) = lim

x→0

xex−ex+1
x2

ex−1
x

= lim
x→0

xex − ex + 1

x(ex − 1)
= lim

x→0

ex + xex − ex

ex − 1 + xex

= lim
x→0

xex

ex − 1 + xex
= lim

x→0

ex + xex

ex + ex + xex

=
1

2
.

Hence, we define the function h by

h(x) =

{
1
x ln( e

x−1
x ) x ̸= 0

1
2 x = 0.

It is clear that h is a nondifferentiable, continuous function on S(a) ∪ {0} ⊆ [−∥a∥, ∥a∥] . If f(x) = 1 +∑∞
n=1

(tx)n

n! = etx , then G−1(f) = 1+
∑∞

n=1
(ta)n

n! = eta , where G is the Gelfand transform. Furthermore, we

have

ehI(x) =

∞∑
n=0

hnIn

n!
(x)

=
∞∑

n=0

(h(x)x)n

n!

= eh(x)x.
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It follows from the equality ex − 1 = xeh(x)x that (eI − i)(x) = (IehI)(x), and hence

eI − i = IeIh.

By applying the Gelfand transform on the previous equality, we have ea − 1 = aeah(a) . Therefore, δ(ea − 1) =

δ(aeah(a)) and it implies that

δ(ea) = δ(a)eah(a) + aδ(eah(a)). (2.1)

Since aδ(a) = δ(a)a , it is seen that δ((ah(a))n) = n(ah(a))n−1δ(ah(a)). Therefore, we have

δ(eah(a)) = eah(a)δ(ah(a)) = eah(a)[aδ(h(a)) + h(a)δ(a)] (∗).

However, δ(eah(a)) can also be calculated in a different way. Let P (x) be a polynomial of variable x . Then it

is easily seen that P (a) ∈ D(δ) and δ(P (a)) = P
′
(a)δ(a), where P

′
is the derivative of P . A straightforward

verification shows that the function

exh(x) =

{
ex−1
x x ̸= 0
1 x = 0

is differentiable. Indeed,

eIh ∈ C
′
(S(a) ∪ {0}).

For eIh , take a sequence {Pn} of polynomials on S(a)∪{0} such that ∥Pn−eIh∥ → 0 and ∥P ′

n−(eIh)
′∥ → 0. So,

∥Pn(a)− eah(a)∥ → 0 and ∥δ(Pn(a))− (ah(a))
′
eah(a)δ(a)∥ → 0. The closedness of δ implies that eah(a) ∈ D(δ)

and

δ(eah(a)) = (ah(a))
′
eah(a)δ(a) (∗∗).

Comparing (∗) and (∗∗), we obtain

eah(a)(aδ(h(a)) + h(a)δ(a)) = eah(a)(ah(a))
′
δ(a).

Thus, we have

aδ(h(a)) = ((ah(a))
′
− h(a))δ(a) (∗ ∗ ∗).

If δ(a) = 0, then it follows from (∗ ∗ ∗) that aδ(h(a)) = 0, and it is obtained from our assumption in

this theorem that δ(h(a)) = 0. Now we are going to show that δ(h(a)) = 0 implies that δ(a) = 0. If

δ(h(a)) = 0, then it follows from (∗) that δ(eah(a)) = eah(a)h(a)δ(a). Having put eah(a)h(a)δ(a) instead of

δ(eah(a)) in (2.1), we conclude that (ea − ah(a)eah(a) − eah(a))δ(a) = 0. By reusing our assumption, it can be

concluded that δ(a) = 0 or ea − ah(a)eah(a) − eah(a) = 0. Suppose that ea − ah(a)eah(a) − eah(a) = 0. Hence,

k = G(ea − ah(a)eah(a) − eah(a)) = eI − IheIh − eIh is a zero function on S(a) ∪ {0} ⊆ [−∥a∥, ∥a∥] . It means

that

k(x) = ex − xh(x)exh(x) − exh(x) = 0,

for all x ∈ S(a) ∪ {0} . Clearly, k(0) = 0. Moreover, we have

k(x) = ex − (
ex − 1

x
)− (

ex − 1

x
) ln(

ex − 1

x
),
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for all x ∈ S(a) − {0} . By using MATLAB software, the function k on the closed interval [-2,2] was drawn,

and it was observed that this function is not zero. Hence,

ea − eh(a)a − ah(a)eh(a)a ̸= 0

and consequently, δ(a) = 0. This completes the proof of the theorem. 2

Definition 2.2 An element a of A has the mean value property (MV- property, briefly) if for every closed

interval [α, β] ⊂ R there exists a function hα,β : A → A such that

∞∑
n=1

(βa)n

n!
−

∞∑
n=1

(αa)n

n!
= (β − α)

∞∑
n=1

hα,β(a)
n−1an

(n− 1)!
.

In the case that A is unital the above-mentioned formula turns to eβa − eαa = (β − α)aeahα,β(a) . A Banach

algebra A is called MV-Banach algebra if every element of A has the MV-property.

An element a of A has the uniformly mean value property (UMV-property, briefly) if for every closed

interval [α, β] ⊂ R there exists a real number cα,β ∈ (α, β) such that

∞∑
n=1

(βa)n

n!
−

∞∑
n=1

(αa)n

n!
= (β − α)

∞∑
n=1

cn−1
α,β an

(n− 1)!
.

It is evident that, if A is unital, then the previous formula becomes eβa − eαa = (β − α)aecα,βa . A Banach

algebra A is called UMV-Banach algebra if every element of A has the UMV-property.

Below we offer some examples about the uniformly mean value property and mean value property.

Let a be an idempotent element of a unital Banach algebra A , i.e. a2 = a . We have

eta =

∞∑
n=0

tnan

n!
= 1+

∞∑
n=1

tna

n!

= 1+

∞∑
n=0

tna

n!
− a

= eta− a+ 1

for all t ∈ R . Hence,

eβa − eαa = eβa− a+ 1− (eαa− a+ 1) = (eβ − eα)a.

According to the classical mean value theorem for the function f(t) = et on [α, β] , there exists an element

cα,β ∈ (α, β) such that eβ−eα = (β−α)ecα,β . So, eβa−eαa = (β−α)ecα,βa. Now we show that ecα,βa = aecα,βa.

We have

aecα,βa = a(ecα,βa− a+ 1) = ecα,βa2 − a2 + a = ecα,βa− a+ a = ecα,βa.

Thus, eβa − eαa = (β − α)aecα,βa, and this means that a has the UMV-property.
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As another example, let α , β , t0 be arbitrary fixed real numbers. We define the function ft0 : [α, β] ⊂
R → R by ft0(x) = t0x . Clearly, ft0 is a continuous function and so ft0 ∈ C([α, β]) , where C([α, β]) de-

notes the set of all continuous functions from [α, β] into C . It is well known that if h, g ∈ C([α, β]) , then

(h+ g)(x) = h(x)+ g(x) and (hg)(x) = h(x)g(x) for all x ∈ [α, β] . We therefore have esft0 =
∑∞

n=0

snfn
t0

n! (x) =∑∞
n=0

snt0
nxn

n! = est0x for all s ∈ R . Now we define the function Ft0x : [α, β] → R by Ft0x(s) = est0x . It is

evident that Ft0x is a continuous function on [α, β] and differentiable on (α, β). It follows from the classical

mean value theorem that there exists a number c ∈ (α, β) such that Ft0x(β) − Ft0x(α) = (β − α) ´Ft0x(c).

Hence, et0xβ − et0xα = (β −α)t0xe
t0xc . In fact, we have eβft0 (x)− eαft0 (x) = (β − α)(ft0e

cft0 )(x) and since x

was an arbitrary element of [α, β] , eβft0 −eαft0 = (β−α)ft0e
cft0 . Thus, ft0 has the UMV-property in C([α, β]) .

In the following, we provide an example of the MV-property. We denote the vector space of all 2 × 2

matrices with real entries by M2(R). Clearly, M2(R) is a Banach algebra with the norm ∥
[

a11 a12
a21 a22

]
∥ =

|a11|+ |a12|+ |a21|+ |a22| . Let A =

[
a 0
0 b

]
be an element of M2(R). Obviously, An =

[
an 0
0 bn

]
for each

positive integer n . Hence, if t is a real number, then

etA =
∞∑

n=0

tnAn

n!
=

∞∑
n=0

1

n!

[
tnan 0
0 tnbn

]

=

[ ∑∞
n=0

tnan

n! 0

0
∑∞

n=0
tnbn

n!

]
=

[
eta 0
0 etb

]
.

Define fa(x) = eax and gb(x) = ebx . Applying the classical mean value theorem on fa and gb , we have

fa(β)− fa(α) = (β − α)f́a(ca) and gb(β)− gb(α) = (β − α)ǵb(cb), where ca and cb are two elements in (α, β).

It means that eβa − eαa = (β − α)aecaa and eβb − eαb = (β − α)becbb . Therefore,

eβA − eαA =

[
eβa − eαa 0

0 eβb − eαb

]
=

[
(β − α)aecaa 0

0 (β − α)becbb

]
. (∗)

Now we define the function h : M2(R) → M2(R) as follows:

h(

[
a 0
0 b

]
) =

[
ca 0
0 cb

]
.
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Thus,

(β − α)AeAh(A) = (β − α)

[
a 0
0 b

]
e
(

 a 0
0 b

 ca 0
0 cb

)

= (β − α)

[
a 0
0 b

]
e

 aca 0
0 bcb



= (β − α)

[
a 0
0 b

] [
eaca 0
0 ebcb

]

= (β − α)

[
aeaca 0
0 bebcb

]

=

[
(β − α)aecaa 0

0 (β − α)bebcb

]
. (∗∗)

Comparing (*) and (**), we conclude that

eβA − eαA = (β − α)AeAh(A).

It means that A has the mean value property (or MV-property).

Next we will present a UMV-Banach algebra. Let E be a Banach algebra. The annihilator of E is denoted by

ann(E), and ann(E) = {b ∈ E | Eb = {0} = bE}. Let A be a unital Banach algebra. Set

B =

[
R A
A R

]
=

{[
r a
b s

]
: a, b ∈ A and r, s ∈ R

}
.

We should consider B as a Banach algebra with point-wise addition, scalar multiplication, product, and norm,

which are defined as follows.[
r a
b s

]
•

[
t c
d u

]
=

[
rt ac
bd su

]
and ∥

[
r a
b s

]
∥ = |r|+ |s|+ ∥a∥+ ∥b∥ .

It is well known that the ann(A) is a closed bi-ideal of A . Hence,

D =

{[
r a
b r

]
: a, b ∈ ann(A) and r ∈ R

}

is a Banach subalgebra of B . Clearly, if X =

[
r a
b r

]
then Xn =

[
rn 0
0 rn

]
for all natural number

n ≥ 2. Suppose that [α, β] ⊂ R . Then
∑∞

n=1
(βX)n

n! =

[ ∑∞
n=1

(βr)n

n! βa

βb
∑∞

n=1
(βr)n

n!

]
=

[
eβr − 1 βa

βb eβr − 1

]
.

Similarly,
∑∞

n=1
(αX)n

n! =

[
eαr − 1 αa

αb eαr − 1

]
. According to the classical mean value theorem, there exists an

element c ∈ (α, β) such that

eβr − eαr = (β − α)recr.
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Hence, we have

∞∑
n=1

(βX)n

n!
−

∞∑
n=1

(αX)n

n!
=

[
eβr − eαr (β − α)a
(β − α)b eβr − eαr

]

=

[
(β − α)recr (β − α)a
(β − α)b (β − α)recr

]
= (β − α)

[
recr a
b recr

]
.

At this point, we show that (β − α)
∑∞

n=1
cn−1Xn

(n−1)! = (β − α)

[
recr a
b recr

]
. Note that

(β − α)
∞∑

n=1

cn−1Xn

(n− 1)!
= (β − α)(

[
r a
b r

]
+

[
cr2 0
0 cr2

]
+

[
c2r3

2! 0

0 c2r3

2!

]
+ ...)

= (β − α)

[
r + cr2 + c2r3

2! + ... a

b r + cr2 + c2r3

2! + ...

]

= (β − α)

[
recr a
b recr

]
.

Thus, every element of D has the mean value property and it means that D is a UMV-Banach algebra.

In the following proposition, we characterize the unital Banach algebras for which the resolvent function

Ra(z) = (z1− a)−1 satisfies the classical mean value theorem for real numbers.

Proposition 2.3 Let a be an element of the unital Banach algebra A such that the resolvent function

Ra(z) = (z1− a)−1 has the following property:

Ra(β)−Ra(α) = (β − α)R
′

a(c)

for some c ∈ (α, β) ⊂ R . Then there exists a real number t0 such that a = t01 .

Proof It is evident that the derivative of resolvent function Ra at point z0 ∈ C−S(a) is

R
′

a(z0) = −(z01− a)−2.

By hypothesis, there exists an element c in open interval (α, β ) such that

(β1− a)−1 − (α1− a)−1 = (β − α)R
′

a(c),

and it means that

(β1− a)−1 − (α1− a)−1 = −(β − α)(c1− a)−2.

This equation with the fact that A−1 −B−1 = A−1(B −A)B−1 implies that

(β1− a)−1(α− β)(α1− a)−1 = (α− β)(c1− a)−2.
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This equation together with the fact that (AB)−1 = B−1A−1 implies that

((α1− a)(β1− a))−1 = ((c1− a)2)−1.

Hence,

αβ1− αa− βa+ a2 = c21− 2ca+ a2.

Consequently,

a =
αβ − c2

α+ β − 2c
1.

2

Theorem 2.4 Let A be a unital domain and δ be a derivation on A . Furthermore, assume that a is an

element of A with the UMV-property satisfying ec0,1aδ(a) = δ(a)ec0,1a , where c0,1 ∈ (0, 1) ⊂ R is obtained from

UMV-property for a. If δ(ea) = eaδ(a) and δ(ec0,1a) = c0,1e
c0,1aδ(a) , then δ(a) = 0 .

Proof If a = 0, then there is nothing to be proved. Let a be a nonzero element of A with the UMV-property.

Hence, there exists an element c0,1 = c of (0,1) such that

ea − 1 = aeca. (2.2)

By assumption, δ(eca) = cecaδ(a); therefore, we have eaδ(a) − δ(1) = δ(a)eca + a(cecaδ(a)). This equality

together with the fact that ecaδ(a) = δ(a)eca implies that

(ea − eca − caeca)δ(a) = 0.

Using the fact that A is a domain, we conclude that either δ(a) = 0 or ea − caeca − eca = 0. We will show

that if ea − caeca − eca = 0, then δ(a) = 0. Reusing the UMV-property for a on the closed interval [c, 1], we

obtain an element cc,1 = c1 in (c, 1) such that

ea − eca = (1− c)aec1a.

Thus,

ea − eca − aec1a + caec1a = 0. (2.3)

The previous equation together with the fact that ea − eca = caeca implies that

caeca − aec1a + caec1a = 0. (2.4)

Replacing c1 by c+ h in (2.4), we get

caeca − ae(c+h)a + cae(c+h)a = 0,

and hence,

aeca[c1− eha + ceha] = 0.
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Since A is a domain and aeca is nonzero, c1 − eha + ceha = 0. Hence, we have eha = c
1−c1. Based on the

spectral mapping theorem, it is achieved that S(eha) = eS(ha) . First note that S(eha) = S( c
1−c1) = { c

1−c} .
So,

{ c

1− c
} = S(eha) = ehS(a). (2.5)

If λ is an arbitrary element of S(a), then the previous relation implies that ehλ = c
1−c ∈ R and it shows that

λ is a real number. Since λ was arbitrary, S(a) ⊂ R . Suppose that β1 , β2 ∈ S(a). It follows from (2.5) that

ehβ1 = c
1−c = ehβ2 and consequently, β1 = β2 . It means that S(a) contains only one element such as β ∈ R .

Thus, S(ha) = hS(a) = {hβ} . Additionally, it follows from (2.5) that c
1−c = ehβ and thus, eha = ehβ1 . It is

clear that S(ha) is contained in the open strip: −π < Im(λ) < π . So, by Proposition 2.10 of [21], we obtain

that log(exp(ha)) = ha , i.e. log(eha) = ha . We know that eha = ehβ1 . Therefore,

ha = log(eha) = log(ehβ1) = hβ1.

This equation demonstrates that a = β1 and consequently, δ(a) = 0. 2

An immediate but noteworthy corollary to Theorem 2.4 is:

Corollary 2.5 Let the UMV-Banach algebra A be a unital domain and δ : A → A be a derivation. If

aδ(a) = δ(a)a for all a ∈ A , then the following assertions are equivalent:

(i) δ is continuous;

(ii) δ(ea) = eaδ(a) for all a ∈ A ;

(iii) δ is identically zero.

Proof (i) ⇒ (ii) and (iii) ⇒ (i) are clear. According to Theorem 2.4, (iii) is an immediate conclusion from

(ii). 2

In the next results, like most authors, we denote the commutator ab− ba by [a, b] for all pairs a, b ∈ A .

Corollary 2.6 Let A be a unital domain and a be an element of A with the UMV-property satisfying

ec0,1a[a, x] = [a, x]ec0,1a for some x ∈ A and for c0,1 ∈ (0, 1) , which is obtained from the UMV-property

for a. If [ea, x] = ea[a, x] and [ec0,1a, x] = c0,1e
c0,1a[a, x] , then [a, x] = 0 .

Proof Define δx : A → A by δx(a) = [a, x] . Obviously, δx is a continuous derivation. At this point, Theorem

2.4 is just what we need to complete the proof. 2

If δ is a continuous derivation on A such that aδ(a) = δ(a)a for all a ∈ A , then a straightforward

verification shows that δ(ea) = eaδ(a). In Corollary 2.5, under certain circumstances, the converse of this result

has been investigated. This allows us to offer the following problem.

Problem 2.7 Let δ : A → A be a derivation such that δ(ea) = eaδ(a) for all a ∈ A . Is δ a continuous

operator?

Theorem 2.8 Let A be a unital domain and δ : A → A be a derivation such that aδ(a) = δ(a)a and

δ(ea) = eaδ(a) for all a ∈ A . If there exists a continuous, injective linear mapping from A into R , then δ is

identically zero.
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Proof Let a be a nonzero fixed element of A . We define a function fa : [α, β] ⊂ R → A by fa(t) = eta . It

is well known that fa is continuous on [α, β] and is differentiable on (α, β). Let F : A → R be a continuous,

injective linear mapping. Put H = Fofa to get a function from [α, β] into R . Let x0 be an arbitrary element

of [α, β] , and then limx→x0 H(x) = limx→x0(Fofa)(x) = F (limx→x0 fa(x)) = H(x0). It means that H is

continuous. Moreover, we have

H
′
(x0) = lim

x→x0

H(x)−H(x0)

x− x0

= lim
x→x0

F (fa(x))− F (fa(x0))

x− x0

= F ( lim
x→x0

fa(x)− fa(x0)

x− x0
)

= (Fof
′

a)(x0),

for all x0 ∈ (α, β). It means that H is differentiable on (α, β). Since H = Fofa is continuous on [α, β] and

differentiable on (α, β), the classical mean value theorem ensures that there is an element cα,β ∈ (α, β) such

that H(β) − H(α) = (β − α)H
′
(cα,β), i.e. F (fa(β) − fa(α) − (β − α)f

′

a(cα,β)) = 0. Since F is injective,

fa(β) − fa(α) = (β − α)f
′

a(cα,β). So, we have eβa − eαa = (β − α)aecα,βa . It means that a has the UMV-

property and since a was arbitrary, A is a UMV-Banach algebra. Finally, Corollary 2.5 completes the proof. 2

In the following two theorems, we present some results on the range of a derivation.

Theorem 2.9 Let δ : A → A be a Jordan derivation and P be a primitive ideal of A . If [a, δ(a)] ∈ P for all

a ∈ A and δ(P) ⊆ P , then δ(A) ⊆ P .

Proof Let us define ∆ : A
P → A

P by ∆(a + P) = δ(a) + P . One can easily show that ∆ is a Jordan

derivation. By Proposition 1.4.34 (ii) of [6], P is closed and so A
P is a semisimple Banach algebra. Note that

every Jordan derivation on a semisimple Banach algebra is an ordinary derivation (see Corollary 5 of [2]). So,

∆ is a derivation. Since [∆(x), x] = 0 for all x ∈ A
P is equivalent to [∆(x), y] = 0 for all x, y ∈ A

P by [[13],

Proposition 2], we see that ∆ is a left derivation on semisimple Banach algebra A
P . The proof is completed by

Corollary 3.7 of [11]. 2

Theorem 2.10 Suppose that A is a unital, commutative UMV-Banach algebra, and δ : A → A is a continuous

derivation. Then δ(A) ⊆ P , where P is an arbitrary minimal prime closed ideal of A .

Proof We know that minimal prime closed ideals in commutative algebras are invariant under derivations (see

[17]). Clearly, A
P is a UMV-Banach algebra and further, it is an integral domain. A linear mapping ∆ : A

P → A
P

defined by ∆(a+P) = δ(a)+P is a continuous derivation, and it follows from Corollary 2.5 that ∆ is identically

zero. It implies that δ(a) ∈ P for all a ∈ A , and consequently, δ(A) ⊆ P . 2

In the next theorem, we will add another statement to the equivalent assertions below, which have been

stated in [17].

Theorem 2.11 The following statements are equivalent:

(i) Every derivation on a UMV-Banach algebra has a nilpotent separating ideal;
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(ii) Every derivation on a semiprime UMV-Banach algebra is continuous;

(iii) Every derivation on a prime UMV-Banach algebra is continuous;

(iv) Every derivation on an integral domain UMV-Banach algebra is continuous;

(v) Every derivation on an integral domain UMV-Banach algebra is identically zero.

Conjecture 2.12 Let A be a unital Banach algebra and a be an element of A with the UMV-property. Then

S(a) ⊂ R . It seems that the same is also true for the MV-property.
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