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1. Introduction

The concept of Morrey space was introduced by Morrey in 1938. Since then, various problems related to this

space have been intensively studied. Playing an important role in the qualitative theory of elliptic differential

equations (see, for example, [10, 13]), this space also provides a large class of examples of mild solutions to the

Navier–Stokes system [9]. In the context of fluid dynamics, Morrey spaces have been used to model fluid flow

when vorticity is a singular measure supported on certain sets in Rn [4]. There appeared lately a large number

of research works that considered fundamental problems of the theory of differential equations, potential theory,

maximal and singular operator theory, approximation theory, etc. in these spaces (see, for example, [3] and the

references above). More details about Morrey spaces can be found in [11,14].

In view of the aforesaid, there has recently been a growing interest in the study of various problems

in Morrey-type spaces. For example, some problems of harmonic analysis and approximation theory were

considered in [1,5–8,12].

In this work, we consider the Riemann boundary value problem in Morrey-type Hardy spaces. We study

the solvability of this problem and construct a general solution for both homogeneous and nonhomogeneous

problems under some conditions on the coefficient of the problem.

Note that in [1] we treated the Morrey–Hardy and Morrey–Lebesgue classes. We defined the subspaces

of these spaces where the shift operator was continuous.

2. Necessary information

In obtaining the main results we will use the following notation. The expression f (x) ∼ g (x), x ∈ M , means

∃δ > 0 : δ ≤
∣∣∣∣f (x)

g (x)

∣∣∣∣ ≤ δ−1, ∀x ∈ M.
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A similar meaning will be attached to the expression f (x) ∼ g (x), x → a .

We will also need some facts about the theory of Morrey-type spaces. Let Γ be some rectifiable Jordan

curve on the complex plane C . By |M |Γ we denote the linear Lebesgue measure of the set M ⊂ Γ.

By the Morrey-Lebesgue space Mp,α (Γ), 0 ≤ α ≤ 1, p ≥ 1, we mean a normed space of all functions

f ( · ) measurable on Γ equipped with a finite norm ∥ · ∥Mp,α(Γ) :

∥f∥Mp,α(Γ) = sup
B

(∣∣∣B∩Γ
∣∣∣α−1

Γ

∫
B

∩
Γ

|f (ξ)|p |dξ|

)1/p

< +∞.

Mp,α (Γ) is a Banach space and Mp,1 (Γ) = Lp (Γ), M
p,0 (Γ) = L∞ (Γ). The weighted version of the Morrey–

Lebesgue space Mp,α
µ (Γ) on Γ with a weight function µ ( · ) and a norm ∥ · ∥Mp,α

µ (Γ) can be defined in a natural

way:

∥f∥Mp,α
µ (Γ) = ∥fµ∥Mp,α(Γ) , f ∈ Mp,α

µ (Γ) .

The embedding Mp,α1 (Γ) ⊂ Mp,α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus, Mp,α (Γ) ⊂ L1 (Γ), ∀α ∈ [0, 1],

∀p ≥ 1. The case of Γ ≡ [−π, π] will be denoted by Mp,α (−π, π) ≡ Mp,α , and the norm ∥ · ∥Mp,α by ∥ · ∥p,α ,

respectively.

By SΓ we denote the following singular integral operator:

(SΓf) (τ) =
1

2πi

∫
Γ

f (ζ) dζ

ζ − τ
, τ ∈ Γ.

The unit circle centered at z = 0 will be denoted by γ with int γ = ω . Define the Morrey–Hardy space

Hp,α
+ of functions f ( · ) analytic inside ω with a norm ∥ · ∥Hp,α

+
:

∥f∥Hp,α
+

= sup
0<r<1

∥∥f (reit)∥∥
p,α

.

The following theorem was proved in [1].

Theorem 1. Function f (·) belongs to Hp,α
+ only when ∃f+ ∈ Mp,α :

f (z) =
1

2πi

∫
γ

f+ (τ) dτ

τ − z
.

The analog of the Smirnov theorem in Morrey–Hardy classes is also true.

Theorem 2. Let f ∈ Hp1,α
+ , 1 ≤ p1 < +∞ , 0 ≤ α ≤ 1 , and f+ ∈ Mp2,α , where p1 < p2 < +∞ , f+ are

nontangential boundary values of the function f on γ . Then f ∈ Hp2,α
+ .

Denote by M̃p,α the linear subspace of Mp,α consisting of functions whose shifts are continuous in

Mp,α , i.e. ∥f (· + δ)− f ( · )∥p,α → 0 as δ → 0. The closure of M̃p,α in Mp,α will be denoted by MCp,α . In

[1] we proved the following:

Theorem 3. Infinitely differentiable functions on [0, 2π] are dense in the space MCp,α .

Consider the following singular operator:
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(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Using the results of [5,7,12], it is easy to prove the following:

Theorem 4. The singular operator S acts boundedly in L̄p,α (γ) when 0 < α ≤ 1 and 1 < p < +∞ .

The following theorem can also be proved.

Theorem 5. Let f ∈ MCp,α , 0 < α ≤ 1 , 1 < p < +∞ . Then

∥∥(Kf) (rξ)− f+ (ξ)
∥∥
p,α

→ 0, r → 1− 0,

where (Kf) (z) is a Cauchy-type integral:

(Kf) (z) =
1

2πi

∫
γ

f (ξ) dξ

ξ − z
, z /∈ γ.

A similar assertion is also true for f− (ξ) as r → 1 + 0.

Consider the space Hp,α
+ . Denote by Mp,α

+ the subspace of Mp,α , generated by the restrictions of the

functions from Hp,α
+ to γ . It follows directly from the above results that the spaces Hp,α

+ and Mp,α
+ are

isomorphic and f+ (τ) = (Jf) (z), where f ∈ Hp,α
+ , f+ are the nontangential boundary values of f on γ , and

J performs a corresponding isomorphism. Let MCp,α
+ = MCp,α

∩
Mp,α

+ . It is clear that MCp,α
+ is a subspace

of MCp,α with regard to the norm ∥ · ∥Mp,α . Let H̄p,α
+ = J−1

(
MCp,α

+

)
. This is a subspace of Hp,α

+ . Let

f ∈ Hp,α
+ and f+ be its boundary values. It is absolutely clear that the norm ∥f∥Hp,α

+
can also be defined as

∥f∥Hp,α
+

= ∥f+∥p,α .

Similar to the classical case, we define the Morrey–Hardy class outside ω . Let D− = C\ω̄ , where

ω̄ = ω
∪

γ , C - complex plane. We will say that the function f analytic in D− has finite order k at infinity if

its Laurent series in a neighborhood of the point at infinity has the following form:

f (z) =
k∑

n=−∞
anz

n, k < +∞, ak ̸= 0. (1)

Thus, when k > 0, the function f (z) has a pole of order k ; when k = 0, it is bounded; and when k < 0, it

has a zero of order (−k). Let f (z) = f0 (z) + f1 (z), where f0 (z) is the main and f1 (z) is the regular part

of expansion (1) for the function f (z). Consequently, if k ≤ 0, then f0 (z) ≡ 0. When k > 0, f0 (z) is a

polynomial of degree k . We will say that the function f (z) belongs to the class mHp,α
− if f has an order at

infinity less than or equal to m , i.e. k ≤ m and f1
(
1
z

)
∈ Hp,α

+ .

Absolutely similar to the case of H̄p,α
+ , we define the class mH̄p,α

− . In other words, mH̄p,α
− is a subspace

of functions from mHp,α
− , whose shifts on a unit circle are continuous with regard to the norm ∥ · ∥p,α(γ) .

When studying the nonhomogeneous Riemann boundary value problem, we will essentially use the

following:
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Lemma 1. Let f ( · ) ∈ L∞ ; g ( · ) ∈ MCp,α ∧1 ≤ p < +∞ , 0 < α ≤ 1 . Then the inclusion f ( · ) g ( · ) ∈
MCp,α is valid.

Proof For α = 1, the assertion of lemma is obvious. Let 0 < α < 1. Consider

∆δ = ∥f ( · + δ) g ( · + δ)− f ( · ) g ( · )∥p,α .

Take ∀ε > 0. As g ( · ) ∈ MCp,α , ∃φ ( · ) ∈ C [−π, π] :

∥g ( · )− φ ( · )∥p,α <
ε

m
.

We have

∆δ = ∥f ( · + δ) [g ( · + δ)− φ ( · + δ) + φ ( · + δ)]−

−f ( · ) [g ( · )− φ ( · ) + φ ( · )]∥p,α ≤

≤ cf ∥g ( · + δ)− φ ( · + δ)∥p,α + ∥f ( · + δ)φ ( · + δ)−

−f ( · )φ ( · )∥p,α + cf ∥g ( · )− φ ( · )∥p,α ,

where cf = ∥f ( · )∥L∞
. It is not difficult to see that

∥g ( · + δ)− φ ( · + δ)∥p,α = ∥g ( · )− φ ( · )∥p,α <
ε

m
,∀δ ∈ R.

Then the previous inequality implies

∆δ ≤ 2cf
m

ε+ ∥f ( · + δ)φ ( · + δ)− f ( · )φ ( · )∥p,α .

Thus, it suffices to prove that for φ ( · ) ∈ C [−π, π] the following is true:

lim
δ→0

∥f ( · + δ)φ ( · + δ)− f ( · )φ ( · )∥p,α = 0.

Let Iπ = I
∩
[−π, π] . We have

∥f ( · + δ)φ ( · + δ)− f ( · )φ ( · )∥p,α ≤ ∥f ( · + δ)φ ( · + δ)− f ( ·+ δ )φ ( · )∥p,α +

+ ∥f ( · + δ)φ ( · )− f ( · )φ ( · )∥p,α

≤ cf ∥φ ( · + δ)− φ ( · )∥p,α + ∥(f ( · + δ)− f ( · ))φ ( · )∥p,α .

It is absolutely clear that lim
δ→0

∥φ ( · + δ)− φ ( · )∥p,α = 0. Therefore, ∃δ1 > 0:

∥φ ( · + δ)− φ ( · )∥p,α <
ε

m
, ∀δ : |δ| < δ1.

Hence, we get
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∆δ ≤ 3cf
m

ε+∆δ (φ) , ∀δ ∈ (−δ1, δ1) ,

where

∆δ (φ) = ∥(f ( · + δ)− f ( · ))φ ( · )∥p,α .

Let ν > 0 be an arbitrary number. We have ∆δ (φ) = max
{
∆

(1)
δ (ν) ;∆

(2)
δ (ν)

}
, where

∆
(1)
δ (ν) = sup

I:|Iπ|≥ν

(
|Iπ|α−1

∫
Iπ

|(f (t+ δ)− f (t))φ (t)|p dt
)1/p

,

∆
(2)
δ (ν) = sup

I:|Iπ|≤ν

(
|Iπ|α−1

∫
Iπ

|(f (t+ δ)− f (t))φ (t)|p dt
)1/p

.

Regarding ∆
(1)
δ (ν), we have

∆
(1)
δ (ν) ≤ ν

α−1
p sup

I:|Iπ|≥ν

(∫
Iπ

|(f (t+ δ)− f (t))φ (t)|p dt
)1/p

≤

≤ ν
α−1
p

(∫ π

−π

|(f (t+ δ)− f (t))φ (t)|p dt
)1/p

≤ cφν
α−1
p ∥f ( ·+ δ)− f ( · )∥p ,

where cφ = ∥φ ( · )∥L∞
and ∥f∥p =

(∫ π

−π
|f |p dt

)1/p
. As

lim
δ→0

∥f ( ·+ δ)− f ( · )∥p = 0,

it is clear that ∃δ2 > 0:

∥f ( ·+ δ)− f ( · )∥p < ν
1
p , ∀δ ∈ (−δ2, δ2) .

Regarding ∆
(2)
δ (ν), we have

∆
(2)
δ (ν) ≤ 2cfcφ sup

I:|Iπ|≤ν

(
|Iπ|α−1

∫
Iπ

1dt

)1/p

≤ 2cfcφν
α
p .

Let cfφ = max {cφ; 2cfcφ} . Hence, we get ∆δ (φ) ≤ cfφν
α
p .

It should be noted that the constant cfφ does not depend on ν . Now let us take ν : ν <
(

ε
cfφm

) p
α

.

Consequently, ∆δ (φ) ≤ ε
m . Hence, we get

∆δ (φ) ≤
3cf
m

ε+
ε

m
=

3cf + 1

m
ε,∀δ ∈ (−δ3, δ3) ,

where δ3 = min {δ1; δ2} . Taking m = 3cf + 1, we have ∆δ ≤ ε , ∀δ ∈ (−δ3, δ3), i.e. ∆δ → 0, δ → 0. The

lemma is proved.
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We will also use the following concepts. Let Γ ⊂ C be some bounded rectifiable curve and t = t (σ) , 0 ≤
σ ≤ l be its parametric representation with respect to the length of arc σ , where l is the length of Γ. Let

dµ (t) = dσ , i.e. µ ( · ) is a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).

Definition 1. Curve Γ is called a Carleson curve if ∃ c > 0 :

sup
t∈Γ

µ (Γt (r)) ≤ cr, ∀r > 0.

Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ, if there exists a constant

m > 0, independent of t , such that

|s− s0| ≤ m |t (s)− t (s0)| ,∀t (s) ∈ Γ.

Γ satisfies the chord-arc condition uniformly on Γ if

∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)| , ∀t (s) , t (σ) ∈ Γ.

Let us state the following lemma from [12], which is interesting in itself.

Lemma 2 [12]. Let Γ be a bounded rectifiable curve. If the exponential function |t− t0|γ , t0 ∈ Γ , belongs to

the space Mp,α (Γ) , 1 ≤ p < ∞ , 0 < α < 1 , then γ ≥ −α
p . If Γ is a Carleson curve, then this condition is

also sufficient.

We will essentially use the following theorem of Samko [12].

Theorem 6 [12]. Let the curve Γ satisfy the chord-arc condition and the weight ρ ( · ) be defined as follows:

ρ (t) =

m∏
k=1

|t− tk|αk ; {tk}m1 ⊂ Γ, ti ̸= tj , i ̸= j. (2)

Singular operator SΓ is bounded in the weighted space Mp,α
ρ (Γ) , 1 < p < +∞ , 0 ≤ α < 1 , if the following

inequalities are valid:

−α

p
< αk < −α

p
+ 1, k = 1,m. (3)

Moreover, if Γ is smooth in some neighborhoods of the points tk , k = 1,m , then the validity of the inequalities

(3) is necessary for the boundedness of SΓ in Mp,α
ρ (Γ) .

In what follows, as Γ we will consider a unit circle γ = ∂ω . Consider the weighted space Mp,α
ρ (γ) =:

Mp,α
ρ with the weight ρ ( · ). Let the weight ρ ( · ) satisfy the condition (3). Then, by Theorem 6, the operator

S is bounded in Mp,α
ρ , i.e. ∃ c > 0:

∥Sf∥Mp,α
ρ

≤ C ∥f∥Mp,α
ρ

, ∀f ∈ Mp,α
ρ .
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Let us show that MCp,α
ρ is an invariant subspace with respect to the singular operator S if the inequalities

(3) are fulfilled. It is absolutely clear that to do so it suffices to prove the continuity of the shift of S . Take

∀δ ∈ R and consider

(Sf)
(
τeiδ

)
=

1

2πi

∫
γ

f (ξ) dξ

ξ − τeiδ
.

We have

(Sf)
(
eiδτ

)
=

1

2πi

∫
γ

f
(
e−iδξeiδ

)
d
(
e−iδξ

)
ξeiδ − τ

=

=
1

2πi

∫
γ

f
(
ξeiδ

)
d (ξ)

ξ − τ
.

It follows that

(Sf)
(
eiδτ

)
− (Sf) (τ) =

1

2πi

∫
γ

f
(
ξeiδ

)
− f (ξ)

ξ − τ
dξ =

=
(
S
(
f
(
· eiδ

)
− f ( · )

))
(τ) .

Let f ∈ MCp,α
ρ . Then Theorem 8 of [12] immediately implies

∥∥(Sf) (τeiδ)− (Sf) (τ)
∥∥
MCp,α

ρ
=
∥∥(S (f ( · eiδ)− f ( · )

))
(τ)
∥∥
MCp,α

ρ
≤

≤ C
∥∥f ( · eiδ)− f ( · )

∥∥
MCp,α

ρ
→ 0, δ → 0.

Thus, the following theorem is valid.

Theorem 7. Let the weight function ρ ( · ) be defined by (2) with Γ ≡ γ . If the inequalities (3) are fulfilled,

then the singular operator S acts boundedly in M !p,αρ .

Let I be some interval and f ∈ Mp,α (I), g ∈ Mq,α (I); hereinafter 1
p + 1

q = 1. We have

∫
I

|fg| dt ≤ |I|1−α
sup

x∈I,r>0
rα−1

∫
Ir(x)

|fg| dt = |I|1−α ∥fg∥1,α ,

where |I| is a Lebesgue measure of I , Ir (x) ≡ I
∩
(x− r, x+ r). Applying Hölder’s inequality, we obtain

∫
I

|fg| dt ≤ |I|1−α
sup

x∈I,r>0

(
rα−1

∫
Ir(x)

|f |p dt

) 1
p

×

×

(
rα−1

∫
Ir(x)

|g|q dt

) 1
q

≤ |I|1−α
sup

x∈I,r>0

(
rα−1

∫
Ir(x)

|f |p dt

) 1
p

×
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× sup
x∈I,r>0

(
rα−1

∫
Ir(x)

|g|q dt

) 1
q

= |I|1−α ∥f∥p,α ∥g∥q,α .

Thus, the following lemma is valid.

Lemma 3. Let f ∈ Mp,α (I) ∧ g ∈ Mq,α (I) , 1p + 1
q = 1 , p ∈ [1, +∞) . Then the following Hölder inequality

holds:

∥fg∥L1
≤ |I|1−α ∥fg∥1,α ≤ |I|1−α ∥f∥p,α ∥g∥q,α .

In the sequel, we will often use the following obvious lemma.

Lemma 4. Let |f (t)| ≤ |g (t)| for almost every t ∈ [−π, π] . Then ∥f∥Mp,α
ρ

≤ ∥g∥Mp,α
ρ

.

To obtain our main result, we will also use the following lemma that follows directly from Lemma 2 of

[12].

Lemma 5. Let {tk}m1 ⊂ [−π, π] . The finite product ω (t) =
∏m

k=1 |t− tk|αk belongs to the space Mp,α if the

inequalities αk ≥ −α
p , ∀k , are valid, where 0 < α < 1 , 1 < p < +∞ .

3. The homogeneous Riemann problem in Morrey–Hardy classes

Let us consider the following homogeneous Riemann problem in classes
(
Hp,α

+ ; mHp,α
−
)
:

 F+ (τ)−G (τ)F− (τ) = 0 , τ ∈ γ,

F+ (z) ∈ Hp,α
+ ; F− (z) ∈ mHp,α

− ,
(4)

where

G
(
eit
)
=
∣∣G (eit)∣∣ eiθ(t), θ (t) = argG

(
eit
)
, t ∈ [−π, π) .

We will treat the problem (4) with the help of the method developed by Daniluk in [2]. Introduce the following

functions X±
i (z) analytic inside (with the sign +) and outside (with the sign -) the unit circle:

X1 (z) ≡ exp

{
1

4π

∫ π

−π

ln
∣∣G (eit)∣∣ eit + z

eit − z
dt

}
,

X2 (z) ≡ exp

{
i

4π

∫ π

−π

θ (t)
eit + z

eit − z
dt

}
.

Define

Zi (z) ≡
{

Xi (z) , |z| < 1 ,

[Xi (z)]
−1

, |z| > 1 .

Sokhotski–Plemelj formulas yield
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∣∣G (eit)∣∣ = Z+
1

(
eit
)

Z−
1 (eit)

, eiθ(t) =
Z+
2

(
eit
)

Z−
2 (eit)

.

Denoting Z (z) ≡ Z1 (z)Z2 (z), we have

Z+ (τ)−G (τ)Z− (τ) = 0, τ ∈ γ. (5)

Following the classics, we call the function Z (z) a canonical solution of the problem (4).

Substituting G (τ) from (5) in (4), we get

F+ (τ)

Z+ (τ)
=

F− (τ)

Z− (τ)
, τ ∈ γ.

Put

Φ (z) ≡ F (z)

Z (z)
,

and let

Φ (z) ≡
{

Φ+ (z) , |z| < 1 ,
Φ− (z) , |z| > 1 .

It is not difficult to see that the function Z (z) has neither a zero nor a pole if z /∈ γ . Therefore, the functions

Φ (z) and F (z) have the same order at infinity. The results of [2] immediately imply that the function Φ (z)

belongs to the Hardy class H±
δ for sufficiently small δ > 0. Let us show that Φ (z) ∈ H±

1 . To do so, it suffices

to prove that Φ± (τ) ∈ L1 (γ). The rest will immediately follow from the Smirnov theorem.

The relation F− ∈ mHp,α
− , true by the definition of the solution, immediately implies F− ∈ Mp,α .

Therefore, by Lemma 2, to prove the validity of the inclusion Φ− ∈ L1 it suffices to show that [Z− (τ)]
−1 ∈

Mq,α .

In the sequel, we will assume that the function θ ( · ) is of bounded variation and has a representation

θ (t) = θ0 (t) + θ1 (t), where θ0 ( · ) is a continuous part of θ ( · ) in [−π, π] , and θ1 ( · ) is a jump function

θ1 (−π) = 0, θ1 (s) =
∑

sk:−π<sk<s

hk,

where hk = θ (sk + 0)− θ (sk − 0) , k = 1, r−are the jumps of the function θ ( · ) at the points of discontinuity

{sk}r1 : −π < s1 < ... < sr < π . Let

h0 = θ (−π)− θ (π) , h
(0)
0 = θ (π)− θ (−π) ,

and

u0 (t) ≡
{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−h
(0)
0
2π

exp

{
− 1

4π

∫ π

−π

θ0 (τ) ctg
t− τ

2
dτ

}
.

1093



BILALOV et al./Turk J Math

Denote

u (t) =

r∏
k=1

{
sin

∣∣∣∣ t− sk
2

∣∣∣∣}
hk
2π

.

According to the results of [2],
∣∣Z−

2 (τ)
∣∣ is expressed by the formula

∣∣Z−
2

(
eit
)∣∣ = u0 (t)u

−1 (t)

{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−h0
2π

.

The Sokhotski–Plemelj formula directly implies that

sup vrai
(−π,π)

{ ∣∣Z−
1

(
eit
)∣∣±1

}
< +∞.

Thus, we have the following representation for
∣∣Z− (eit)∣∣−1

:

∣∣Z− (eit)∣∣−1
=
∣∣Z−

1

(
eit
)∣∣−1 |u0 (t)|−1 |u (t)|

{
sin

∣∣∣∣ t− π

2

∣∣∣∣}
h0
2π

. (6)

According to [2], we have

sup vrai
(−π,π)

|u0 (·)|±1
< +∞.

Applying Lemma 2 of [12] to (6) and taking into account Lemma 5, we obtain that the function
∣∣Z− (eit)∣∣−1

belongs to the space Mq,α if the following inequalities are true:

hk

2π
≥ −α

q
, k = 0, r. (7)

Thus, we obtain that if the inequalities (7) are true, then the function Φ− (eit) belongs to L1 . This follows

directly from Lemma 3. Then the uniqueness theorem of [2] (Lemma 19.1, p. 194) implies that Φ (z) is a

polynomial Pm (z) of degree k ≤ m . Hence, we have F (z) ≡ Z (z)Pm (z).

Let us show that the function F ( · ) belongs to the class Hp,α
± . To do so, it suffices to prove that Z− (eit)

belongs to Mp,α . From (6) we obtain the representation

∣∣Z− (eit)∣∣ = ∣∣Z−
1

(
eit
)∣∣ |uo (t)| |u (t)|−1

{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−h0
2π

.

Using Lemma 5 again, we obtain that the inclusion Z− ∈ Mp,α is true if and only if the following inequalities

are fulfilled:

hk

2π
≤ α

p
, k = 0, r. (8)
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Hence, we obtain that if the inequalities (7) and (8) are fulfilled, then the general solution of the homogeneous

problem (4) in classes Hp,α
+ ×mHp,α

− has the form F (z) ≡ Z (z)Pm (z), where Pm ( · ) is an arbitrary polynomial

of degree k ≤ m . Therefore, the following theorem is true.

Theorem 8. Let the coefficient G ( · ) of the problem (4) satisfy the following conditions:

i) G±1 ∈ L∞ (γ) ;

ii) θ (t) ≡ argG
(
eit
)

is piecewise continuous in [−π, π] , {sk}r1 : −π < s1 < ... < sr < π are the

points of discontinuity, hk = θ (sk + 0)−θ (sk − 0) , k = 1, r , are the corresponding jumps, h0 = θ (−π)−θ (π) .

If the inequalities

−α

q
≤ hk

2π
≤ α

p
, k = 0, r (9)

are fulfilled, then the homogeneous Riemann problem (4) has a general solution in classes Hp,α
+ × mHp,α

− of

the form F (z) ≡ Z (z)Pm (z) , where Z ( · ) is a canonical solution, and Pm ( · ) is an arbitrary polynomial of

degree k ≤ m .

This theorem has the following corollary.

Corollary 1. Let all the conditions of Theorem 8 be fulfilled. Then the homogeneous Riemann problem (4) has

only a trivial solution in classes Hp,α
+ × mHp,α

− when m ≤ −1 .

Note that in the case where the conditions i), ii) are satisfied with respect to the coefficient G ( · ),
the solution of the homogeneous problem (4) belongs to the class H̄p,α

+ × mH̄p,α
− . In fact, it follows from

the expression of the solution that it suffices to show that the boundary values of Z
±
( · ) belong to the space

MCp,α . We have Z
±
( · ) = Z±

1 ( · )× Z±
2 ( · ). As Z±

1 ∈ L∞ , it follows from Lemma 1 that it suffices to prove

the validity of inclusion Z±
2 ∈ MCp,α . Lemma 1 directly implies the validity of inclusion L∞ ⊂ M !p,α . As

θ ( · ) ∈ L∞ , applying Stokhotski–Plemelj formulas to Z2 (z), we obtain from Theorem 9 that the inclusion

Z±
2 ∈ M !p,α is valid. Thus, the following statement is true.

Statement 1. Let all the conditions of Theorem 8 be satisfied. Then the solution of the problem (4) belongs to

the class H̄p,α
+ × mH̄p,α

− .

Remark 1. It should be noted that for α → 1− 0 the inequalities (9) become

−1

q
<

hk

2π
<

1

p
, k = 0, r, (10)

which are sufficient for finding the general solution of the homogeneous Riemann problem (4) in Hardy classes

Hp
+ × mHp

− . For this case, the theory of the Riemann problem has been well developed by Daniluk [2]. We

obtain that if the inequalities (9) are true for some α ∈ (0, 1), then the general solution of the homogeneous

Riemann problem (4) in Hardy classes Hp
+× mHp

− has the form F (z) ≡ Z (z)Pm (z), where Z ( · ) is a canonical

solution, and Pm ( · ) is an arbitrary polynomial of degree k ≤ m .

On the contrary, if the inequalities (10) are true, then it is clear that there exists α ∈ (0, 1) such that

the inequalities (9) are also true. Hence, the validity of the assertion of Theorem 8 follows.
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4. The nonhomogeneous Riemann problem in Morrey–Hardy classes

In this section we consider the nonhomogeneous Riemann boundary value problem,

F+ (τ)−G (τ)F− (τ) = f (arg τ) , τ ∈ ∂ω, (11)

in Morrey–Hardy classes Hp,α
+ × mHp,α

− , α ∈ (0, 1), 1 < p < +∞ , where f ∈ Mp,α is some given function.

Let Z ( · ) be a canonical solution of a homogeneous problem corresponding to the problem (11). Consider

the integral

F1 (z) =
Z (z)

2π

∫ π

−π

[
Z+

(
eit
)]−1

Kz (t) f (t) dt (12)

with Cauchy kernel Kz (t) ≡ eit

eit−z . By Stokhotski–Plemelj formulas, from (12) we obtain

F±
1 (τ) = Z± (τ)

[
1

2π

∫ π

−π

f (t)

Z+ (eit)

eitdt

eit − z

]±
γ

=

= Z± (τ)

(
±1

2

[
Z+ (τ)

]−1
f (arg τ)−

[
Z+ (τ)

]−1
(Kρf) (τ)

)
,

where the expression [ · ]±γ means boundary values on γ from inside (sign “ + ”) and (sign “− ”) outside of

ω , respectively, and Kρ is a singular Cauchy operator

(Kρf) (τ) =
Z+ (τ)

2π

∫ π

−π

f (t)

Z+ (eit)

eitdt

eit − τ
, τ ∈ γ.

We have

F+
1 (τ)

Z+ (τ)
− F−

1 (τ)

Z− (τ)
=

f (arg τ)

Z+ (τ)
, τ ∈ γ. (13)

Taking into account the fact that Z ( · ) satisfies the homogeneous boundary condition

Z+ (τ)−G (τ)Z− (τ) = 0, τ ∈ γ,

we have

Z+ (τ)

Z− (τ)
= G (τ) for almost every τ ∈ γ.

Substituting in (13), we get

F+
1 (τ)−G (τ)F−

1 (τ) = f (arg τ) for almost every τ ∈ γ.

Thus, the boundary values F±
1 ( · ) satisfy the relation (11). Let us show that the function F1 ( · ) belongs to

the required class, i.e. the inclusion

(
F+
1 (z) ; F−

1 (z)
)
∈ Hp,α

+ × mHp,α
− ,
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is true. Acting just as in the previous section, we get

∣∣Z− (eit)∣∣ = ∣∣Z−
1

(
eit
)∣∣ |u0 (t)|

r∏
k=0

∣∣∣∣ t− sk
2

∣∣∣∣−
hk
2π

,

where

u0 (t) =

{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−h
(0)
0
2π

exp

{
− 1

4π

∫ π

−π

θ0 (ξ) ctg
t− ξ

2
dξ

}
.

It is not difficult to see that the following relation is true:∣∣Z+ (τ)
∣∣ ∼ ∣∣Z− (τ)

∣∣ , τ ∈ γ.

For F+
1 ( · ) we have

F+
1 (τ) =

1

2
f (arg τ)− (Kρf) (τ) for almost every τ ∈ γ.

It follows that the inclusion F+
1 ( · ) ∈ Mp,α is true if and only if the inclusion (Kρf) ( · ) ∈ Mp,α is true. It is

absolutely clear that

∣∣Z± (eit)∣∣ ∼ r∏
k=0

{
sin

∣∣∣∣ t− sk
2

∣∣∣∣}−hk
2π

, t ∈ [−π, π] .

We have

sin

∣∣∣∣ t− sk
2

∣∣∣∣ ∼ |t− sk| , t ∈ [−π, π] , k = 1, r.

For s0 = π the following relation is true:

sin

∣∣∣∣ t− π

2

∣∣∣∣ ∼ |t− π| |t+ π| , t ∈ [−π, π] .

Taking into account these relations, we obtain

∣∣Z± (eit)∣∣ ∼ |t− π|−
h0
2π |t+ π|−

h0
2π

r∏
k=1

|t− sk|−
hk
2π , t ∈ [−π, π] .

Put

ρ (t) =
∣∣t2 − π2

∣∣−h0
2π

r∏
k=1

|t− sk|−
hk
2π , t ∈ [−π, π] .

Let

ˆ̂
f (t) =

f (t)

ρ (t)
, t ∈ [−π, π] .
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We have an inclusion
ˆ̂
fρ = f ∈ Mp,α , i.e. we have by definition

ˆ̂
f ∈ Mp,α . Consider the following singular

operator:

(
Ŝρ

ˆ̂
f
)
(τ) =

∫ π

−π

f̂ (t) eit

eit − τ
dt, τ ∈ γ.

It is not difficult to see that the operator Kρ is bounded in Mp,α if and only if it is bounded in Mp,α
ρ . Applying

Theorem 6 of [12] to the operator Kρ , we obtain that if the inequalities

−α

p
< −hk

2π
< −α

p
+ 1, ⇔

α

p
− 1 <

hk

2π
<

α

p
, k = 0, r (14)

are true, then the singular operator Kρ acts boundedly in Mp,α . Hence, we have that if the inequalities (14)

are true, then the function F+
1 ( · ) belongs to the space Mp,α . Then it follows from Theorem 2 that F1 ∈ Hp,α

+ .

As F1 (∞) = 0, it is clear that F1 ∈ −1H
p,α
− , and consequently

(
F+
1 (z) ; F−

1 (z)
)
∈ Hp,α

+ × −1H
p,α
− . Thus, the

following statement is true.

Statement 2. Let the coefficient G ( · ) of the problem (11) satisfy the conditions i) , ii) and the inequalities

(14) be true. Then the inclusion

(
F+
1 (z) ; F−

1 (z)
)
∈ Hp,α

+ × −1H
p,α
− ,

is valid, where the particular solution F1 ( · ) is defined by (12).

Let us find the general solution of nonhomogeneous problem (11) in classes Hp,α
+ × mHp,α

− . We first

consider the case m ≥ −1. It is clear that in this case the particular solution (12) belongs to the class

Hp,α
+ × mHp,α

− . Denote by F0 ( · ) the general solution of homogeneous problem (4). Applying Theorem 8, we

obtain that if the inequalities (9) are true, then F0 ( · ) has the form F0 (z) = Z (z) Pm (z), where Z ( · ) is a

canonical solution, and Pm ( · ) is a polynomial of degree ≤ m . Comparing inequalities (9) and (14), we obtain

−α

q
≤ hk

2π
<

α

p
, k = 0, r. (15)

Now consider the case m < −1. In this case, as it follows from Corollary 1, the homogeneous problem

is only trivially solvable if the inequalities (15) are true. In this case, the nonhomogeneous problem (11) is

solvable in the class Hp,α
+ × mHp,α

− if and only if the following (−m− 1) orthogonality relations are true:

∫ π

−π

f (t)

Z+ (eit)
eiktdt = 0, k = 1,−m− 1. (16)

These relations follow directly from the Taylor series expansion for the Cauchy type integral

K (z) ≡
∫ π

−π

[
Z+

(
eit
)]−1

Kz (t) f (t) dt,
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with respect to the degrees of z in a neighborhood of the point at infinity z = ∞ :

K (z) ≡ −1

z

∫ π

−π

f (t)

Z+ (eit)

eitdt

1− eitz−1
= −

∞∑
k=1

∫ π

−π

f (t)

Z+ (eit)
eiktdtz−k.

As we have |Z− (∞)|± < +∞ , it is clear that the order of the function F1 ( · ) at infinity coincides with the

order of the Cauchy type integral K (z). It is absolutely clear that if the orthogonality conditions (16) are

true, then the nonhomogeneous problem (11) is uniquely solvable in classes Hp,α
+ × mHp,α

− . Thus, the following

theorem is true.

Theorem 9. Let the coefficient G ( · ) of the problem (11) satisfy the conditions i) , ii) and

hk = θ (sk + 0)− θ (sk − 0) , k = 1, r

be the jumps of the function θ(t) ≡ arg G(eit) at the points of discontinuity

{sk}r1 ⊂ (−π, π) ;h0 = θ (−π)− θ (π) .

Assume that the following inequalities are fulfilled:

−α

q
≤ hk

2π
<

α

p
, k = 0, r. (17)

Then the following assertions are true with regard to the solvability of nonhomogeneous problem (11) in the

class Hp,α
+ × mHp,α

− :

α) when m ≥ −1 , the problem (11) has a general solution F ( · ) of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z ( · ) is a canonical solution of the homogeneous problem (4), Pm ( · ) is an arbitrary polynomial of degree

k ≤ m , F1 ( · ) is a particular solution of the form

F1 (z) =
Z (z)

2π

∫ π

−π

f (t)

Z+ (eit)
Kz (t) dt, (18)

Kz ( · ) is a Cauchy kernel, and f ∈ Mp,α is an arbitrary function;

β) when m < −1 , the problem (11) is solvable if and only if the orthogonality conditions

∫ π

−π

f (t)

Z+ (eit)
eiktdt = 0, k = 1,−m− 1, (19)

are true, and F (z) ≡ F1 (z) - is a unique solution of this problem.

This theorem has the following corollary.

Corollary 2. Let all the conditions of Theorem 9 be fulfilled. Then the nonhomogeneous problem (11) with

arbitrary f ∈ Lp,α has a unique solution F1 ( · ) in the class Hp,α
+ × −1H

p,α
− , which can be represented in the

form of a Cauchy-type integral (18).
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Let us consider the case where the right-hand side of the problem (11) belongs to the space Lp,α . It

follows directly from Theorem 9 that the boundary values F±
1 ( · ) of the function F1 (z) defined by (12) also

belong to MCp,α if the inequalities (3) are true. Then the condition i) and Lemma 1 imply that the product

G ( · )F−
1 ( · ) belongs to MCp,α . Consequently, similar to the proof of Theorem 9, we get the validity of the

following theorem.

Theorem 10. Let all the conditions of Theorem 9 be fulfilled. Then the following assertions are true with

regard to the solvability of the problem (11) with a right-hand side f ( · ) ∈MCp,α in the class Hp,α
+ × mHp,α

− :

α) when m ≥ −1 , the problem (11) has a general solution F ( · ) of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z ( · ) is a canonical solution, Pm ( · ) is a polynomial of degree ≤ m , and F1 ( · ) is a particular solution

of the form (18);

β) when m < −1 , the problem (11) is solvable if and only if the orthogonality conditions (19) are true.

Remark 2. Again it should be noted that for α → 1− 0 the inequalities (17) become

−1

q
<

hk

2π
<

1

p
, k = 0, r. (20)

The inequalities (20) are sufficient for finding the general solution of nonhomogeneous problem (11) in classical

Hardy classes Hp
+ × mHp

− . The theory of this problem was developed by Daniluk [2]. If the inequalities (17)

hold, then the assertions α) and β) of Theorem 9 are true with regard to the solvability of nonhomogeneous

problem (11) in the class Hp
+× mHp

− . On the contrary, if the inequalities (20) hold, then there exists α ∈ (0, 1)

such that the inequalities (17) are true, and hence the assertions of Theorem 9 are valid.
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