Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тївітак

Turk J Math
(2016) 40: 1102 - 1109
(C) TÜBİTAK
doi:10.3906/mat-1507-109

Regularity and projective dimension of some class of well-covered graphs

Esfandiar LASHANI ${ }^{1, *}$, Ali SOLEYMAN JAHAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
${ }^{2}$ Department of Mathematics, University of Kurdistan, Sanadaj, Iran

Received: 01.08.2015 \quad Accepted/Published Online: 27.11.2015 $\quad \bullet \quad$ Final Version: 21.10 .2016

Abstract

In this paper we study the Castelnuovo-Mumford regularity of an edge ideal associated with a graph in a special class of well-covered graphs. We show that if G belongs to the class $\mathcal{S} \mathcal{Q}$, then the Castelnuovo-Mumford regularity of $R / I(G)$ will be equal to induced matching number of G. For this class of graphs we also compute the projective dimension of the ring $R / I(G)$. As a corollary we describe these invariants in well-covered forests, well-covered chordal graphs, Cohen-Macaulay Cameron-Walker graphs, and simplicial graphs.

Key words: Castelnuovo-Mumford regularity, edge ideal, induced matching, projective dimension, well-covered graph

1. Introduction

Let G be a simple graph (no loops or multiple edges) with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)$. We can associate to G a square-free monomial ideal $I(G)=<x_{i} x_{j}: x_{i} x_{j} \in E(G)>$ in the polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The relation between the algebraic invariant of this ideal and combinatorial properties of its corresponding graph is one of the interesting measures for many researchers. The Castelnuovo-Mumford regularity of an ideal I, denoted by $\operatorname{reg}(I)$, is one of these measures for the complexity of I.
Recently, several mathematicians have studied the Castelnuovo-Mumford regularity and projective dimension of edge ideals of graphs. In [18] Zheng described the regularity and projective dimension for trees. Hà and Van Tuyl [3] extended this description for regularity to chordal graphs, Kummini [11] for unmixed bipartite graphs, Mahmoudi et al. [12] for very well-covered graphs, and Khosh-Ahang and Moradi [9] for C_{5}-free vertex decomposable graphs. Kimura [10] extended the characterization of the projective dimension introduced in [18] to chordal graphs. She introduced d_{G}^{\prime} for any graphs and it was shown that for a chordal graph G, one has $\operatorname{pd}(R / I(G))=d_{G}^{\prime}$; see Section 4 for the definition. Van Tuyl [16] also proved that the equality $\operatorname{reg}(G)=\operatorname{im}(G)$ holds for any sequentially Cohen-Macaulay bipartite graph.

A 5-cycle C as a subgraph of a graph G is called basic if it does not contain two adjacent vertices of degree three or more in G. A vertex x is called a simplicial vertex if $N_{G}[x]$ is a clique and $G_{N_{G}[x]}$, the induced subgraph of G, is called a simplex of G. A graph G is said to be simplicial if every vertex of G belongs to a simplex of G. A 4-cycle Q as a subgraph of a graph G is called basic if it contains two adjacent vertices of degree two and the remaining two vertices belong to a simplex or a basic 5 -cycle of G. The graph G is in the class $\mathcal{S Q C}$ if there are simplicial vertices x_{1}, \ldots, x_{m}; basic 5 -cycles C_{1}, \ldots, C_{s}; and basic 4 -cycles
*Correspondence: lashani@iau-doroud.ac.ir
2010 AMS Mathematics Subject Classification: 13D02, 05E40, 05C70.
Q_{1}, \ldots, Q_{t} such that $\left\{N_{G}\left[x_{1}\right], \ldots, N_{G}\left[x_{m}\right], V\left(C_{1}\right), \ldots, V\left(C_{s}\right), B\left(Q_{1}\right), \ldots, B\left(Q_{t}\right)\right\}$ is a partition of $V(G)$, where $B\left(Q_{j}\right)$ is the set of two vertices of degree 2 of the basic 4-cycle Q_{j}. The class $\mathcal{S Q C}$ is a subclass of well-covered graphs [14, Theorem 3.1] and every graph in this class is vertex decomposable [4, Theorem 2.3]. We say that a graph G is in the class $\mathcal{S Q}$ if $\left\{B\left(Q_{1}\right), \ldots, B\left(Q_{t}\right), N_{G}\left[x_{1}\right], \ldots, N_{G}\left[x_{m}\right]\right\}$ is a partition of $V(G)$. This class of graphs is a subclass of well-covered graphs and contains some well-covered classes such as well-covered forests, well-covered chordal graphs, Cohen-Macaulay Cameron-Walker graphs, and simplicial graphs.

This paper is organized as follows: in Section 2, we refer to some definitions and some known results that will be needed later. In Section 3, we show that the regularity of each graph in class $\mathcal{S Q}$ is equal to the induced matching number of it; see Theorem 3.3. In Section 4, we prove that if G belongs to the class $\mathcal{S Q}$, then $\operatorname{pd}(R / I(G))=d_{G}^{\prime}$; see Theorem 4.4.

2. Preliminaries

In this paper we will use some notation on graphs according to [2]. For notation about combinatorics and the algebraic background we refer to [5] and [17].

Let G be a simple graph with vertex set $V(G)$ and the edge set $E(G)$. A subgraph H of a graph G is said to be induced if, for any pair of vertices u and v of $H, u v \in E(H)$ if and only if $u v \in E(G)$. The induced subgraph of G restricted to $A \subseteq V(G)$ is denoted by G_{A}. The neighborhood of a vertex $v \in V$ is the set $N_{G}(v)=\{u \mid u \in V(G)$, vu $\in E(G)\}$. Similarly, for $A \subseteq V(G)$, we have $N_{G}(A)=\cup_{v \in A} N_{G}(v)$ and $N_{G}[A]=A \cup N_{G}(A)$.

The complete graph on n vertices is denoted by K_{n}. A bouquet is the complete bipartite graph $K_{1, n}(n \geq 0)$ consisting of $n+1$ vertices and edges joining one vertex to all the others. A leaf in a graph G is a vertex of degree 1 ; the edge meeting a leaf is called a leaf edge or pendant edge; the leaf edge is said to be attached to G at its non-leaf vertex. A pendant triangle in a graph G is a triangle where two vertices have degree 2 and the third vertex has degree greater than 2 ; the pendant triangle is said to be attached to G at the vertex with degree greater than 2 and a star triangle is a graph joining some triangles at one common vertex.

Recall that a subset $M \subseteq E$ is called a matching of G if no two edges in M share a common end and a maximum matching is a matching that contains the largest possible number of edges. The matching number of G denoted by $\mathrm{m}(G)$ is the cardinality of a maximum matching. Moreover, a matching M of G is an induced matching if it occurs as an induced subgraph of G and the cardinality of a maximum induced matching is called the induced matching number of G and denoted by $\operatorname{im}(G)$.

An independent set of G is a set of pairwise nonadjacent vertices. A graph G is called well-covered (or equivalently unmixed) if all its maximal independent sets are of the same size. A vertex cover of G is a subset $C \subseteq V(G)$ if it intersects all edges of G and it is called minimal if it has no proper subset that is also a vertex cover of G.

When G is a graph with $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $C=\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\}$ is a vertex cover of G, by x^{C} we mean the monomial $x_{i_{1}} \ldots x_{i_{t}}$ in the polynomial ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. For a monomial ideal $I=\left\langle x_{1_{1}} \ldots x_{1_{n_{1}}}, \ldots, x_{t_{1}} \ldots x_{t_{n_{t}}}\right\rangle$ of the polynomial ring R, the Alexander dual ideal of I, denoted by I^{\vee}, is defined as

$$
I^{\vee}:=\left\langle x_{1_{1}}, \ldots, x_{1_{n_{1}}}\right\rangle \cap \ldots \cap\left\langle x_{t_{1}}, \ldots, x_{t_{n_{t}}}\right\rangle
$$

One can see that, for a graph G,
$I(G)^{\vee}=\left\langle x^{C}\right| C$ is a minimal vertex cover of $\left.G\right\rangle$.

A graph G is called vertex decomposable if either it is an edgeless graph or it has a vertex x such that:
(i) $G \backslash\{x\}$ and $G \backslash N_{G}[x]$ are both vertex decomposable.
(ii) For every independent set S of $G \backslash N_{G}[x]$, there is some vertex $y \in N_{G}(x)$ such that $S \cup\{y\}$ is an independent set of G.

3. The Castelnuovo-Mumford regularity

In this section we give some descriptions for the regularity of the ring $\mathrm{R} / \mathrm{I}(\mathrm{G})$ when G is in the class $\mathcal{S} \mathcal{Q}$.

Definition 3.1 Let G be a graph and consider the minimal free graded resolution of $M=R / I(G)$ as an R-module.

$$
0 \rightarrow \oplus_{j \in \mathbb{Z}} R(-j)^{\beta_{p j}(M)} \rightarrow \cdots \rightarrow \oplus_{j \in \mathbb{Z}} R(-j)^{\beta_{0 j}(M)} \rightarrow M \rightarrow 0
$$

The Castelnuovo-Mumford regularity or simply the regularity of $M=R / I(G)$ is defined as

$$
\operatorname{reg}(R / I(G)):=\max \left\{j-i: \beta_{i, j} \neq 0\right\}
$$

We define $\operatorname{reg}(G):=\operatorname{reg}(R / I(G))$.
Also, the projective dimension of M is defined as

$$
\operatorname{pd}(M):=\max \left\{i: \beta_{i, j} \neq 0 \text { for some } j\right\}
$$

The following proposition that is proved in [13] is one of our main tools in the study of the regularity of certain graphs.

Proposition 3.2 [13, Theorem 3.14] Let \mathcal{K} be a family of graphs containing any edgeless graph and let $\beta: \mathcal{K} \longrightarrow \mathbb{N}$ be a function satisfying $\beta(G)=0$ for any edgeless graph G. In addition, for a graph $G \in \mathcal{K}$, with $E(G) \neq \emptyset$, there exists $x \in V(G)$ such that the following two conditions hold:
(i) $G \backslash\{x\}$ and $G \backslash N[x]$ are in \mathcal{K}.
(ii) $\beta(G \backslash N[x])<\beta(G)$ and $\beta(G \backslash\{x\}) \leq \beta(G)$.

Then $\operatorname{reg}(G) \leq \beta(G)$ for any $G \in \mathcal{K}$.
Now we are ready to describe the regularity of $\mathrm{R} / \mathrm{I}(\mathrm{G})$ when $G \in \mathcal{S Q}$.

Theorem 3.3 If G belongs to the class $\mathcal{S Q}$, then

$$
\operatorname{reg}(G)=\operatorname{im}(G)
$$

Proof We already know that $\operatorname{im}(G) \leq \operatorname{reg}(G)$ for any graph G [8, Lemma 2.2], so it is sufficient to show that $\operatorname{im}(G)$ is an upper bound for $\operatorname{reg}(G)$ when G belongs to the class $\mathcal{S Q}$.

Let x_{1}, \ldots, x_{m} be simplicial vertices and Q_{1}, \ldots, Q_{t} be basic 4-cycles of G. Then $V(G)=$ $\left(\dot{\cup}_{i=1}^{m} N_{G}\left[x_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{j=1}^{t} B\left(Q_{j}\right)\right)$. Assume that $x \in N_{G}\left(x_{1}\right)$ and without loss of generality $x \in Q_{j}=x y_{j} z_{j} t_{j} x$ for $1 \leq j \leq r$, for which $\operatorname{deg}\left(z_{j}\right)=\operatorname{deg}\left(t_{j}\right)=2$.

If we set $G^{\prime}:=G \backslash\{x\}$ and $G^{\prime \prime}:=G \backslash N_{G}[x]$, then

$$
V\left(G^{\prime}\right)=\left(\dot{\bigcup}_{i=1}^{r} N_{G^{\prime}}\left[t_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{i=1}^{m} N_{G^{\prime}}\left[x_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{i=r+1}^{t} B\left(Q_{i}\right)\right)
$$

for which $N_{G^{\prime}}\left[t_{j}\right]=t_{j} z_{j} \cong k_{2}$ and $\operatorname{deg}\left(t_{j}\right)=1$, so t_{j} for $1 \leq j \leq r$ is a simplicial vertex of $G^{\prime}, N_{G^{\prime}}\left[x_{1}\right]=$ $N_{G}\left[x_{1}\right] \backslash\{x\}$ and $N_{G^{\prime}}\left[x_{i}\right]=N_{G}\left[x_{i}\right]$ for $i \geq 2$. Therefore, $G^{\prime} \in \mathcal{S Q}$.

On the other hand,

$$
V\left(G^{\prime \prime}\right)=\left\{z_{1}, \ldots, z_{r}\right\} \dot{\cup}\left(\dot{\bigcup}_{i=2}^{m} N_{G^{\prime \prime}}\left[x_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{i=r+1}^{t} B\left(Q_{i}\right)\right),
$$

for which $N_{G^{\prime \prime}}\left[x_{i}\right]=N_{G}\left[x_{i}\right] \backslash N_{G}[x]$ for $i \geq 2, Q_{j} \backslash N_{G}[x]=\left\{z_{j}\right\}$ and $N_{G^{\prime \prime}}\left[z_{j}\right]=\left\{z_{j}\right\}$, so z_{j} is a simplicial vertex for $1 \leq j \leq r$.

Therefore, $G^{\prime \prime}$ belongs to the class $\mathcal{S Q}$.
The inequality $\operatorname{im}(G \backslash\{x\}) \leq \operatorname{im}(G)$ always holds and for any $x \in V(G)$.
It is clear that if M is an induced matching for $G \backslash N_{G}[x]$, then $M \cup\left\{x x_{i}\right\}$ will be an induced matching for G, so $\operatorname{im}(G \backslash N[x])<\operatorname{im}(G)$. Hence, by Proposition 3.2, $\operatorname{reg}(G) \leq \operatorname{im}(G)$.

In [6] Herzog et al. characterized Cohen-Macaulay chordal graphs by showing that we can partition the vertex set of every Cohen-Macaulay chordal graph to cliques such that each of the cliques contains a simplicial vertex [6, Theorem 2.1]. This means that these graphs belong to the class $\mathcal{S Q}$. Also, one can see that any well-covered simplicial graph belongs to the class $\mathcal{S Q}$.

Corollary 3.4 The following statements hold.
(a) If G is a simplicial graph, then $\operatorname{reg}(G)=\operatorname{im}(G)$.
(b) If G is a well-covered chordal graph, then $\operatorname{reg}(G)=\operatorname{im}(G)$.

In [1] Cook and Nagel showed that if we choose a partition $\pi=\left\{W_{1}, \ldots, W_{t}\right\}$ of cliques for $V(G)$, add new vertices y_{1}, \ldots, y_{t}, and connect y_{i} to every vertex in the clique W_{i} for $1 \leq i \leq t$, then the new graph, clique-whiskered of G, denoted by G^{π}, will be well-covered and vertex decomposable. Clearly, $W_{i}=N_{G^{\pi}}\left(y_{i}\right)$, so y_{i} is a simplicial vertex for $1 \leq i \leq t$ and $W_{1} \cup\left\{y_{1}\right\}, \ldots, W_{t} \cup\left\{y_{t}\right\}$ is a partition for $V\left(G^{\pi}\right)$. This means that G^{π} belongs to the class $\mathcal{S Q}$.

Corollary 3.5 For every graph G and any partition $\pi=\left\{W_{1}, \ldots, W_{t}\right\}$ of cliques for $V(G)$,

$$
\operatorname{reg}\left(G^{\pi}\right)=\operatorname{im}\left(G^{\pi}\right)
$$

Let G be a simple graph with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$. Also, let G_{1}, \ldots, G_{n} be simple graphs with disjoint vertex sets and $v_{i} \in V\left(G_{i}\right)$ for $1 \leq i \leq n$. If we set H a graph with $V(H)=V(G) \cup\left(\bigcup_{i=1}^{n}\left(V_{i} \backslash\left\{v_{i}\right\}\right)\right)$ and $E(H)=E(G) \cup\left(\bigcup_{i=1}^{n} E\left(G_{i} \backslash\left\{v_{i}\right\}\right)\right) \cup\left\{x_{i} v \mid v_{i} v \in E\left(G_{i}\right)\right\}$, then H is the graph obtained by attaching G_{i} to G on the vertex v_{i} for all $i=1, \ldots, n$.

We say that a finite connected simple graph G is a Cameron-Walker graph if $\operatorname{im}(G)=\mathrm{m}(G)$ and if G is neither a bouquet nor a star triangle. In [7] Hibi et al. characterized Cohen-Macaulay CameronWalker graphs; they showed that a Cameron-Walker graph G is Cohen-Macaulay if and only if G consists of a connected bipartite graph with vertex partition $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{m}\right\}$ such that there is exactly one leaf edge attached to each vertex x_{i} and that there is exactly one pendant triangle attached to each vertex y_{i}. It is clear that any Cohen-Macaulay Cameron-Walker graph belongs to the class $\mathcal{S Q}$.

Corollary 3.6 If G is a Cohen-Macaulay Cameron-Walker graph, then

$$
\operatorname{reg}(G)=\operatorname{im}(G) .
$$

4. Projective dimension

Let B be a bouquet with $V(B)=\left\{w, z_{1}, \ldots, z_{d}\right\}$ and $E(B)=\left\{\left\{w, z_{i}\right\}: i=1, \ldots, d\right\}$. The vertex w is called the root of B, the vertices z_{i} flowers of B, and the edges $\left\{w, z_{i}\right\}$ stems of B. A subgraph B of G is called a bouquet of G if B is a bouquet. Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{j}\right\}$ be a set of bouquets of G. We set
$F(\mathcal{B}):=\{z \in V: z$ is a flower of some bouquet in $\mathcal{B}\}$,
$R(\mathcal{B}):=\{w \in V: w$ is a root of some bouquet in $\mathcal{B}\}$,
$S(\mathcal{B}):=\{s \in E(G): s$ is a stem of some bouquet in $\mathcal{B}\}$.
A set $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{j}\right\}$ of bouquets of G is said to be strongly disjoint in G if the following 2 conditions are satisfied:
(1) $V\left(B_{k}\right) \cap V\left(B_{l}\right)=\emptyset$ for all $k \neq l$.
(2) We can choose a stem s_{k} from each bouquet $B_{k} \in \mathcal{B}$ so that $\left\{s_{1}, s_{2}, \ldots, s_{j}\right\}$ is an induced matching in G.

A set $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{j}\right\}$ of bouquets of G is called semi-strongly disjoint in G if
(1) $V\left(B_{i}\right) \cap V\left(B_{j}\right)=\emptyset$ for all $i \neq j$,
(2) $R(\mathcal{B})$ is an independent set of G.

We set:

$$
d_{G}:=\max \{\# F(\mathcal{B}): \mathcal{B} \text { is a strongly disjoint set of bouquets of } G\}
$$

and

$$
d_{G}^{\prime}:=\max \{\# F(\mathcal{B}): \mathcal{B} \text { is a semi-strongly disjoint set of bouquets of } G\} .
$$

Clearly any induced matching in G is a strongly disjoint set of bouquets of G and any strongly disjoint set of bouquets of G is semi-strongly disjoint, so $\operatorname{im}(G) \leq d_{G} \leq d_{G}^{\prime}$.

We use the following proposition for proving our result.

LASHANI and SOLEYMAN JAHAN/Turk J Math

Proposition 4.1 [15, Theorem 2.1] If I is a square-free monomial ideal, then

$$
\operatorname{pd}\left(I^{\vee}\right)=\operatorname{reg}(R / I)
$$

Lemma 4.2 If $G \in \mathcal{S Q}$ and $V(G)=\left(\dot{\bigcup}_{i=1}^{m} N_{G}\left[x_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{j=1}^{t} B\left(Q_{j}\right)\right)$, then $d_{G}^{\prime}=|V(G)|-(m+t)$.
Proof Let \mathcal{B} be a semi-strongly disjoint set of bouquets of G. Clearly, at least one vertex of $N_{G}\left[x_{i}\right]$ belongs to $R(\mathcal{B})$ for any $1 \leq i \leq m$. Similarly, for any $1 \leq j \leq t$, at least one vertex of $B\left(Q_{j}\right)$ belongs to $R(\mathcal{B})$; this means that $|R(\mathcal{B})| \geq m+t$ and so $|F(\mathcal{B})| \leq|V(G)|-(m+t)$. Hence, $d^{\prime} \leq|V(G)|-(m+t)$. On the other hand, for any $1 \leq i \leq m$, set B_{i} as a bouquet of G with root x_{i} and flower(s) $N_{G}\left(x_{i}\right)$ and also $B_{j}^{\prime}:=G_{B\left(Q_{j}\right)}$ for $1 \leq j \leq t$, and so $\mathcal{B}:=\left\{B_{1}, \ldots, B_{m}, B_{1}^{\prime}, \ldots, B_{t}^{\prime}\right\}$ is a semi-strongly disjoint set of bouquets of G and $|F(\mathcal{B})|=|V(G)|-(m+t)$. Hence, $d_{G}^{\prime}=|V(G)|-(m+t)$.

Now we are ready to characterize the projective dimension of the ring $R / I(G)$ when G belongs to $\mathcal{S Q}$. First we need the following proposition.

Proposition 4.3 Let $G \in \mathcal{S Q}$. If x_{1}, \ldots, x_{m} are simplicial vertices and Q_{1}, \ldots, Q_{t} are basic 4-cycles of G, then

$$
\operatorname{pd}(G) \leq d_{G}^{\prime}=|V(G)|-(m+t)
$$

Proof

By Proposition 4.1 it is enough to show that $\operatorname{reg}\left(I(G)^{\vee}\right) \leq d_{G}^{\prime}$. We prove the assertion by using induction on $|V(G)|$. For $|V(G)|=2, G$ is totally disconnected or a single edge, so $\operatorname{reg}\left(I(G)^{\vee}\right)=0 \leq 0=d_{G}^{\prime}$ or $\operatorname{reg}\left(I(G)^{\vee}\right)=1 \leq 1=d_{G}^{\prime}$. Now suppose that $G \in \mathcal{S Q}$ for which $|V(G)| \geq 2$ and the result holds for smaller values of $|V(G)|$.

Let $V(G)=\left(\dot{\bigcup}_{i=1}^{m} N_{G}\left[x_{i}\right]\right) \dot{\cup}\left(\dot{\bigcup}_{j=1}^{t} B\left(Q_{j}\right)\right)$ and $B\left(Q_{j}\right)=z_{j} t_{j}$ for $1 \leq j \leq t$. Assume that $x \in N_{G}\left(x_{1}\right)$ and without loss of generality $x \in Q_{j}:=x y_{j} z_{j} t_{j} x$ for $1 \leq j \leq r$.

As in the proof of Theorem 3.3, if $G^{\prime}:=G \backslash\{x\}$ and $G^{\prime \prime}:=G \backslash N_{G}[x]$, then G^{\prime} and $G^{\prime \prime} \in \mathcal{S Q}$ and

$$
V\left(G^{\prime}\right)=\left(\bigcup_{i=1}^{r} N_{G^{\prime}}\left[t_{i}\right]\right) \dot{\cup}\left(\bigcup_{i=1}^{m} N_{G^{\prime}}\left[x_{i}\right]\right) \dot{\cup}\left(\bigcup_{i=r+1}^{t} B\left(Q_{i}\right)\right)
$$

for which $N_{G^{\prime}}\left[t_{j}\right]=t_{j} z_{j} \cong k_{2}$ and $\operatorname{deg}\left(t_{j}\right)=1$, so t_{j} is a simplicial vertex for $1 \leq j \leq r, N_{G^{\prime}}\left[x_{1}\right]=N_{G}\left[x_{1}\right] \backslash\{x\}$, and $N_{G^{\prime}}\left[x_{i}\right]=N_{G}\left[x_{i}\right]$ for $i \geq 2$. We consider the following two cases:

Case 1: Let $\left|N_{G}\left(x_{1}\right)\right|>1$. For any $1 \leq i \leq m$, if $B_{i}:=G_{N_{G^{\prime}}\left[x_{i}\right]}$, then B_{i} is a bouquet of G^{\prime} with root x_{i} and flower(s) $N_{G^{\prime}}\left(x_{i}\right)$. Also, if $B_{j}^{\prime}:=G_{B\left(Q_{j}\right)}^{\prime}$, then B_{j}^{\prime} is a bouquet of G^{\prime} with root t_{j} and flower z_{j} for $1 \leq j \leq t$, so by Lemma $4.2, \mathcal{B}:=\left\{B_{1}, \ldots, B_{m}, B_{1}^{\prime}, \ldots, B_{t}^{\prime}\right\}$ is the maximum semi-strongly disjoint set of bouquets of G^{\prime}.

Case 2: If $\left|N_{G}\left(x_{1}\right)\right|=1$, then $\mathcal{B}:=\left\{B_{2}, \ldots, B_{m}, B_{1}^{\prime}, \ldots, B_{t}^{\prime}\right\}$ will be the maximum semi-strongly disjoint set of bouquets of G^{\prime}. Thus, in any case

$$
|F(\mathcal{B})|=(|V(G)|-1)-(m+t)=|V(G)|-(m+t)-1
$$

and hence $d_{G^{\prime}}^{\prime}=d_{G}^{\prime}-1$.

On the other hand,

$$
V\left(G^{\prime \prime}\right)=\left\{z_{1}, \ldots, z_{r}\right\} \dot{\cup}\left(\bigcup_{i=2}^{m} N_{G^{\prime \prime}}\left[x_{i}\right]\right) \dot{\cup}\left(\bigcup_{i=r+1}^{t} B\left(Q_{i}\right)\right)
$$

If $B_{i}:=G_{N_{G^{\prime \prime}}\left[x_{i}\right]}$ for any $2 \leq i \leq m$ and $B_{j}^{\prime}:=G_{B\left(Q_{j}\right)}^{\prime \prime}$ for $r+1 \leq j \leq t$, then by Lemma 4.2, $\mathcal{B}:=\left\{B_{2}, \ldots, B_{m}, B_{r+1}^{\prime}, \ldots, B_{t}^{\prime}\right\}$ is the semi-strongly disjoint set of bouquets of $G^{\prime \prime}$. Hence,

$$
|F(\mathcal{B})|=\left(|V(G)|-\left|N_{G}[x]\right|-r\right)-(m-1+(t-r))=|V(G)|-(m+t)-\left|N_{G}[x]\right|+1
$$

and $d_{G^{\prime \prime}}^{\prime}=d_{G}^{\prime}-\left|N_{G}[x]\right|+1=d_{G}^{\prime}-\left|N_{G}(x)\right|$.
By [9, Corollary 2.2] we know that

$$
\operatorname{reg}\left(I(G)^{\vee}\right) \leq \max \left\{\operatorname{reg}\left(I\left(G^{\prime}\right)^{\vee}\right)+1, \operatorname{reg}\left(I\left(G^{\prime \prime}\right)^{\vee}\right)+\left|N_{G}(x)\right|\right\}
$$

Thus, by induction hypothesis,

$$
\operatorname{reg}\left(I(G)^{\vee}\right) \leq \max \left\{d_{G^{\prime}}^{\prime}+1, d_{G^{\prime \prime}}^{\prime}+\left|N_{G}(x)\right|\right\}=d_{G}^{\prime}
$$

Theorem 4.4 If G belongs to the class $\mathcal{S Q}$ such that x_{1}, \ldots, x_{m} are simplicial vertices and Q_{1}, \ldots, Q_{t} are basic 4-cycles of G, then:

$$
\operatorname{pd}(G)=d_{G}^{\prime}=|V(G)|-(m+t)
$$

Proof In [9, Corollary 2.8] it is shown that for any graph $G, \operatorname{pd}(G) \geq d_{G}^{\prime}$. Hence, by Proposition 4.3 the equality holds.
The following example is remarkable.
Example 4.5 In the Figure, $V(G)=N_{G}\left[x_{1}\right] \cup N_{G}\left[x_{2}\right] \cup N_{G}\left[x_{3}\right] \cup N_{G}\left[x_{4}\right] \cup B\left(Q_{1}\right) \cup B\left(Q_{2}\right)$ for which $B\left(Q_{1}\right)=$ $\left\{t_{1}, z_{1}\right\}$ and $B\left(Q_{2}\right)=\left\{t_{2}, z_{2}\right\}$, so G belongs to $\mathcal{S} \mathcal{Q}$. We can see that $G^{\prime}:=G \backslash\{x\}$ and $G^{\prime \prime}:=G \backslash N_{G}[x]$ belong to the class $\mathcal{S Q}$. It is clear that G is not chordal, bipartite, very well-covered, or C_{5}-free.

Figure

References

[1] Cook D 2nd, Nagel U. Cohen-Macaulay graph and face vector of flag complexes. SIAM J Discrete Math 2012; 26: 89-101.
[2] Diestel R. Graph Theory. 2nd ed. New York, NY, USA: Springer, 2000.
[3] Hà HT, Van Tuyl A. Monomial ideals, edge ideals of hypergraphs and their graded Betti numbers. J Algebraic Combin 2008; 27: 215-245.
[4] Hang D, Công Minh N, Nam Trung T. On the Cohen-Macaulay graphs and girth. Preprint. ArXiv:1204.5561v2 [math.AC].
[5] Herzog J, Hibi T. Monomial Ideals. London, UK: Springer, 2011.
[6] Herzog J, Hibi T, Zheng X. Cohen-Macaulay chordal graphs. J Comb Theory A 2006; 113: 911-916.
[7] Hibi T, Higashitani A, Kimura K, O'Keefe AB. Algebraic study on Cameron-Walker graphs. J Algebra 2015; 422: 257-269.
[8] Katzman M. Characteristic-independence of Betti numbers of graph ideals. J Combin Theory A 2006; 113: 435-454.
[9] Khosh-Ahang F, Moradi S. Regularity and projective dimension of edge ideal of C_{5}-free vertex decomposable graphs. P Am Math Soc 2014; 142: 1567-1576.
[10] Kimura K. Non-vanishingness of Betti numbers of edge ideals. In: Hibi T, editor. Harmony of Gröbner bases and the Modern Industrial Society. Hackensack, NJ, USA: World Scientific, 2012, pp. 153-168.
[11] Kummini M. Regularity, depth and arithmetic rank of bipartite edge ideals. J Algebraic Combin 2009; 30: 429-445.
[12] Mahmoudi M, Mousivand A, Crupi M, Rinaldo G, Terai N, Yassemi S. Vertex decomposability and regularity of very well-covered graphs. J Pure Appl Algebra 2011; 215: 2473-2480.
[13] Morey S, Villarreal RH. Edge ideals: algebraic and combinatorial properties. In: Francisco C, Klingler LC, SatherWagstaff S, Vassilev JC, editors. Progress in Commutative Algebra 1. Berlin, Germany: De Gruyter, 2012, pp. 85-126.
[14] Randerath B, Volkmann L. A characterization of well covered block-cactus graphs. Australasian J Combin 1994; 9: 307-314.
[15] Terai N. Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings of projective varieties and related topics.. Sürikaisekikenkyüsho Kökyüroku 1999; 1078: 174-184 (in Japanese).
[16] Van Tuyl A. Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity. Arch Math (Basel) 2009; 93: 451-459.
[17] Villarreal R. Monomial Algebras. Monographs and Textbooks in Pure and Applied Mathematics Vol. 238. New York, NY, USA: Marcel Dekker, 2001.
[18] Zheng X. Resolutions of facet ideals. Comm Algebra 2004; 32: 2301-2324.

