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Abstract: As is well known, for any operator T on a complex separable Hilbert space, T has the polar decomposition

T = U |T | , where U is a partial isometry and |T | is the nonnegative operator (T ∗T )
1
2 . In 2014, Tian et al. proved

that on a complex separable infinite dimensional Hilbert space, any operator admits a polar decomposition in a strongly

irreducible sense. More precisely, for any operator T and any ε > 0, there exists a decomposition T = (U +K)S , where

U is a partial isometry, K is a compact operator with ||K|| < ε , and S is strongly irreducible. In this paper, we will

answer the question for operators on two-dimensional Hilbert spaces.
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1. Introduction and preliminaries

Let H be a complex separable Hilbert space and let L(H) denote the Banach algebra of all bounded linear

operators acting on H . When H is a finite dimensional space, the famous Jordan Standard Theorem sufficiently

reveals the internal structure of operators. The Jordan Standard Theorem indicates that the eigenvalues and

the generalized eigenspaces of an operator determine its complete similarity invariants. When H is an infinite

dimensional space, a fundamental problem in operator theory is how to build up a theorem that is similar to the

Jordan Standard Theorem. However, the complexity of infinite dimensional space makes this problem difficult.

To replace the notion of a Jordan block, in the 1970s Gilfeather [3] and Jiang [7] proposed the notion of strongly

irreducible operator. An operator T in L(H) is called strongly irreducible, denoted by T ∈ (SI), if there does

not exist a nontrivial idempotent operator P in L(H) such that PT = TP . Obviously, strong irreduciblity of

the operator is invariant under similarity and a strongly irreducible operator must be irreducible. Moreover, it

is easy to show that an operator on a finite dimensional Hilbert space is strongly irreducible if and only if it

is similar to a Jordan block. Moreover, Jiang [7] thought that strongly irreducible operators could be viewed

as a suitable replacement of the notion of a Jordan block in infinite dimensional space. Indeed, Herrero, Jiang,

Wang, and Ji et al. built an ”approximate Jordan Theorem” for infinite dimensional space: the operator class

{T ∈ L(H) : T = T1

.
+ T2

.
+ · · ·

.
+ Tn, Ti ∈ (SI), n ∈ N}

is dense in L(H) under the norm topology (see [4–6]).
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On the other hand, for an operator, one could consider other decomposition as well. The classical polar

decomposition theorem [2] tells us that for an operator T ∈ L(H), there exists the decomposition T = U |T |

or U∗T = |T | , where U is a partial isometry and |T | = (T ∗T )
1
2 . As a self-adjoint operator, |T | has many

reducible subspaces([1]). Hence the polar decomposition theorem says that an operator can always be expressed

as a product of a partial isometry and an operator having many reducible subspaces. A natural question

can be asked: can we write an operator into a product of a partial isometry and an operator having fewer

reducible subspaces? In reference [8], the authors answered the question when H is complex separable infinite

dimensional. More precisely, on a complex separable infinite dimensional Hilbert space, for any operator T and

any ε > 0, there exists a decomposition T = (U+K)S , where U is a partial isometry, K is a compact operator

with ||K|| < ε , and S is strongly irreducible.

However, their theorem did not cover the case when H is finite dimensional. In this paper, we will

consider such decomposition on two-dimensional Hilbert spaces. More precisely,

Theorem 1.1 For any T ∈ L(H) , dimH = 2 and any ε > 0 , there exist a partial isometry U , an (compact)

operator K with ||K|| < ε , and a strongly irreducible operator S such that T = (U +K)S .

Remark 1.2 The operator K in above theorem cannot be removed in some cases. See Corollary 2.3.

The proof of the theorem is quite different from the proofs in [8]. We will give it in the next section.

2. Proof of main results

Lemma 2.1 Let α, β ∈ C , β ̸= 0 . Then

T =

[
α β

α

]
is strongly irreducible.

Proof Indeed, if TP = PT for a certain (one-rank) projection P then T (I − P ) = (I − P )T as well, that is,

T is diagonalizable. Therefore, β = 0; otherwise the geometric multiplicity of α would be 1, which is less than

its algebraic one. 2

Proof of Theorem 1.1. From classical polar decomposition theorem, T = U |T | , where U is a unitary operator

and |T | = (T ∗T )
1
2 . Since |T | is self-adjoint, we have under some orthonormal basis {v1, v2} ,

|T | =
[
α

β

]
v1
v2
, α, β ≥ 0.

The case α = β = 0 is trivial. Consider the case of α = β > 0. Let

K1 =

[
1 ϵ

1

]
v1
v2

and

S =

[
α −αϵ

α

]
v1
v2
,

then |T | = K1S .
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Let

K = U

[
0 ϵ

0

]
v1
v2
,

then
T = U |T | = UK1S = (U +K)S.

It is not hard to show that ||K|| ≤ ϵ . S is strongly irreducible from Lemma 2.1.

Consider the case of α ̸= β and assume that β > α ≥ 0. Let

V = (α+ β)−1

[
2
√
αβ −(α− β)

α− β 2
√
αβ

]
v1
v2

and

S = V ∗D = (α+ β)−1

[
2
√
αβ α− β

−(α− β) 2
√
αβ

]
v1
v2

[
α 0
0 β

]
v1
v2

= (α+ β)−1

[
2α

√
αβ β(α− β)

−α(α− β) 2β
√
αβ

]
v1
v2
.

Then |T | = V S and T = U |T | = UV S .

It is easy to check that UV is unitary. Therefore, it suffices to show that S is strongly irreducible. Notice

that in this case we do not need K .

The characteristic polynomial of S is λ2 − 2
√
αβλ+ αβ . Hence,

√
αβ is the only spectrum of S .

Obviously, S −
√
αβ ̸= 0 and so S is similar to[√

αβ r√
αβ

]
, r ̸= 0.

By Lemma 2.1 and as strong irreduciblity of the operator is invariant under similarity, S is strongly

irreducible.

We complete the proof.

Proposition 2.2 Every normal operator in L(H) (1 < dimH < ∞) cannot be strongly irreducible.

Proof Every normal operator in L(H) for 1 < dim(H) < ∞ cannot be strongly irreducible, for it is a

diagonalizable operator. 2

Corollary 2.3 αI cannot be decomposed into US , where U is a unitary operator and S is strongly irreducible.
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