Turk J Math
(2016) 40: 1114 - 1117
(C) TÜBİTAK
doi:10.3906/mat-1507-54

Isometric N-Jordan weighted shift operators

Saeed YARMAHMOODI ${ }^{1}$, Karim HEDAYATIAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Marvdasht University, Islamic Azad University, Marvdasht, Iran
${ }^{2}$ Department of Mathematics College of Sciences, Shiraz University, Shiraz, Iran

| Received: 13.07 .2015 | Accepted/Published Online: 23.12 .2015 | • | Final Version: 21.10 .2016 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

A bounded linear operator T on a Hilbert space is an isometric N-Jordan operator if it can be written as $A+Q$, where A is an isometry and Q is a nilpotent of order N such that $A Q=Q A$. In this paper, we will show that the only isometric N-Jordan weighted shift operators are isometries. This answers a question recently raised.

Key words: Isometric N-Jordan operator, nilpotent, weighted shift operator

1. Introduction and preliminaries

Let H be a Hilbert space and $B(H)$ stand for the space of all bounded linear operators on H. An operator T in $B(H)$ is called an isometric N-Jordan operator if $T=A+Q$, where A is an isometry and Q is a nilpotent operator of order N, that is, $Q^{N}=0$ but $Q^{N-1} \neq 0$, and $A Q=Q A$. Note that the notions of isometric 1-Jordan and isometry coincide. It follows from Proposition 1.1 of [11] that the operator T is injective. The dynamic and spectral properties of T have been studied in [11]. We note that $T^{*} T$ is invertible. Indeed, by Corollary 1.2 of [11] the operator T is bounded below, and so for every $h \in H$,

$$
\left\|T^{*} T h\right\|\|h\| \geq\left|\left\langle T^{*} T h, h\right\rangle\right|=\|T h\|^{2} \geq c\|h\|^{2}
$$

for some $c>0$, which implies that $T^{*} T$ is also bounded below and so is injective and has closed range. However,

$$
H=\left(\operatorname{ker}\left(T^{*} T\right)\right)^{\perp}=\overline{\operatorname{ran}\left(T^{*} T\right)}=\operatorname{ran}\left(T^{*} T\right)
$$

implies that $T^{*} T$ is invertible. It is easy to see that if A is a unitary operator then

$$
\left(T^{*} T\right)^{-1}=3 I-3 T T^{*}+T^{2} T^{* 2}
$$

For a positive integer m an operator $S \in B(H)$ is an m-isometry if

$$
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} S^{* k} S^{k}=0
$$

The operator S is called a strict m-isometry if it is not an $(m-1)$-isometry. These operators have been introduced by Agler in [1] and have been studied extensively by Agler and Stankus in three papers [2-4].

[^0]Recently, such operators have been considered by several authors. It is proved in [7] that every isometric N Jordan operator is a strict $(2 N-1)$-isometry. The authors asked about the validity of the converse. In this paper, we prove that the answer is negative.

2. Main results

Suppose that H is a separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n \geq 0}\left(\left\{e_{n}\right\}_{n \in \mathbb{Z}}\right)$. An operator $S \in B(H)$ is called a unilateral (bilateral) weighted forward shift, provided that for every $n \geq 0(n \in \mathbb{Z}), S e_{n}=w_{n} e_{n+1}$, where $\left(w_{n}\right)_{n}$ is a sequence of bounded complex numbers. Note that S is injective if and only if $w_{n} \neq 0$, for every n. It is known that S is an isometry if and only if $\left|w_{n}\right|=1$ for all n, and is hyponormal if and only if its weight sequence is increasing [9]. Furthermore, m-isometric weighted shifts are discussed in [6, 8, 10]. Recall that S^{*}, the adjoint of S, is called a unilateral (bilateral) weighted backward shift. In this section, we will show that the only isometric N-Jordan weighted shift operators are isometries.

Theorem 1 There is no isometric N-Jordan weighted shift operator when $N>1$.
Proof In contrast, assume that $T=A+Q$ is an isometric N-Jordan weighted shift operator. In the proof of Theorem 2.2 of [7], it is shown that

$$
\sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k}\left\|T^{k} h\right\|^{2}=\frac{(2 N-2)!}{((N-1)!)^{2}}\left\|Q^{N-1} h\right\|^{2}
$$

Let J be the set $\mathbb{N} \cup\{0\}$ or \mathbb{Z} and suppose that the operator T is a forward shift operator with weight sequence $\left(w_{n}\right)_{n}$. Put $Q^{N-1} e_{0}=\sum_{n \in J} c_{n} e_{n}$. Thus the above equality shows that

$$
\begin{aligned}
0 & =\sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k}\left\|T^{k}\left(Q^{N-1} e_{0}\right)\right\|^{2} \\
& =\sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k}\left\|\sum_{n \in J} c_{n} T^{k} e_{n}\right\|^{2} \\
& =\sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k}\left\|\sum_{n \in J} c_{n}\left(\prod_{i=0}^{k-1} w_{n+i}\right) e_{n+k}\right\|^{2} \\
= & \sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k} \sum_{n \in J}\left|c_{n}\right|^{2}\left|\prod_{i=0}^{k-1} w_{n+i}\right|^{2} \\
& =\sum_{n \in J}\left|c_{n}\right|^{2} \sum_{k=0}^{2 N-2}(-1)^{k}\binom{2 N-2}{k}\left\|T^{k} e_{n}\right\|^{2} \\
& =\sum_{n \in J}\left|c_{n}\right|^{2} \frac{(2 N-2)!}{((N-1)!)^{2}}\left\|Q^{N-1} e_{n}\right\|^{2}
\end{aligned}
$$

On the other hand, for every $n \in J$

$$
Q^{N-1} A e_{n}=w_{n} Q^{N-1} e_{n+1}
$$

and so

$$
\begin{equation*}
\left\|Q^{N-1} e_{n}\right\|=\left|w_{n}\right|\left\|Q^{N-1} e_{n+1}\right\| \tag{1}
\end{equation*}
$$

Therefore, if $Q^{N-1} e_{0}=0$ then $Q^{N-1} e_{n}=0$ for every $n \in J$; hence $Q^{N-1} \equiv 0$, which is a contradiction. Moreover, if $Q^{N-1} e_{0}$ is nonzero then there is $n_{0} \in J$ such that $c_{n_{0}} \neq 0$ and the previous argument shows that $Q^{N-1} e_{n_{0}}=0$. Thus, (1) shows that $Q^{N-1} e_{n}=0$ for every $n \in J$; hence $Q^{N-1} \equiv 0$, which is again a contradiction. Now suppose that $T e_{n}=w_{n} e_{n-1}(n \in \mathbb{Z})$ is a bilateral backward shift operator. Define the unitary operator U on H by $U\left(\sum_{n \in \mathbb{Z}} \beta_{n} e_{n}\right)=\sum_{n \in \mathbb{Z}} \beta_{n} e_{-n}$. It is easily seen that $S U=U T$, where S is the bilateral forward shift defined by $S e_{n}=w_{-n} e_{n+1}$. Put $B=U A U^{-1}$ and $P=U Q U^{-1}$; therefore, $S=B+P$ is an isometric N-Jordan operator which is impossible. Lastly, since every unilateral backward shift is not injective, we conclude that T cannot be a unilateral weighted backward shift.

For a positive integer m let T be the unilateral weighted shift with weight sequence $w_{n}=\sqrt{\frac{n+m}{n+1}}, n \geqslant 0$. It is known that T is a strict m - isometric operator (see [5, Proposition 8]). Moreover, it is proved in [8] that for every odd number m, there is an invertible bilateral weighted shift that is a strict m-isometry. Thus, we have the following corollary that answers the question posed in [7].

Corollary 1 For a fixed $m>1$, there is a strict m-isometric operator T so that it is not an isometric N-Jordan operator for every $N \geq 1$.

Recall that an operator is a co-isometry if its adjoint is an isometry.

Corollary 2 If the operator $S=B+P$ is a weighted shift where B is a co-isometry, P is a nilpotent operator and $B P=P B$; then $P=0$.
Proof Apply the preceding theorem for $S^{*}=B^{*}+P^{*}$.
Note that the commutativity of A and Q is essential in the preceding theorem as the following example shows.

Example 1 Let $\left\{e_{n}\right\}_{n}$ be an orthonormal basis for the Hilbert space H. Define the isometric operator A by $A e_{n}=e_{n+1}$ for all n and the weighted shift operator Q by $Q e_{n}=v_{n} e_{n+1}$, where $v_{2 n}=\frac{1}{2 n+1}$ and $v_{2 n-1}=0$. Note that $Q^{2}=0$ and $A Q \neq Q A$. Moreover, $T=A+Q$ is a forward weighted shift with weight sequence $w_{2 n}=1+\frac{1}{2 n+1}$ and $w_{2 n+1}=1$.

Acknowledgments

This research was supported by the Mavdasht University of Islamic Azad University, Marvdasht.

References

[1] Agler J. A disconjugacy theorem for Toeplitz operators. Am J Math 1990; 112: 1-14.
[2] Agler J, Stankus M. m-Isometric transformations of Hilbert space. I. Integr Equ Oper Theory 1995; 21: 383-429.
[3] Agler J, Stankus M. m-Isometric transformations of Hilbert space. II. Integr Equ Oper Theory 1995; 23: 1-48.
[4] Agler J, Stankus M. m-Isometric transformations of Hilbert space. III. Integr Equ Oper Theory 1996; 24: 379-421.
[5] Athavale A. Some operator-theoretic for positive definite kernels. Proc Amer Math Soc 1991; 112: 701-708.
[6] Bermúdez T, Martinón A, Negrín E. Weighted shift operators which are m-isometries. Integr Equ Oper Theory 2012; 68: 301-312.
[7] Bermúdez T, Martinón A, Noda JA. An isometry plus a nilpotent is an m-isometry. Applications. J Math Anal Appl 2013; 407: 505-512.
[8] Chō M, Ôta S, Tanahashi K. Invertible weighted shift operators which are m-isometries. Proc Amer Math Soc 2013; 141: 4241-4247.
[9] Conway JB. The Theory of Subnormal Operators. Amer Math Soc Surveys and Monographs 36, Providence, 1991.
[10] Faghih-Ahmadi M, Hedayatian K. m-isometric weighted shifts and reflexivity of some operators. Rocky Mountain J Math 2013; 43: 123-133.
[11] Yarmahmoodi S, Hedayatian K, Yousefi B. Supercyclicity and hypercyclicity of an isometry plus a nilpotent. Abstract and Applied Analysis, 2011; Article ID 686832: 11 pages.

[^0]: *Correspondence: hedayati@shirazu.ac.ir
 2010 AMS Mathematics Subject Classification: 47B37.

