

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2016) 40: 1114 – 1117 © TÜBİTAK doi:10.3906/mat-1507-54

Research Article

Isometric N-Jordan weighted shift operators

Saeed YARMAHMOODI¹, Karim HEDAYATIAN^{2,*}

¹Department of Mathematics, Marvdasht University, Islamic Azad University, Marvdasht, Iran ²Department of Mathematics College of Sciences, Shiraz University, Shiraz, Iran

Received: 13.07.2015 •	Accepted/Published Online: 23.12.2015	•	Final Version: 21.10.2016
-------------------------------	---------------------------------------	---	----------------------------------

Abstract: A bounded linear operator T on a Hilbert space is an isometric N-Jordan operator if it can be written as A + Q, where A is an isometry and Q is a nilpotent of order N such that AQ = QA. In this paper, we will show that the only isometric N-Jordan weighted shift operators are isometries. This answers a question recently raised.

Key words: Isometric N-Jordan operator, nilpotent, weighted shift operator

1. Introduction and preliminaries

Let H be a Hilbert space and B(H) stand for the space of all bounded linear operators on H. An operator Tin B(H) is called an isometric N-Jordan operator if T = A + Q, where A is an isometry and Q is a nilpotent operator of order N, that is, $Q^N = 0$ but $Q^{N-1} \neq 0$, and AQ = QA. Note that the notions of isometric 1-Jordan and isometry coincide. It follows from Proposition 1.1 of [11] that the operator T is injective. The dynamic and spectral properties of T have been studied in [11]. We note that T^*T is invertible. Indeed, by Corollary 1.2 of [11] the operator T is bounded below, and so for every $h \in H$,

$$||T^*Th|| ||h|| \ge |\langle T^*Th, h\rangle| = ||Th||^2 \ge c||h||^2$$

for some c > 0, which implies that T^*T is also bounded below and so is injective and has closed range. However,

$$H = (\ker(T^*T))^{\perp} = \overline{\operatorname{ran}(T^*T)} = \operatorname{ran}(T^*T)$$

implies that T^*T is invertible. It is easy to see that if A is a unitary operator then

$$(T^*T)^{-1} = 3I - 3TT^* + T^2T^{*2}.$$

For a positive integer m an operator $S \in B(H)$ is an m-isometry if

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} S^{*k} S^{k} = 0.$$

The operator S is called a strict m-isometry if it is not an (m-1)-isometry. These operators have been introduced by Agler in [1] and have been studied extensively by Agler and Stankus in three papers [2–4].

^{*}Correspondence: hedayati@shirazu.ac.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 47B37.

Recently, such operators have been considered by several authors. It is proved in [7] that every isometric N-Jordan operator is a strict (2N - 1)-isometry. The authors asked about the validity of the converse. In this paper, we prove that the answer is negative.

2. Main results

Suppose that H is a separable Hilbert space with orthonormal basis $\{e_n\}_{n\geq 0}(\{e_n\}_{n\in\mathbb{Z}})$. An operator $S\in B(H)$ is called a unilateral (bilateral) weighted forward shift, provided that for every $n\geq 0$ $(n\in\mathbb{Z})$, $Se_n=w_ne_{n+1}$, where $(w_n)_n$ is a sequence of bounded complex numbers. Note that S is injective if and only if $w_n \neq 0$, for every n. It is known that S is an isometry if and only if $|w_n| = 1$ for all n, and is hyponormal if and only if its weight sequence is increasing [9]. Furthermore, m-isometric weighted backward shift. In this section, we will show that the only isometric N-Jordan weighted shift operators are isometries.

Theorem 1 There is no isometric N-Jordan weighted shift operator when N > 1.

Proof In contrast, assume that T = A + Q is an isometric N-Jordan weighted shift operator. In the proof of Theorem 2.2 of [7], it is shown that

$$\sum_{k=0}^{2N-2} (-1)^k \binom{2N-2}{k} \|T^k h\|^2 = \frac{(2N-2)!}{((N-1)!)^2} \|Q^{N-1}h\|^2.$$

Let J be the set $\mathbb{N} \cup \{0\}$ or \mathbb{Z} and suppose that the operator T is a forward shift operator with weight sequence $(w_n)_n$. Put $Q^{N-1}e_0 = \sum_{n \in J} c_n e_n$. Thus the above equality shows that

$$0 = \sum_{k=0}^{2N-2} (-1)^k {\binom{2N-2}{k}} \|T^k(Q^{N-1}e_0)\|^2$$

$$= \sum_{k=0}^{2N-2} (-1)^k {\binom{2N-2}{k}} \|\sum_{n\in J} c_n T^k e_n\|^2$$

$$= \sum_{k=0}^{2N-2} (-1)^k {\binom{2N-2}{k}} \|\sum_{n\in J} c_n (\prod_{i=0}^{k-1} w_{n+i})e_{n+k}\|^2$$

$$= \sum_{k=0}^{2N-2} (-1)^k {\binom{2N-2}{k}} \sum_{n\in J} |c_n|^2 \left|\prod_{i=0}^{k-1} w_{n+i}\right|^2$$

$$= \sum_{n \in J} |c_n|^2 \sum_{k=0}^{2N-2} (-1)^k \binom{2N-2}{k} \left\| T^k e_n \right\|^2$$
$$= \sum_{n \in J} |c_n|^2 \frac{(2N-2)!}{((N-1)!)^2} \left\| Q^{N-1} e_n \right\|^2.$$

On the other hand, for every $n \in J$

$$Q^{N-1}Ae_n = w_n Q^{N-1}e_{n+1},$$

and so

$$\|Q^{N-1}e_n\| = |w_n| \, \|Q^{N-1}e_{n+1}\|.$$
(1)

Therefore, if $Q^{N-1}e_0 = 0$ then $Q^{N-1}e_n = 0$ for every $n \in J$; hence $Q^{N-1} \equiv 0$, which is a contradiction. Moreover, if $Q^{N-1}e_0$ is nonzero then there is $n_0 \in J$ such that $c_{n_0} \neq 0$ and the previous argument shows that $Q^{N-1}e_{n_0} = 0$. Thus, (1) shows that $Q^{N-1}e_n = 0$ for every $n \in J$; hence $Q^{N-1} \equiv 0$, which is again a contradiction. Now suppose that $Te_n = w_n e_{n-1}$ $(n \in \mathbb{Z})$ is a bilateral backward shift operator. Define the unitary operator U on H by $U\left(\sum_{n \in \mathbb{Z}} \beta_n e_n\right) = \sum_{n \in \mathbb{Z}} \beta_n e_{-n}$. It is easily seen that SU = UT, where S is the bilateral forward shift defined by $Se_n = w_{-n}e_{n+1}$. Put $B = UAU^{-1}$ and $P = UQU^{-1}$; therefore, S = B + Pis an isometric N-Jordan operator which is impossible. Lastly, since every unilateral backward shift is not injective, we conclude that T cannot be a unilateral weighted backward shift. \Box

For a positive integer m let T be the unilateral weighted shift with weight sequence $w_n = \sqrt{\frac{n+m}{n+1}}$, $n \ge 0$. It is known that T is a strict m- isometric operator (see [5, Proposition 8]). Moreover, it is proved in [8] that for every odd number m, there is an invertible bilateral weighted shift that is a strict m-isometry. Thus, we have the following corollary that answers the question posed in [7].

Corollary 1 For a fixed m > 1, there is a strict *m*-isometric operator *T* so that it is not an isometric *N*-Jordan operator for every $N \ge 1$.

Recall that an operator is a co-isometry if its adjoint is an isometry.

Corollary 2 If the operator S = B + P is a weighted shift where B is a co-isometry, P is a nilpotent operator and BP = PB; then P = 0.

Proof Apply the preceding theorem for $S^* = B^* + P^*$. \Box Note that the commutativity of A and Q is essential in the preceding theorem as the following example shows.

Example 1 Let $\{e_n\}_n$ be an orthonormal basis for the Hilbert space H. Define the isometric operator A by $Ae_n = e_{n+1}$ for all n and the weighted shift operator Q by $Qe_n = v_n e_{n+1}$, where $v_{2n} = \frac{1}{2n+1}$ and $v_{2n-1} = 0$. Note that $Q^2 = 0$ and $AQ \neq QA$. Moreover, T = A + Q is a forward weighted shift with weight sequence $w_{2n} = 1 + \frac{1}{2n+1}$ and $w_{2n+1} = 1$.

Acknowledgments

This research was supported by the Mavdasht University of Islamic Azad University, Marvdasht.

References

- [1] Agler J. A disconjugacy theorem for Toeplitz operators. Am J Math 1990; 112: 1-14.
- [2] Agler J, Stankus M. m-Isometric transformations of Hilbert space. I. Integr Equ Oper Theory 1995; 21: 383-429.
- [3] Agler J, Stankus M. m-Isometric transformations of Hilbert space. II. Integr Equ Oper Theory 1995; 23: 1-48.
- [4] Agler J, Stankus M. *m*-Isometric transformations of Hilbert space. III. Integr Equ Oper Theory 1996; 24: 379-421.
- [5] Athavale A. Some operator-theoretic for positive definite kernels. Proc Amer Math Soc 1991; 112: 701-708.

- [6] Bermúdez T, Martinón A, Negrín E. Weighted shift operators which are m-isometries. Integr Equ Oper Theory 2012; 68: 301-312.
- [7] Bermúdez T, Martinón A, Noda JA. An isometry plus a nilpotent is an *m*-isometry. Applications. J Math Anal Appl 2013; 407: 505-512.
- [8] Chō M, Ôta S, Tanahashi K. Invertible weighted shift operators which are *m*-isometries. Proc Amer Math Soc 2013; 141: 4241-4247.
- [9] Conway JB. The Theory of Subnormal Operators. Amer Math Soc Surveys and Monographs 36, Providence, 1991.
- [10] Faghih-Ahmadi M, Hedayatian K. *m*-isometric weighted shifts and reflexivity of some operators. Rocky Mountain J Math 2013; 43: 123-133.
- [11] Yarmahmoodi S, Hedayatian K, Yousefi B. Supercyclicity and hypercyclicity of an isometry plus a nilpotent. Abstract and Applied Analysis, 2011; Article ID 686832: 11 pages.