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Abstract:This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations.

In this work, the space dimension is discretized to the Gauss−Lobatto points. We use the normalized Grunwald

approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This

approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples

with numerical results in tables and figures displayed.
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1. Introduction

In recent years, due to the accuracy of fractional differential equations in describing a variety of engineering and

physics fields, such as kinetics [23, 24, 26, 27, 34, 35, 39], solid mechanics [32], quantum systems [38], magnetic

plasma [25], and economics [3], many researchers are interested in fractional calculus. In [39] the concepts of

fractional kinetic, such as particle dynamics in different potentials, particle advection in fluids, plasma physics,

fusion devices, and quantum optics, were discussed. The fractional kinetics of the diffusion, diffusion-advection,

and Fokker−Planck type were presented, which derived from the generalization of the master equations, and

the Langevin equations were presented [23].

However, because of the complex structure of the fractional kinetic equations, analytical solutions of these

equations are very rare. Hence, the study of the numerical methods to solve these equations is increasing. The

time fractional diffusion equation is one of these equations that we will focus on for the new numerical solution

for it. In this equation the first-order time derivative is replaced by a fractional derivative of order 0 < α ≤ 1.

Some numerical methods for the single-term time fractional diffusion equations are as follows.

Valko and Abate [36] proposed numerical inversion of the 2-D Laplace transform to solve the time

fractional diffusion equation on a semiinfinite domain. Li and Xu [15] developed the numerical solution for time

fractional diffusion equations based on spectral methods for both time and space dimensions, and they also [17]

presented a numerical approach based on FDM in time and the Legendre spectral method in space. Podlubny et

al. [31] presented a general method based on the matrix form representation of the discretized fractional operator
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[30]. Murio [24] developed an implicit unconditionally stable numerical approach to solve time fractional diffusion

equations on a finite slab. Scherer et al. [33], for numerical solution of time fractional diffusion equations with

nonzero initial conditions, presented a modification of the Grunwald−Letnikov approximation for the Caputo

time derivative. The authors of [12] proposed a numerical method to solve FPDEs based on the high-order

finite element method for space and FDM for time. A numerical method for the solution of time fractional

diffusion equations in one- and two-dimensional cases was presented in [5], which applied FDM in time and the

Kansa method in the space dimension. Dou and Hon [7] proposed a numerical computation for backward time

fractional diffusion equations, and also some examples in one- and two-dimensional cases were considered. Wei

and Zhang [37] considered a Cauchy problem of 1-D time fractional diffusion equations. Finally, the Sinc−Harr

collocation method [28], a new difference scheme [1] to solve time fractional diffusion equations, was presented.

In this paper, we consider the multiterm time fractional diffusion equation

∂αu(x, t)

∂tα
+

m∑
i=1

bi
∂βiu(x, t)

∂tβi
− ∂2u(x, t)

∂x2
= f(x, t), (x, t) ∈ [−1, 1]× [0, T ] (1)

with initial and boundary conditions

u(x, 0) = v(x), u(−1, t) = g1(t), u(1, t) = g2(t), (x, t) ∈ [−1, 1]× [0, T ]

where 0 ≤ βi ≤ 1 and ∂αu
∂tα is the Caputo fractional derivative of order 0 ≤ α ≤ 1. Unlike the single-

term fractional diffusion equation, mathematical studies on the numerical solution for the multiterm fractional

diffusion equation are very rare. Some studies on the multiterm fractional diffusion equation were presented in

[13, 16, 19, 21].

Now we present a new numerical approach to solve the time fractional diffusion equation in which the

space dimension is discretized to Gauss−Lobatto points, and then a pseudospectral integration matrix is applied.

Hence, we review briefly the history of the pseudospectral integration matrix, which is the main method in this

paper. El-Gendi [9] presented an operational matrix based on the Clenshaw−Curtis quadrature scheme [6] to

solve some linear integral equations of Fredholm and Volterra types, and then he extended this method for the

solution of the linear integrodifferential and ODEs. El-Gendi et al. [10] presented a new matrix for successive

integration of a function, which was generalization of the El-Gendi operational matrix [9]. Elbarbary [8] used

some properties of integrals and derivatives of Chebyshev polynomials and modified the El-Gendi successive

integration matrix [10] to derive an operational matrix for n-fold integrations (pseudospectral integration matrix)

of a function. This matrix has more accurate results. Gholami [11], for the first time, applied this matrix with

the FDM to solve a PDE, and then in [2] with coauthors used this matrix to solve a PDE alone. Now we apply the

pseudospectral successive integration matrix for the space dimension and normalized Grunwald approximation

for the time dimension to solve single and multiterm time fractional diffusion equations.

2. Preliminaries

2.1. Concepts of fractional derivatives

In this subsection we present the most important definitions for the fractional derivatives.
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Definition 2.1.1. The Riemann−Liouville fractional derivative of order m− 1 < α < m is

aD
α
xf(x) =

[
1

Γ(m− α)

dm

dξm

∫ ξ

a

(ξ − η)m−α−1 f(η) dη

]
ξ=x

, (2)

xD
α
b f(x) =

[
1

Γ(m− α)

dm

dξm

∫ b

ξ

(η − ξ)m−α−1 f(η) dη

]
ξ=x

. (3)

Definition 2.1.2. The Caputo fractional derivative of order m− 1 < α < m is

C
a D

α
xf(x) =

1

Γ(m− α)

∫ x

a

(x− η)m−α−1 f (m)(η) dη, (4)

C
x D

α
b f(x) =

1

Γ(m− α)

∫ b

x

(η − x)m−α−1 f (m)(η) dη. (5)

Definition 2.1.3. [20] The Grunwald−Letnikov fractional derivative of order m− 1 < α < m is

Dα
a+f(x) = lim

h→0,nh=x−a
h−α

n∑
j=0

(−1)
j

(
α

j

)
f(x− jh), (6)

Dα
b−f(x) = lim

h→0,nh=b−x
h−α

n∑
j=0

(−1)
j

(
α

j

)
f(x+ jh). (7)

From [29] we can write

Dα
a+f(x) =

m−1∑
j=0

f (j)(a)(x− a)
j−α

Γ(j − α+ 1)
+

1

Γ(m− α)

∫ x

a

(x− η)m−α−1 f (m)(η) dη, (8)

Dα
b−f(x) =

m−1∑
j=0

(−1)j f (j)(b)(b− x)
j−α

Γ(j − α+ 1)
+

(−1)m

Γ(m− α)

∫ b

x

(η − x)m−α−1 f (m)(η) dη, (9)

for m − 1 < α < m . Using repeated integration by parts and then differentiation of the Riemann−Liouville

fractional derivative we have

1

Γ(m− α)

dm

dξm

∫ ξ

a

(ξ − η)m−α−1 f(η) dη =
m−1∑
j=0

f (j)(a)(ξ − a)
j−α

Γ(j − α+ 1)

+
1

Γ(m− α)

∫ ξ

a

(ξ − η)m−α−1 f (m)(η) dη. (10)

Similarly,

1

Γ(m− α)

dm

dξm

∫ b

ξ

(η − ξ)m−α−1 f(η) dη =

m−1∑
j=0

(−1)j f (j)(b)(b− ξ)
j−α

Γ(j − α+ 1)
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+
(−1)m

Γ(m− α)

∫ b

ξ

(η − ξ)m−α−1 f (m)(η) dη. (11)

These equations show that

aD
α
xf(x) = Dα

a+f(x), bD
α
xf(x) = Dα

b−f(x). (12)

Indeed, the Grunwald−Letnikov derivative and the Riemann−Liouville derivative are equivalent if the function

f(x) has m − 1 continuous derivatives and f (m)(x) is integrable on closed interval [a, b] . Using this fact

[18], by the relationship between the Riemann−Liouville fractional derivative and the Grunwald−Letnikov

fractional derivative we will derive a numerical solution such that we use the Riemann−Liouville definition

during problem formulation and then the Grunwald−Letnikov definition for achieving the numerical solution.

From the standard Grunwald definition we have:

Definition 2.1.4. [40] The standard Grunwald formula for u(x, t) for which a ≤ x ≤ b is

Dα
a+u(x, t) = lim

M1→∞
h−α
1

M1∑
j=0

(−1)
j

(
α

j

)
u(x− jh1, t), (13)

Dα
b−u(x, t) = lim

M2→∞
h−α
2

M2∑
j=0

(−1)
j

(
α

j

)
u(x+ jh2, t), (14)

where M1,M2 ∈ N,h1 = x−a
M1

, h2 = b−x
M2

and g
(j)
α are the normalized Grunwald weights functions defined

as

g(j)α = −α− j + 1

j
g(j−1)
α , j = 1, 2, 3, ... (15)

with g
(0)
α = 1.

Let Ω = [a, b]×[0, T ], (x, t) ∈ Ω, tk = kτ, k = 0(1)n, xi = a+ih, i = 0(1)m, with τ = T
n and h = b−a

m being

time and space steps, respectively. From [22], for u(x, t) ∈ L1(Ω), Dα
a+u(x, t) ∈ ℓ(Ω) and Dα

b−u(x, t) ∈ ℓ(Ω), we

obtain

Dα
a+u(xi, tk) = h−α

i∑
j=0

(−1)
j

(
α

j

)
u(xi−j , tk) +O(h), (16)

Dα
b−u(xi, tk) = h−α

m−i∑
j=0

(−1)
j

(
α

j

)
u(xi+j , tk) +O(h). (17)

2.2. Pseudospectral integration matrix

We assume that (PNf)(x) is the N th order Chebyshev interpolating polynomial of the function f(x) at the

points (xk, f(xk)) where

(PNf)(x) =

N∑
j=0

fj φj(x), (18)
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with

φj(x) =
2αj

N

N∑
r=0

αr Tr(x)Tr(xj), (19)

where φj(xk) = δj,k (δj,k is the Kronecker delta) and α0 = αN = 1/2 , αj = 1 for j = 1(1)N − 1. Since

(PNf)(x) is a unique interpolating polynomial of order N, it can be expressed in terms of a series expansion of

the classical Chebyshev polynomials, and hence we have

(PNf)(x) =

N∑
r=0

ar Tr(x), (20)

where

ar =
2αr

N

N∑
j=0

αj f(xj)Tr(xj). (21)

The successive integration of f(x) in the interval [−1, xk] can be estimated by successive integration of

(PNf)(x). Thus, we have

In(f) ≃
N∑
r=0

ar

∫ x

−1

∫ tn−1

−1

∫ tn−2

−1

...

∫ t2

−1

∫ t1

−1

Tr(t0) dt0 dt1... dtn−2 dtn−1. (22)

Theorem 1. [14] The exact relation between Chebyshev functions and their derivatives is expressed as

Tr(x) =
n∑

m=0

(−1)m
(
n
m

)
2nχm

T
(n)
r+n−2m, r > n,

where

χm =

n∏
j=0

j ̸=n−m

(r + n−m− j).

Theorem 2. [8] The successive integration of Chebyshev polynomials is expressed in terms of Chebyshev poly-

nomials as ∫ x

−1

∫ tn−1

−1

∫ tn−2

−1

...

∫ t2

−1

∫ t1

−1

Tr(t0) dt0 dt1... dtn−2 dtn−1 =

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(x),

where

ξn,m,r(x) = Tr+n−2m(x)−
n−1∑
i=0

ηi T
(i)
r+n−2m(−1),

ηi =
i∑

j=0

xj

(i− j)!j!
, χm =

n∏
j=0

j ̸=n−m

(r + n−m− j),

βi =

{
2 i = 0,
1 i > 0,

γi =

 n i = 0,
n− i+ 1 1 ≤ i ≤ n,
0 i > n.
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Thus, from Theorem 2 and relations (21) and (22), we have

In(f) ≃
N∑
j=0

(
2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(x)

)
f(xj).

The matrix form of the successive integration of the function f(x) at the Gauss–Lobatto points xk is

[In(f)] =

[
N∑
j=0

(
2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(x)

)
f(xj)

]
= Θ(n)[f ]. (23)

The elements of the matrix Θ(n) are

ϑ
(n)
k,j =

2αj

N

N∑
r=0

αr Tr(xj)

n−γr∑
m=0

βr

(−1)m
(
n
m

)
2nχm

ξn,m,r(xk). (24)

The matrix Θ(n) in (23), presented in [8], is called the pseudospectral integration matrix.

3. Single and multiterm fractional diffusion equations

3.1. Time fractional diffusion equation

We consider the time fractional diffusion equation

∂αu(x, t)

∂tα
= k(t)

∂2u(x, t)

∂x2
+ q(t)u(x, t) + f(x, t), (x, t) ∈ [−1, 1]× [0, T ], (25)

with initial condition

u(x, 0) = v(x), −1 ≤ x ≤ 1,

and boundary conditions

u(−1, t) = g1(t), u(1, t) = g2(t), 0 ≤ t ≤ T,

where ∂αu(x,t)
∂tα is the Caputo fractional derivative of order 0 ≤ α ≤ 1 and v(x), g1 and g2 are known functions.

In equation (12) it is illustrated that the Grunwald−Letnikov derivative and Riemann−Liouville derivative

are equivalent under the discussed conditions. Hence, we use this fact to derive a numerical approach [18]

for the solution of fractional differential equations such that in these equations we use the Riemann−Liouville

definition during problem formulation and then the Grunwald−Letnikov definition for deriving the numerical

solution. The relationship between Caputo derivative ∂α

∂tα and Riemann−Liouville derivative 0D
α
t is [4]

∂αu(x, t)

∂tα
= 0D

α
t u(x, t)−

u(x, 0)

tαΓ(1− α)
, 0 ≤ α ≤ 1.

Hence, we can write equation (25) for 0 ≤ α ≤ 1 as

0D
α
t u(x, t)−

v(x)

tαΓ(1− α)
= k(t)

∂2u(x, t)

∂x2
+ q(t)u(x, t) + f(x, t), (x, t) ∈ [−1, 1]× (0, T ]. (26)
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Now we apply the pseudospectral integration matrix for discretization of the space dimension to the Gauss−Lobatto

points xi = − cos iπ
N for N ∈ N . Assume that

∂2 u(x, t)

∂x2


xi

= φ(xi, t), (27)

∂u(x, t)

∂x


xi

=
N∑
j=0

ϑ
(1)
i,j φ(xj , t) + c1, (28)

u(xi, t) =
N∑
j=0

ϑ
(2)
i,j φ(xj , t) + c1(xi + 1) + c2, (29)

for i = 0(1)N . We can find the constants c1 and c2 to satisfy the boundary conditions. From these conditions

we obtain

c1 = −1

2

( N∑
j=0

ϑ
(2)
N,j φ(xj , t) + g1(t)− g2(t)

)
, c2 = g1(t).

By substituting c1 and c2 into (29), we have

u(xi, t) =
N∑
j=0

ϑ
(2)
i,j φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , t) + pi(t), (30)

in which

Pi(t) = −1

2
(xi + 1)

(
g1(t)− g2(t)

)
+ g1(t). (31)

Now, we substitute (27) and (30) into main equation (26) to obtain

N∑
j=0

ϑ
(2)
i,j 0D

α
t φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j 0D

α
t φ(xj , t)

= q(t)

( N∑
j=0

ϑ
(2)
i,j φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , t) + pi(t)

)

+k(t)φ(xi, t)− 0D
α
t pi(t) +

v(xi)

tαΓ(1− α)
+ f(xi, t), i = 0(1)N. (32)

Let

tk = kτ, k = 0(1)m, τ =
T

m
,

and use the Grunwald−Letnikov approximation instance with the Riemann−Liouville derivative in the time

dimension to obtain the numerical formula as

0D
α
tk
φ(xj , t) = τ−α

k∑
r=0

g(r)α φ(xj , tk−r), k = 0(1)m, (33)
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where g
(r)
α are normalized Grunwald weights functions. Hence, we insert (33) into (32) to obtain

τ−α
k∑

r=0

g(r)α

( N∑
j=0

ϑ
(2)
i,j φ(xj , tk−r) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , tk−r)

)

= q(tk)

( N∑
j=0

ϑ
(2)
i,j φ(xj , tk) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j φ(xj , tk) + pi(tk)

)
+ k(tk)φ(xi, tk)

+
v(xi)

tαkΓ(1− α)
− 0D

α
tk
pi(tk) + f(xi, tk), i = 0(1)N, k = 1(1)m. (34)

We recall from [2] to summarize

Ai =
[
ϑ
(2)
i,0 , ϑ

(2)
i,1 , ..., ϑ

(2)
i,N

]
− 1

2
(Xi + 1)

[
ϑ
(2)
N,0, ϑ

(2)
N,1, ..., ϑ

(2)
N,N

]
, (35)

Φk =
[
φ0,k, φ1,k, ..., φN,k

]t
, (36)

and then apply g
(0)
α = 1 to obtain[(

τ−α − q(tk)
)
Ai

]
Φk − k(tk)φ(xi, tk) =

v(xi)

tαkΓ(1− α)
− 0D

α
tk
pi(tk)

+pi(tk)q(tk) + f(xi, tk)− τ−α
k∑

r=1

g(r)α AiΦ
k−r (37)

for i = 0(1)N and k = 1(1)m . Indeed, (37) is the following system:

AkΦk = Bk (38)

for i = 0(1)N and k = 1(1)m since Φ0 = φ(xi, 0) = V ′′(xi) from the initial condition. With all unknowns

φ(xi, tk) obtained by solving this system, finally we can approximate the solutions from equation (30).

3.2. The multiterm time fractional diffusion equation

We consider the multiterm time fractional diffusion equation (1) for m = 1 and b1 = 1 as

∂αu(x, t)

∂tα
+

∂βu(x, t)

∂tβ
=

∂2u(x, t)

∂x2
+ f(x, t), (x, t) ∈ [−1, 1]× [0, T ], (39)

with initial condition

u(x, 0) = v(x), −1 ≤ x ≤ 1,

and boundary conditions

u(−1, t) = g1(t), u(1, t) = g2(t), 0 ≤ t ≤ T,
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with 0 ≤ α, β ≤ 1. Similar to the previous subsection, we apply a pseudospectral integration matrix for

xi = −cos( iπN ) and we have the same procedure as in (27)–(31) exactly. Now, from the relationship between

Caputo and Riemann−Liouville fractional derivatives, we can write equation (39) as

0D
α
t u(x, t) + 0D

β
t u(x, t) =

∂2u(x, t)

∂x2
+ F(x, t), (x, t) ∈ [−1, 1]× [0, T ], (40)

in which

F(x, t) = f(x, t) + v(x)

(
t−α

Γ(1− α)
+

t−β

Γ(1− β)

)
.

Substituting (27) and (30) into main equation (40) gives us

N∑
j=0

ϑ
(2)
i,j 0D

α
t φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j 0D

α
t φ(xj , t)

+
N∑
j=0

ϑ
(2)
i,j 0D

β
t φ(xj , t) − 1

2
(xi + 1)

N∑
j=0

ϑ
(2)
N,j 0D

β
t φ(xj , t)

= φ(xi, t) +Hα,β(xi, t), i = 0(1)N, (41)

in which

Hα,β(xi, t) = F(xi, t)− 0D
α
t Pi(t)− 0D

β
t Pi(t).

Let

tk = kτ, k = 0(1)m, τ =
T

m
,

and use the normalized Grunwald−Letnikov approximation instance of the Riemann−Liouville derivative as

0D
α
tk
φ(xj , t) = τ−α

k∑
r=0

g(r)α φ(xj , tk−r), k = 0(1)m, (42)

0D
β
tk
φ(xj , t) = τ−β

k∑
r=0

g(r)α φ(xj , tk−r), k = 0(1)m. (43)

By using the notations in [2] and equations (42) and (43) we can write equation (41) as

(
τ−α

k∑
r=0

g(r)α + τ−β
k∑

r=0

g
(r)
β

)
Ai Φ

k−r − φ(xi, tk) = Hα,β(xi, tk), (44)

for i = 0(1)N and k = 1(1)m . Finally, because g
(0)
α = 1 for any α , we have

(
τ−α + τ−β

)
Ai Φ

k − φ(xi, tk) = Hα,β(xi, tk)−Ai

k∑
r=1

[
τ−α g(r)α + τ−β g

(r)
β

]
Φk−r, (45)
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for i = 0(1)N and k = 1(1)m . Indeed, (45) is the following system:

AΦk = Bk, i = 0(1)N, k = 1(1)N. (46)

For k = 0 from the initial condition we have Φ0 = φ(xi, 0) = V ′′(xi). All unknowns φ(xi, tk) are obtained by

solving this system and finally we can approximate the solutions from equation (30).

4. Numerical results

Example 1. Consider the time fractional diffusion equation in [1] by translating 0 ≤ x ≤ 1 to −1 ≤ X ≤ 1 as

∂αw(X, t)

∂tα
= 4k(t)

∂2w(X, t)

∂X2
− q(t)w(X, t) + f(X, t), (47)

where 0 ≤ t ≤ 1 and 0 ≤ α ≤ 1 with initial condition

w(x, 0) = 0, −1 ≤ X ≤ 1,

and boundary conditions

w(−1, t) = w(1, t) = 0, 0 ≤ t ≤ 1,

in which k(t) = et , q(t) = 1− sin (2t) and

f(X, t) =

[
π2 t2 et + t2(1− sin (2t)) +

2t2−α

Γ(3− α)

]
sin

(π(X + 1)

2

)
.

The exact solution of this equation is w(X, t) = t2 sin
(π(X+1)

2

)
. The numerical results of this problem are

presented in the Tables 1–3 and Figures 1–4.

Table 1. Max errors for example 1 when N = 4 and m = 4.

t α = 0.1 α = 0.75 α = 0.85 α = 0.95
0.25 4.98E –4 8.47E –3 1.07E –2 1.32E –2
0.5 8.64E –4 9.74E –3 1.18E –2 1.40E –2
0.75 1.13E –3 9.12E –3 1.06E –2 1.20E –2
1 1.35E –3 8.02E –3 8.95E –3 9.77E –3

Example 2. We consider the one-dimensional multiterm time fractional diffusion equation in [13] by translat-

ing 0 ≤ x ≤ 1 to −1 ≤ X ≤ 1 as

∂αw(X, t)

∂tα
+

∂βw(X, t)

∂tβ
− 4

∂2w(X, t)

∂X2
= f(X, t), (X, t) ∈ [−1, 1]× [0, 1], 0 ≤ α, β ≤ 1, (48)

with initial and boundary conditions

w(X, 0) =
1−X2

4
, w(−1, t) = w(1, t) = 0,

and

f(X, t) =

(
t2−α

Γ(3− α)
+

t2−β

Γ(3− β)

)(1−X2

2

)
+ 2(1 + t2).
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Table 2. Max errors for example 1 when N = 4 and

m = 10.

t α = 0.1 α = 0.75 α = 0.85 α = 0.95
0.1 9.56E –5 2.49E –3 3.26E –3 4.14E –3
0.2 1.84E –4 3.50E –3 4.54E –3 5.77E –3
0.3 2.65E –4 3.94E –3 5.00E –3 6.25E –3
0.4 3.43E –4 4.11E –3 5.08E –3 6.20E –3
0.5 4.18E –4 4.13E –3 4.98E –3 5.93E –3
0.6 4.92E –4 4.06E –3 4.79E –3 5.57E –3
0.7 5.67E –4 3.94E –3 4.57E –3 5.19E –3
0.8 6.44E –4 3.80E –3 4.32E –3 4.82E –3
0.9 7.24E –4 3.65E –3 4.09E –3 4.48E –3
1 8.07E –4 3.51E –3 3.87E –3 4.18E –3

Table 3. Max errors for example 1 when N = 4, 8 and

m = 20.

t α = 0.1 α = 0.75 α = 0.85 α = 0.95
0.05 2.62E –5 8.73E –4 1.15E –3 1.45E –3
0.1 5.18E –5 1.35E –3 1.80E –3 2.31E –3
0.15 7.69E –5 1.65E –3 2.18E –3 2.81E –3
0.2 1.02E –4 1.84E –3 2.40E –3 3.09E –3
0.25 1.27E –4 1.96E -3 2.53E –3 3.22E –3
0.3 1.53E –4 2.04E -3 2.59E –3 3.26E –3
0.35 1.79E –4 2.09E –3 2.62E –3 3.24E –3
0.4 2.06E -4 2.12E –3 2.62E –3 3.19E –3
0.45 2.34E –4 2.13E –3 2.60E –3 3.12E –3
0.5 2.63E –4 2.14E –3 2.57E –3 3.04E –3
0.55 2.93E –4 2.13E –3 2.53E –3 2.96E –3
0.6 3.25E –4 2.12E –3 2.49E –3 2.87E –3
0.65 3.57E –4 2.10E –3 2.44E –3 2.78E –3
0.7 3.91E –4 2.08E –3 2.39E –3 2.70E –3
0.75 4.26E –4 2.06E –3 2.35E –3 2.62E –3
0.8 4.62E –4 2.04E –3 2.30E –3 2.54E –3
0.85 5.00E –4 2.02E –3 2.26E –3 2.48E –3
0.9 5.40E –4 2.01E –3 2.22E –3 2.41E –3
0.95 5.80E –4 1.99E –3 2.19E –3 2.35E –3
1 6.23E –4 1.97E –3 2.15E –3 2.30E –3
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Figure 1. Comparison of numerical solutions of example

1 at t = 0.25.
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Figure 2. Comparison of numerical solutions of example

1 at t = 0.75.

The exact solution of (48) is

w(X, t) = (1 + t2)
(1−X2

4

)
.

The numerical results of this problem are presented in the Tables 4 and 5 and Figures 5–7.

Example 3. Considering the time fractional diffusion equation in [28] by translating 0 ≤ x ≤ 1 to −1 ≤ X ≤ 1
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Figure 3. The approximation solution of example 1 when

α = 0.75.
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Figure 4. The approximation solution of example 1 when

α = 0.1.

Table 4. Max errors for example 2 when N = m = 4 and

β = 0.2.

t α = 0.25 α = 0.5 α = 0.95
0.25 4.25E –3 5.55E –3 5.54E –3
0.5 3.19E –3 4.59E –3 6.59E –3
0.75 3.16E –3 4.65E –3 6.99E –3
1 3.39E –3 5.00E –3 7.28E –3

Table 5. Max errors for example 2 when N = 5,m = 10

and β = 0.2.

t α = 0.25 α = 0.5 α = 0.95
0.1 3.76E –3 4.92E –3 2.17E –3
0.2 2.12E –3 2.97E –3 2.52E –3
0.3 1.57E –3 2.23E –3 2.56E –3
0.4 1.33E –3 1.92E –3 2.55E –3
0.5 1.22E –3 1.79E –3 2.53E –3
0.6 1.18E –3 1.74E –3 2.53E –3
0.7 1.17E –3 1.73E –3 2.54E –3
0.8 1.18E –3 1.75E –3 2.57E –3
0.9 1.21E –3 1.79E –3 2.59E –3
1 1.24E –3 1.84E –3 2.61E –3

as

∂αw(X, t)

∂tα
− 4

∂2w(X, t)

∂X2
= f(X, t), (X, t) ∈ [−1, 1]× [0, 1], 0 ≤ α ≤ 1, (49)

with initial and boundary conditions

w(X, 0) = 0, w(−1, t) = w(1, t) = 0,

and

f(X, t) =

(
Γ(3)

Γ(3− α)
t2−α + 4π2 t2

)
sin

(
π(X + 1)

)
,

the exact solution of (49) is

w(X, t) = t2 sin
(
π(X + 1)

)
.

The numerical results of this problem are presented in the Tables 6–8 and Figures 8–10.
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Figure 7. The approximation solution of example 2 when
α = 0.95 and β = 0.2.
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Figure 8. The approximation solution of example 3 for

N = m = 8 when α = 0.1.

Table 6. Max errors for example 3 when N = 4 and

m = 4.

t α = 0.1 α = 0.5 α = 0.99
0.25 4.50E –3 3.43E –3 2.58E –4
0.5 1.82E –2 1.66E –2 1.33E –2
0.75 4.13E –2 3.91E –2 3.61E –2
1 7.36E –2 7.11E –2 6.83E –2

Table 7. Max errors for example 3 when N = 8 and

m = 4.

t α = 0.1 α = 0.5 α = 0.99
0.25 1.55E –4 1.42E –3 5.25E –3
0.5 3.00E –4 2.15E –3 5.77E –3
0.75 4.36E –4 2.70E –3 5.84E –3
1 5.64E –4 3.15E –3 5.85E –3

5. Conclusion

In this paper, a new numerical approach for solutions of single and multiterm time fractional diffusion equations

is presented, in which the pseudospectral operational matrix has a critical role. For the first attempt, two

numerical methods, the pseudospectral integration matrix and normalized Grunwald approximation, are applied
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Table 8. Max errors for example 3 when N = 8 and m = 10.

t α = 0.1 α = 0.5 α = 0.99
0.1 2.70E –5 3.49E –4 1.84E –3
0.2 5.25E –5 5.35E –4 2.21E –3
0.3 7.64E –5 6.73E –4 2.30E –3
0.4 9.90E –5 7.88E –4 2.32E –3
0.5 1.21E –4 8.89E –4 2.32E –3
0.6 1.41E –4 9.78E –4 2.32E –3
0.7 1.61E –4 1.06E –3 2.31E –3
0.8 1.81E –4 1.13E –3 2.30E –3
0.9 2.00E –4 1.20E –3 2.27E –3
1 2.17E –4 1.27E –3 2.09E –3
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Figure 9. Comparison of numerical solutions of example

3 at t = 0.3.
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Figure 10. Comparison of numerical solutions of example

3 at some values of t .

simultaneously. The significance of this work is the presentation of a new discretization of the space dimension

based on the Gauss−Lobatto points. This method shows that with fewer number of points we can approximate

the solutions with enough accuracy. Finally, we hope to use the pseudospectral operational matrix for the

solution of fractional partial differential equations alone.
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