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Abstract: A spliced sequence is formed by combining all of the terms of two or more convergent sequences, in their

original order, into a new spliced sequence. In this paper replacing convergent sequences by bounded sequences, we

study the summability of spliced sequences and give some inequalities that provide us with approximation of the core

of transformation of these sequences by a summability matrix. We also present some further results via the Lebesgue

integral.
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1. Introduction

In 1930, the core of a sequence that is strongly related to the set of limit points of the sequence was introduced

by Knopp [10] and several properties of this concept have been studied since then. Particularly papers that

investigate under which conditions the core of the transformation of a sequence by a summability matrix is

a subset of the core of the original sequence have been written by many authors [1, 2, 6, 9, 12, 13]. In the

present paper we give some inequalities that are closely connected to the core of the transformation of a spliced

sequence by a summability matrix.

Recently Osikiewicz [14] studied the summability of spliced sequences. He has shown that A -limits of

spliced sequences are closely related to A -densities of the sets in the partition. Furthermore, Unver et al.

[16] have investigated the summability of spliced sequences in metric spaces and given the Bochner integral

representation of A -limits of the spliced sequences in Banach spaces.

A spliced sequence is formed by combining all of the terms of two or more convergent sequences, in

their original order, into a new spliced sequence [14]. In this paper replacing convergent sequences by bounded

sequences, we give some inequalities that help us to approximate the core of transformation of a spliced sequence.

Our results also reduce to Osikiewicz’s equalities in special cases. We also obtain some inequalities via a Lebesgue

integral. These inequalities extend a result in [16] for a real case. Throughout the paper we deal with the real

valued sequences and recall that the core of a bounded real sequence x is the interval [lim inf x, lim supx].

Let A = (ank) be a summability matrix and let x = (xk) be a sequence. If the sequence (Ax)n =∑
k ankxk exists, i.e. the series

∑
k ankxk is convergent for each n ∈ N then we say that Ax is the A -

transformation of x , where N is the set of all positive integers. If the sequence Ax converges to a number
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L then we say that x is A -summable to L. A summability matrix A is said to be regular if limn(Ax)n = L

whenever limk xk = L. The following theorem characterizes the regular matrices:

Theorem 1 A summability matrix A = (ank) is regular if and only if

i) sup
n

∑
k

|ank| < ∞,

ii) lim
n

∑
k

ank = 1,

iii) ak := lim
n

ank = 0 for all k ∈ N [3].

Let A = (ank) be a nonnegative regular summability matrix. Then the A− density of K ⊆ N is given

by

δA(K) := lim
n

∑
k∈K

ank

whenever the limit exists [4, 5, 7, 8, 11].

Let A = (ank) be a summability matrix. Then we let

χ(A) := lim
n

∑
k

ank −
∑
k

ak

whenever the series are convergent and the limit exists. Note that if the matrix A is conservative then χ(A)

exists [3]. Let A be a summability matrix and let K = {νj} be an infinite subset of N. Then the matrix

A[K] = (bnk) is said to be a column submatrix of A, where bnk = an,νk
for all n, k ∈ N. Now we recall the

following theorem of Rhoades [15]:

Theorem 2 Let A = (ank) be a summability matrix for which χ(A) is defined. If there exists an integer q

such that ank ≥ 0 for all k ≥ q then

lim inf
n

(Ax)n ≥
∞∑
k=1

akxk + χ(A) lim inf
n

xn

and

lim sup
n

(Ax)n ≤
∞∑
k=1

akxk + χ(A) lim sup
n

xn

whenever the series

∞∑
k=1

akxk is convergent [15].

Now we have the following

Lemma 1 Let A be a nonnegative regular summability matrix, let K := {νj} be an infinite subset of N , and

let x = (xk) be a bounded sequence. If δA(K) exists then

lim inf
n

(A[K]x)n ≥ δA(K) lim inf
n

xn (1.1)
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and

lim sup
n

(A[K]x)n ≤ δA(K) lim sup
n

xn. (1.2)

Proof Since A is regular then ak = 0 for all k ∈ N , which implies bk := lim
n

bnk = 0 for all k ∈ N , where

bnk = an,νk
for all n, k ∈ N . Hence we get from Theorem 2 that

lim inf
n

(A[K]x)n ≥
∞∑
k=1

bkxk + χ(A[K]) lim inf
n

xn

= χ(A[K]) lim inf
n

xn

=

(
lim
n

∑
k

bnk −
∑
k

bk

)
lim inf

n
xn

=

(
lim
n

∑
k

an,νk

)
lim inf

n
xn

=

(
lim
n

∑
k∈K

ank

)
lim inf

n
xn

= δA(K) lim inf
n

xn.

Taking −x instead of x in (1.1) it is easy to prove (1.2). 2

2. Finite Splices

Definition 1 Let M be a fixed positive integer. An M -partition of N consists of infinite sets Ki = {ϑi(j)}

for i = 1, 2, ...,M such that
M∪
i=1

Ki = N and for all i ̸= r Ki ∩Kr = ∅ .

Definition 2 Let {Ki : i = 1, 2, ...,M} be a fixed M -partition of N and let x(i) =
(
x
(i)
j

)
be a bounded sequence

for i = 1, 2, ...,M . If k ∈ Ki , then k = ϑi(j) for some j . Define x = (xk) as xk = xϑi(j) = x
(i)
j . Then x is

called an M∗ -splice over {Ki : i = 1, 2, ...,M} .

Note that in [14] the spliced sequences (M -splice) are obtained from convergent sequences and every

M -splice is also an M∗ -splice. Note that any M∗ -splice is bounded.

The following theorem shows how we can approximate the core of Ax.

Theorem 3 Let A be a nonnegative regular summability matrix and let {Ki = {ϑi(j)} : i = 1, 2, ...,M} be an

M -partition of N . If δA(Ki) exists for all i = 1, 2, ...,M then for any M∗ -splice x over {Ki} we have

lim inf
n

(Ax)n ≥
M∑
i=1

δA(Ki)αi (2.1)
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and

lim sup
n

(Ax)n ≤
M∑
i=1

δA(Ki)βi (2.2)

where αi = lim inf
j

x
(i)
j and βi = lim sup

j
x
(i)
j .

Proof Assume that δA(Ki) exists for all i = 1, 2, ...,M and let x be an M∗ -splice over {Ki} . Then for all

n ∈ N we have as in [14]

(Ax)n =
∞∑
i=1

ankxk

=
M∑
i=1

(∑
k∈Ki

ankxk

)

=
M∑
i=1

 ∞∑
j=1

an,ϑi(j)xϑi(j)


=

M∑
i=1

 ∞∑
j=1

an,ϑi(j)x
(i)
j


=

M∑
i=1

(
A[Ki]x(i)

)
n
. (2.3)

Hence it follows from (2.3) and Lemma 1 that

lim inf
n

(Ax)n = lim inf
n

M∑
i=1

(
A[Ki]x(i)

)
n

≥
M∑
i=1

lim inf
n

(
A[Ki]x(i)

)
n

≥
M∑
i=1

δA(Ki)αi

which proves (2.1). Taking −x instead of x in (2.1) one can prove (2.2). 2

If x(i) is convergent for any i = 1, 2, ...,M then γi := αi = βi for any i = 1, 2, ...,M. Therefore, not only

does Theorem 3 prove that the core of Ax does not exceed the interval

[
M∑
i=1

δA(Ki)αi,

M∑
i=1

δA(Ki)βi

]
but also

it generalizes the Theorem 2.5 of [14].

3. Infinite Splices

Definition 3 An ∞-partition on N consists of an infinite number of infinite sets Ki = {ϑi(j)} for i ∈ N,

such that
∞∪
i=1

Ki = N and for all i ̸= r, Ki ∩Kr = ∅.
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Definition 4 Let {Ki : i ∈ N} be a fixed ∞-partition of N and let x(i) =
(
x
(i)
j

)
be a bounded sequence for

i ∈ N . If k ∈ Ki , then k = ϑi(j) for some j . Define x = (xk) as xk = xϑi(j) = x
(i)
j . Then x is called an

∞∗ -splice over {Ki : i ∈ N} .

Note that in [14] the spliced sequences (∞ -splice) are obtained from convergent sequences and it is

obvious that any ∞−splice is also an ∞∗−splice . Note that an ∞∗ -splice does not need to be bounded.

Similarly the following theorem provides us with estimate of the core of Ax.

Theorem 4 Let A be a nonnegative regular summability matrix and let {Ki = {ϑi(j)} : i ∈ N} be an ∞-

partition of N . If δA(Ki) exists for all i ∈ N and
∞∑
k=1

δA(Ki) = 1 then for any bounded ∞∗ -splice x over {Ki}

we get

lim inf
n

(Ax)n ≥
∞∑
i=1

δA(Ki)αi (3.1)

and

lim sup
n

(Ax)n ≤
∞∑
i=1

δA(Ki)βi (3.2)

where αi = lim inf
j

x
(i)
j and βi = lim sup

j
x
(i)
j .

Proof Assume that δA(Ki) exists for all i ∈ N with

∞∑
k=1

δA(Ki) = 1 and let x be an ∞∗ -splice x over {Ki} .

Then for all n ∈ N we have as in [14]

(Ax)n =
∞∑
i=1

ankxk

=

∞∑
i=1

(∑
k∈Ki

ankxk

)

=
∞∑
i=1

 ∞∑
j=1

an,ϑi(j)xϑi(j)


=

∞∑
i=1

 ∞∑
j=1

an,ϑi(j)x
(i)
j


=

∞∑
i=1

(
A[Ki]x(i)

)
n
. (3.3)

For all n define fn : N → C and gn : N → C by

fn(i) :=
(
A[Ki]x(i)

)
n

and gn(i) := H
(
A[Ki]e

)
n
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YURDAKADİM and ÜNVER/Turk J Math

where H := sup
k

|xk| and e = (1, 1, ...). Now let µ be the counting measure. From Theorem 1.2 in [14] we know

that

lim
n

gn(i) = HδA(Ki)

and

lim
n

∫
N

gn(i)dµ =

∫
N

(
lim
n

gn(i)
)
dµ = H > 0. (3.4)

Furthermore, it is easy to show for all n, i ∈ N that

|fn(i)| ≤ gn(i).

Since fn and gn are measurable with respect to µ and fn + gn ≥ 0 for all n, then it follows from (3.4) and

Fatou’s Lemma that ∫
N

lim inf
n

(fn + gn)(i)dµ ≤ lim inf
n

∫
N

(fn + gn)(i)dµ

= lim inf
n

∫
N

fn(i)dµ+

∫
N

gn(i)dµ


= lim inf

n

∫
N

fn(i)dµ+ lim
n

∫
N

gn(i)dµ

= lim inf
n

∫
N

fn(i)dµ+H
∞∑
i=1

δA(Ki)

= lim inf
n

∫
N

fn(i)dµ+H. (3.5)

On the other hand, since (gn) is convergent for all i

∫
N

lim inf
n

(fn + gn)(i)dµ =

∫
N

(
lim inf

n
fn(i) + lim

n
gn(i)

)
dµ

=

∫
N

lim inf
n

fn(i)dµ+

∫
N

lim
n

gn(i)dµ

=

∫
N

lim inf
n

fn(i)dµ+H
∞∑
i=1

δA(Ki)

=

∫
N

lim inf
n

fn(i)dµ+H. (3.6)
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Hence from (3.5) and (3.6) one can get∫
N

lim inf
n

fn(i)dµ ≤ lim inf
n

∫
N

fn(i)dµ

= lim inf
n

∞∑
i=1

(
A[Ki]x(i)

)
n

= lim inf
n

(Ax)n . (3.7)

Now using Lemma 1 ∫
N

lim inf
n

fn(i)dµ =

∫
N

lim inf
n

(
A[Ki]x(i)

)
dµ

≥
∫
N

δA(K
(i))αidµ

=
∞∑
i=1

δA(K
(i))αi. (3.8)

Hence by (3.7) and (3.8) we get
∞∑
i=1

δA(K
(i))αi ≤ lim inf

n
(Ax)n

which concludes the proof of (3.1).

Taking −x instead of x in (3.1), one can prove (3.2) immediately. 2

If x(i) is convergent for any i ∈ N then γi := αi = βi for any i ∈ N. Hence our Theorem 4

yields Theorem 3.4 in [14]. Moreover, this theorem shows that the core of Ax does not exceed the interval[ ∞∑
i=1

δA(Ki)αi,
∞∑
i=1

δA(Ki)βi

]
.

4. Inequalities via Lebesgue Integral

Recently Unver et al. [16] gave the Bochner integral representation of the A-limits of ∞ -splices in Banach spaces.

In this section we give some inequalities for the limit inferior and the limit superior of A -transformations of

∞∗ -splices via a Lebesgue integral. This result extends Proposition 2 in [16] for a real case. First we recall the

following definition:

Consider a set function F : B(R) → [0, 1] such that F (R) = 1 and if U1, U2, ... are disjoint sets in B(R);
then

F

 ∞∪
j=1

Uj

 =
∞∑
j=1

F (Uj)

where B(R) denotes the Borel sigma field on R that is generated by open intervals. Such a function is called a

probability measure or a distribution on R .
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Theorem 5 Let A = (ank) be a nonnegative regular summability matrix such that each row adds up to one

and let {Ki = {ϑi(j)} : i ∈ N} be an ∞-partition of N . If δA(Ki) exists for all i ∈ N and
∞∑
k=1

δA(Ki) = 1 then

for any bounded ∞∗ -splice sequence x over {Ki} we have

lim inf
n

(Ax)n ≥
∫
R

tdF

and

lim sup
n

(Ax)n ≤
∫
R

tdG

where

F (U) =
∑
αi∈U

δA(Ki),

G(U) =
∑
βi∈U

δA(Ki)

and αi = lim inf
j

x
(i)
j , βi = lim sup

j
x
(i)
j .

Proof Assume that δA(Ki) exists for all i ∈ N . Now as in Proposition 2 in [16], define the function s : X → X

by

s(t) =

{
αi, t = αi, i ∈ N
θ, otherwise

and the function f : R → R by

f(t) = t.

Observe that f = s almost everywhere with respect to F . Thus we have∫
R

tdF =

∫
R

s(t)dF. (4.1)

Now define a sequence of simple functions (sm) by

sm(t) =

{
αi, t = αi, i = 1, 2, ...,m
θ, otherwise.

It is easy to see that for all m

|sm(t)− s(t)| =
{

|αi| , t = αi, i > m
0, otherwise.

Thus for all t ∈ X, lim
m→∞

|sm(t)− s(t)| = 0. On the other hand, since the spliced sequence is bounded there

exists an H > 0 such that

sup
t∈X

|sm(t)− s(t)| ≤ sup
i>m

|αi| < H.
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Then from the Bounded Convergence Theorem we have

lim
m→∞

∫
R

|sm(t)− s(t)| dF =

∫
R

lim
m→∞

|sm(t)− s(t)| dF = 0

which implies ∫
R

s(t)dF = lim
m→∞

∫
R

sm(t)dF

= lim
m→∞

∫
R

(
m∑
i=1

I{αi}(t)αi

)
dF

= lim
m→∞

m∑
i=1

F ({αi})αi

= lim
m→∞

m∑
i=1

δA(Ki)αi

=
∞∑
i=1

δA(Ki)αi. (4.2)

Now from (4.2) and Theorem 4 we get

lim inf
n

(Ax)n ≥
∫
R

tdF.

Similarly, it is easy to show that

lim sup
n

(Ax)n ≤
∫
R

tdG

which concludes the proof. 2

Note that if x(i) is convergent for any i ∈ N then αi = βi for any i ∈ N , which implies H := F = G.

Hence, we get from Theorem 5 that∫
R

tdH ≤ lim inf
n

(Ax)n ≤ lim sup
n

(Ax)n ≤
∫
R

tdH

i.e.

lim
n
(Ax)n =

∫
R

tdH

which proves Proposition 2 in [16] in a real case.

This theorem may be extended to the Banach Lattices via a Bochner integral.
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