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Abstract: In this paper, we propose and analyze a high-order uniform method for solving boundary value problems

(BVPs) for singularly perturbed nonlinear delay differential equations with small shifts (delay and advance). Such types

of BVPs play an important role in the modeling of various real life phenomena, such as the variational problem in control

theory and in the determination of the expected time for the generation of action potentials in nerve cells. To obtain

parameter-uniform convergence, the present method is constructed on a piecewise-uniform Shishkin mesh. The error

estimate is discussed and it is shown that the method is uniformly convergent with respect to the singular perturbation

parameter. Moreover, a bound of the global error is also derived. The effect of small shifts on the solution behavior is

shown by numerical computations. Several numerical examples are presented to support the theoretical results, and to

demonstrate the efficiency and the high-order accuracy of the proposed method.

Key words: Singularly perturbed, nonlinear differential equations, high-order method, delay differential equations,

small shifts

1. Introduction

In this paper, we consider the following singularly perturbed nonlinear delay differential equation (DDE) with

small shifts:

Lu(x) ≡ εu′′(x) + a(x)u′(x) = f
(
x, u(x), u(x− δ), u(x+ η)

)
, (1.1)

on Ω = (0, 1) with the interval conditions

u(x) = ϕ(x), −δ ≤ x ≤ 0,

u(x) = ψ(x), 1 ≤ x ≤ 1 + η,
(1.2)

where 0 < ε ≪ 1 is the singular perturbation parameter, δ and η are called the delay and the advance

parameters, sometimes referred to as negative shift and positive shift, respectively, as in [16, 17]; precise

assumptions will be given in the next section. This type of differential equation plays an important role in the

mathematical modeling of various practical phenomena, for instance, variational problems in control theory [6],

description of the so-called human pupil-light reflex [19], evolutionary biology [34], and a variety of models for

physiological processes or diseases [21].
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It is well known that the solution of a singularly perturbed differential equation generally exhibits

boundary layer behavior. Usually, the standard discretization methods for solving these problems are not

useful and fail to give accurate results, especially when the perturbation parameter ε tends to zero. This

motivates the need for other methods that have ε-uniform convergence. In general there are two strategies

to construct ε-uniform methods. The first one is the fitted operator method, which reflects the qualitative

behavior of the solution; such fitted methods can be found in [3 − 5, 22, 26, 28] and references therein. The

second one is the fitted mesh method, which contains finite difference operators on specially designed mesh in

the boundary-layer regions, such as Shishkin mesh [5, 22, 27] and grid equidistribution [18, 23, 25].

The linear case of singularly perturbed differential equations with small shifts has been investigated very

often, e.g., see [10 − 12, 16, 17, 23, 24, 29]. In contrast, there are few works on singularly perturbed nonlinear

DDEs. Lange and Miura [15] considered singularly perturbed nonlinear DDE with layer behavior and discussed

the existence and uniqueness of their solutions. Kadalbajoo and Sharma [13, 14] and Kadalbajoo and Kumar

[9] studied the numerical solutions of singularly perturbed nonlinear DDE with small negative shift using

quasilinearization together with fitted mesh methods. Wang and Ni [33] considered the numerical solution of a

singularly perturbed nonlinear DDE with interior layer via a method of boundary function and fractional steps.

In most of the previous works, authors used Taylor series expansions for approximating the terms containing

these shifts, provided they are of o(ε). However, this process may lead to a bad approximation in the case when

these shifts are of O(ε).

In this paper, we propose a generic method for solving (1.1) that is useful and effective in both cases

when shifts are of o(ε) or O(ε). To overcome the defect and weakness of the standard methods, we construct

the proposed method on a piecewise-uniform mesh, and to cope with the terms containing shifts, we use cubic

interpolation. Both cases, when the boundary layer occurs in the left and right side of the interval, will be

studied. We show that this method is useful for obtaining a numerical solution of the considered problem in

both cases.

The rest of the paper is organized as follows. Some assumptions on the continuous problem and estimates

of the derivatives of its solution are given in Section 2. In Section 3, we describe the piecewise-uniform Shishkin

mesh and we present in detail the construction of the numerical method. A study of the convergence analysis

of the iterative process is presented in Section 4. Section 5 contains the error and the convergence analysis

of the proposed method. Furthermore, we derive a bound of the global error. In Section 6, some numerical

examples are presented to show the applicability and the effectiveness of the proposed method. The numerical

results are reported with the maximum absolute error and the rate of convergence. Finally, the conclusion is

given in Section 7.

2. The continuous problem

Let us consider the problems (1.1) and (1.2) and let us assume that the functions f, a, ϕ, and ψ are smooth

and

a(x) ≥ 2β > 0 on Ω, fu(x, u, v, w) > 0, on Ω×R3, (2.1)

and we also assume that f : Ω×R3 → R is Lipschitz-continuous with respect to the second, third, and fourth

arguments, i.e.

|f(x, u, v, w)− f(x, ū, v̄, w̄)| ≤ L1|u− ū|+ L2|v − v̄|+ L3|w − w̄|,
∀(x, u, v, w), (x, ū, v̄, w̄) ∈ Ω×R3.

(2.2)
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In general, solution u has a boundary layer near the origin. The existence and uniqueness of the solution

u follow from the arguments given in [2, 31, 32]. Throughout this paper, C is a generic positive constant

independent of ε and discretization parameter (N ), and for a mesh function g =
(
g1, g2, · · · , gN

)
, we use the

simple notation for the discrete maximum norm ∥g∥ = max
1≤i≤N

|gi| .

Now we give the required bounds on the solution u that will be used to establish the error estimate.

Lemma 2.1 (Continuous maximum principle) Let ψ ∈ C2(Ω)∩C0(Ω) satisfying ψ(0) ≤ 0 and ψ(1) ≤ 0 .

Then Lψ(x) ≥ 0 , for all x ∈ Ω implies that ψ(x) ≤ 0 , for all x ∈ Ω .

Proof Let x⋆ ∈ Ω be such that ψ(x⋆) =max{ψ(x), x ∈ Ω} and ψ(x⋆) > 0. Clearly x⋆ ̸= 0, x⋆ ̸= 1 and

therefore ψ′(x⋆) = 0 and ψ′′(x⋆) ≤ 0.

Hence

Lψ(x⋆) = εψ′′(x⋆) + a(x⋆)ψ′(x⋆) ≤ 0,

which contradicts the hypothesis that Lψ(x) ≥ 0. Therefore, ψ(x⋆) ≤ 0. However, since x⋆ was an arbitrary

point in Ω, ψ(x) ≤ 0, for all x ∈ Ω. 2

Lemma 2.2 Let u be the solution of (1.1) and (1.2) and let (2.1) hold. Then the derivatives of u satisfy the

following bounds: ∣∣u(k)(x)∣∣ ≤ C
[
1 + ε−k exp

(
− 2βx/ε

)]
, 0 ≤ k ≤ 6. (2.3)

Proof The stability inequality given in Theorem 2 in [20] gives |u(x)| ≤ C for all x ∈ Ω. Firstly, we prove∣∣u(k)(0)∣∣ ≤ Cε−k, 1 ≤ k ≤ 6. (2.4)

By the mean value theorem, there exists a point ξ ∈ (0, ε) such that

u′(ξ) =
u(ε)− u(0)

ε
,

and therefore |εu′(ξ)| ≤ ∥u∥ . Then (2.4) holds for k = 1. Using (1.1), we can obtain the required bounds for

k = 1, and the estimate for k ≥ 2 follows by induction and differentiation of (1.1).

Now we prove (2.3) for k ≥ 1. Let A(x) =
∫ x

0
a(ξ)dξ .

Multiplying both sides of (1.1) by exp(A(x)/ε) and integrating over (0, x) and taking the modulus on both

sides we get

|u′(x)| ≤ |u′(0)| exp(−A(x)/ε) + 1

ε

∫ x

0

∥f∥ exp
(
(A(ξ)−A(x))/ε

)
dξ.

Then using (2.4) for k = 1 we get

|u′(x)| ≤ Cε−1

(∫ x

0

exp
(
(A(ξ)−A(x))/ε

)
dξ + exp(−A(x)/ε)

)
≤ Cε−1

(∫ x

0

exp
(
2β(ξ − x)/ε

)
dξ + exp(−2βx/ε)

)
≤ C

(
1 + ε−1 exp(−2βx/ε)

)
.
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The proof for k ≥ 2 follows by induction process and differentiation of (1.1). 2

3. The discretization

In this section, we derive a fitted mesh method for solving (1.1) on a piecewise-uniform Shishkin mesh. Before

constructing the method, we make precise the Shishkin mesh to be considered.

3.1. Shishkin mesh

Shishkin mesh is a piecewise-uniform mesh that is dense in the boundary layer region and coarse in the outer

region, as ε → 0. This is achieved by the use of a transition parameter σ , which depends on ε and N . Thus

for given values of ε and N , the interval is divided into two subintervals using σ = min{1/2, σ0ε lnN} , where
the constant σ0 will be chosen later. In the case of the boundary layer at the left end, the piecewise-uniform

Shishkin mesh is constructed by dividing the interval [0, 1] into two subintervals [0, σ] and [σ, 1] such that

ΩN = {0 = x0, x1, · · · , xN/2 = σ, · · · , xN = 1} . Then each of the subintervals is divided into N/2 mesh

elements of equal length. Therefore, the mesh points are given by

xi =

{
2σi/N, 0 ≤ i ≤ N/2,
σ + 2(1− σ)(i−N/2)/N, N/2 < i ≤ N.

Similarly, when the boundary layer occurs on the right side of the interval, we partition the interval into two

subintervals [0, 1− σ] and [1− σ, 1], and the mesh points are given by

xi =

{
2(1− σ)i/N, 0 ≤ i ≤ N/2,
1− σ + 2σ(i−N/2)/N, N/2 < i ≤ N.

In the following, we discuss the case when the solution exhibits a single boundary layer on the left side

of the interval, i.e. when a(x) ≥ 2β > 0. The other case, when a boundary layer occurs on the right side of the

interval (a(x) ≤ −2β < 0), one can follow the same procedure as we use for the case of the left boundary layer.

Let us denote the local step sizes by hi = xi − xi−1 in each subinterval [xi−1, xi], i = 1, 2, · · · , N , and

let h = 2σ/N and H = 2(1− σ)/N be the mesh widths in [0, σ] and [σ, 1] respectively. Then it is easy to see

that

h = 2σ0εN
−1 lnN and N−1 ≤ H ≤ 2N−1.

3.2. Description of the method

We derive a fitted mesh operator compact implicit (FMOCI) method for Eqs. (1.1) and (1.2) as follows:

LNUi ≡
ε

hihi+1(hi + hi+1)
R(Ui) = Q(fi), 1 ≤ i ≤ N − 1,

U0 = ϕ(0), UN = ψ(1),
(3.1)

where

R(Ui) = r−i Ui−1 + rciUi + r+i Ui+1, Q(fi) = q−i fi−1 + qci fi + q+i fi+1, (3.2)

and

fi = f
(
xi, Ui, Ui,δ, Ui,η

)
. (3.3)
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The coefficients r−,c,+
i and q−,c,+

i are unknowns to be determined later as functions of hi, ε , and a(xi). It

is worthwhile to mention that Ui , Ui,δ , and Ui,η are approximations of u(xi), u(xi − δ), and u(xi + η),

respectively. It is assumed that Ui,δ = ϕ(xi − δ) for xi ≤ δ and Ui,η = ψ(xi + η) for xi ≥ 1 − η . The delay

and advance terms are approximated at nonmesh points by using cubic interpolation defined as

u(xi + θhi+1) =
3∑

k=0

Pi,k(θ)Ui−1+k, 0 ≤ θ < 1, 1 ≤ i ≤ N − 1,

where

Pi,0(θ) = −
θ3h3i+1 − θ2h2i+1(hi+1 + di) + θh2i+1di

hi(hi + hi+1)(hi + di)
,

Pi,2(θ) =
θ3h2i+1 + θ2hi+1(hi − di)− θhidi

(hi + hi+1)(hi+1 − di)
,

Pi,3(θ) =
θ3h3i+1 + θ2h2i+1(hi − hi+1)− θhih

2
i+1

di(di + hi)(di − hi+1)
,

Pi,1(θ) = 1−
(
Pi,0(θ) + Pi,2(θ) + Pi,3(θ)

)
, di = hi+1 + hi+2.

(3.4)

The development of the present method is based on computing the local truncation error as follows:

τi,u = LNu(xi)−Q
(
Lu(xi)

)
. (3.5)

Since u is sufficiently smooth, and using Taylor expansion, τi,u can be written in the form

τi,u = T 0
i u(xi) + T 1

i u
′(xi) + · · ·+ T 6

i u
(6)(xi) +O(h5m), hm = max

1≤i≤N
hi,

where

T 0
i =

ε

hihi+1(hi + hi+1)

(
r+i + rci + r−i

)
,

T 1
i =

ε

hihi+1(hi + hi+1)

[
hi+1r

+
i − hir

−
i − hihi+1(hi + hi+1)

ε

(
q+i ai+1 + qci ai + q−i ai−1

)]
,

T 2
i =

ε

hihi+1(hi + hi+1)

[h2i+1

2
r+i +

h2i
2
r−i − hihi+1(hi + hi+1)

(
q+i + qci + q−i

)
− hihi+1(hi + hi+1)

ε

(
hi+1q

+
i ai+1 − hiq

−
i ai−1

)]
,

and

T k
i =

ε

hihi+1(hi + hi+1)

{
hki+1

k!
r+i + (−1)k

hki
k!
r−i − hihi+1(hi + hi+1)

ε[
q+i

( hk−2
i+1

(k − 2)!
ε+

hk−1
i+1

(k − 1)!
ai+1

)
+ (−1)kq−i

( hk−2
i

(k − 2)!
ε− hk−1

i

(k − 1)!
ai−1

)]}
,

k = 3, 4, 5, 6.
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The truncation error is said to be of order p if τi,u = O(hpm) as hm → 0 ( ε is fixed) for i = 1, 2, · · · , N − 1.

Here we construct our method by the conditions

T k
i = 0, k = 0, 1, 2, (3.6)

T k
i = O(h4m), k = 3, 4. (3.7)

These conditions were first proposed for the case of uniform mesh in [1]. From the conditions (3.6) and (3.7),

we get

r−i =hi+1

{
2(q+i + qci + q−i ) +

hi

ε

[
αiq

+
i ai+1 − αiq

c
i ai − q−i (2 + αi)ai−1

]}
,

r+i =hi

{
2(q+i + qci + q−i ) +

hi

ε

[
(1 + 2αi)q

+
i ai+1 + qci ai − q−i ai−1

]}
,

rci =− r+i − r−i , αi = hi+1/hi, 1 ≤ i ≤ N − 1,

(3.8)

and the coefficients q−i , q
c
i , and q+i i = 1, 2, · · · , N − 1 are defined in two different ways:

(i) For xi ∈ (0, σ), the coefficients q−i , q
c
i , and q+i i = 1, · · · , N/2− 1 are given by

q−i =1 + αi − α2
i +

1 + 2αi − 3α2
i − 10α3

i − 5α4
i

6(1 + 3αi + α2
i )

ρi + pρ2i ,

qci =(1 + αi)

[
(1 + 3αi + α2

i )

αi
+

3p

(2 + αi)
ρ2i +

p

2
ρ3i

]
,

q+i =
α2
i + αi − 1

αi
+

5 + 10αi + 3α2
i − 2α3

i − α4
i

6(1 + 3αi + α2
i )

ρi +

[
p(1 + 2αi)

(2 + αi)

+
(α2

i − 1)(1 + 8αi + 15α2
i + 8α3

i + α4
i )

12(1 + 2αi)(1 + 3αi + α2
i )

]
ρ2i +

p(1 + αi)

2
ρ3i ,

(3.9)

where

p =
(1 + 2αi − 3α2

i − 10α3
i − 5α4

i )
2

144(1 + αi − α2
i )(1 + 3αi + α2

i )
2
, ρi = aihi/ε.

(ii) For xi ∈ [σ, 1), we must define two different cases depending on the relation between hm and ε .

In the first case, when hm∥a∥ < 2ε , the coefficients q−i , q
c
i , and q+i , i = N/2 + 1, · · · , N − 1 are defined by

(3.9), and also when αN/2 < (
√
5 + 1)/2 the coefficients q−N/2, q

c
N/2 , and q+N/2 are defined again by (3.9) and

when αN/2 ≥ (
√
5 + 1)/2 these coefficients are given by

q−N/2 =ρ2N/2, qcN/2 =
3(1 + αN/2)

(2 + αN/2)
ρ2N/2 +

1 + αN/2

2
ρ3N/2,

q+N/2 =
(1 + 2αN/2)

(2 + αN/2)
ρ2N/2 +

1 + αN/2

2
ρ3N/2.

While in the second case, when hm∥a∥ ≥ 2ε , the coefficients q−i , q
c
i , and q+i are given by

q−i = 0, qci = 1, q+i = ai/ai+1, N/2 ≤ i ≤ N − 1. (3.10)
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From (3.8), we have ∣∣r−i ∣∣ ≤ C
hi+1

ε
max{hi, ε},

∣∣r+i ∣∣ ≤ C
hi
ε
max{hi, ε}. (3.11)

4. Convergence analysis

In this section, we discuss the existence of the approximate solution obtained by the FMOCI method described

in the previous section, and we study the convergence of the iterative process. For this purpose, we rewrite the

FMOCI method (3.1)–(3.3) in the following matrix form:

LNU = F (U), U = [U1, U2, · · · , UN−1]
T , (4.1)

where LN is a (N − 1)× (N − 1) tridiagonal matrix and F (U) is the right-hand-side vector of order (N − 1),

which are given by

LN =



r̂c1 r̂+1 0 0 0 · · · 0
r̂−2 r̂c2 r̂+2 0 0 · · · 0
0 r̂−3 r̂c3 r̂+3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 0 r̂−N−2 r̂cN−2 r̂+N−2

0 · · · 0 0 0 r̂−N−1 r̂cN−1


,

F (U) =


q−1 f0 + qc1f1 + q+1 f2 − ϕ(0)r̂−1

q−2 f1 + qc2f2 + q+2 f3
...

q−N−2fN−3 + qcN−2fN−2 + q+N−2fN−1

q−N−1fN−2 + qcN−1fN−1 + q+N−1fN − ψ(1)r̂+N−1

 ,

(4.2)

where

r̂∗i =
ε

hihi+1(hi + hi+1)
r∗i , ∗ = −, c,+ , 1 ≤ i ≤ N − 1. (4.3)

4.1. Existence of the approximate solution

The existence of the solution of the nonlinear system (4.1) can be proved by the following lemma.

Lemma 4.1 Let N ≥ N0 , where N0 is the smallest positive integer such that

σ0∥a∥ ≤ N0

LnN0
, (4.4)

and also suppose that

qci ai − q+i ai+1 − q−i ai−1 ≥ 0, 1 ≤ i ≤ N − 1. (4.5)
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Then the FMOCI method defined by (4.1)–(4.3) satisfies the following, for 1 ≤ i ≤ N − 1

q−i ≥ 0, qci > 0, q+i ≥ 0, (4.6)

r−i ≥ 0, r+i > 0, r−i + rci + r+i ≤ 0. (4.7)

Proof From (3.9) it is clear that q+i ≥ 0 and qci > 0 for all ρi ∈ (0,∞). Now we show that q−i ≥ 0. Note

that q+i is of the form of quadratic polynomial a0 + a1x+ a2x
2 with a0 > 0; this quadratic is nonnegative on

(0,∞) if and only if: (i) the discriminant is nonpositive when a1 < 0 and (ii) a2 ≥ 0 when a1 ≥ 0. Using this,

we find that q+i ≥ 0 for all ρi ∈ (0,∞).

On the other hand, using (3.8) and the condition (4.5), it follows that r+i > 0, 1 ≤ i ≤ N − 1. To prove that

r−i > 0, three different cases have been considered. Firstly, for 1 < i ≤ N/2− 1, we have

r−i = 24hi

(
1− 1

2
ρi +

5

48
ρ2i

)
,

which is positive (using the above argument). Secondly, for N/2 ≤ i ≤ N − 1 and hm∥a∥ ≥ 2ε holds; the proof

is trivial. While in the last case when hm∥a∥ < 2ε , using the coefficients q∗i , ∗ = −, c,+ defined by (3.9) with

the condition hm∥a∥ < 2ε , it is straightforward to prove that r−i ≥ 0.

Finally, from (3.8) we have

r−i + rci + r+i ≤ 0, 1 ≤ i ≤ N − 1.

This completes the proof. 2

Remark 4.1 It is important to note that, from Lemma 4.1, inequalities (4.7) imply that the triadiagonal matrix

LN is diagonally dominant with negative main diagonal elements and positive superdiagonal and subdiagonal

elements, and hence LN can be inverted; see [8]. This ensures the existence of the solution of the nonlinear

system (4.1). Moreover, the operator LN satisfies a maximum principle.

Lemma 4.2 (Discrete maximum principle). Let ψi be a mesh function and satisfy ψ0 ≤ 0, ψN ≤ 0 , and

LNψi ≥ 0, i = 1, 2, · · · , N − 1 . Then ψi ≤ 0, 0 ≤ i ≤ N .

4.2. The iterative process and its convergence

The numerical solution of the nonlinear system (4.1) can be computed by the following iterative process:

LNU
n+1 = F (Un), n = 0, 1, 2, · · · , (4.8)

with the starting vector U0 .

To show the convergence of the iterative process (4.8), we consider the following condition:

K∥L−1
N ∥∞

(
L1 +M(L2 + L3)

)
< 1, (4.9)

where

K = max
1≤i≤N−1

{
|q−i |+ |q0i |+ |q+i |

}
and M = sup

0≤θ<1

3∑
k=0

|Pk(θ)|. (4.10)
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A bound of ∥L−1
N ∥∞ in the above condition will be computed later, wherein we will show that it is very small

especially when ε→ 0. Therefore, it is dominant on the left side of the inequality (4.9).

Lemma 4.3 Assume that the function f satisfies the Lipschitz condition (2.2) and that the condition (4.9)

holds. Then the sequence
{
Un

}∞
n=0

generated by (4.8) converges to the solution of the nonlinear system (4.1).

Proof From (4.8) and (4.10), we have∥∥Un+1 − Un
∥∥
∞ ≤

∥∥L−1
N

∥∥
∞

∥∥F (Un)− F (Un−1)
∥∥
∞,

and ∥∥F (Un)− F (Un−1)
∥∥
∞ ≤ K max

1≤i≤N−1

(
L1|Un

i − Un−1
i |+ L2ζi + L3ξi

)
,

where

ζi =
∣∣Un

i,δ − Un−1
i,δ

∣∣ and ξi =
∣∣Un

i,η − Un−1
i,η

∣∣.
Again, using (4.10) and the fact that U ℓ

j =
3∑

k=0

Pk(θ)U
l
i−1+k, ℓ = n− 1, n, xj − δ ∈ [xi, xi+1), we obtain

ζi ≤M
∥∥Un − Un−1

∥∥
∞ and ξi ≤M

∥∥Un − Un−1
∥∥
∞.

Therefore, since Un
0 − Un−1

0 = Un
N − Un−1

N = 0∥∥F (Un)− F (Un−1)
∥∥
∞ ≤ K

(
L1 +M(L2 + L3)

)∥∥Un − Un−1
∥∥
∞.

Hence ∥∥Un+1 − Un
∥∥
∞ ≤ K

∥∥L−1
N

∥∥
∞

(
L1 +M(L2 + L3)

)∥∥Un − Un−1
∥∥
∞.

Using the condition (4.9), the sequence
{
Un

}∞
n=0

converges. It is clear that the solution of (4.1) is the limit of

this sequence. 2

We repeat the above process with suitable initial value until the solution profiles do not differ from iteration to

iteration within a desired accuracy. For computational purposes, the iterative process (4.8) stops at the nth

iteration if the following condition is satisfied

∥Un+1 − Un∥ < Tol.,

where Tol. is a given tolerance.

5. Error estimates

In the previous section, we proved that the iterative process (4.8) converges to the solution of the nonlinear

system (4.1). Here, we analyze the ε-uniform error estimate of the FMOCI method (4.1)–(4.3), and we derive

a bound on global error. To estimate ε-uniform convergence of the present method, we need more precise

bounds on the exact solution of the problem (1.1) rather than those in Lemma 2.2. To obtain these bounds, we

decompose the solution un+1 into regular and singular components at the (n+ 1)th iteration as follows:

un+1 = vn+1 + wn+1,
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where vn+1 and wn+1 are the regular and singular components, respectively. We further express the regular

component vn+1 in the form

vn+1 =

5∑
i=0

vi, (5.1)

where the functions vi, 0 ≤ i ≤ 4 are defined to be the solutions for the following first order problems{
av′0 = f, v0(1) = u(1),
av′i = −v′′i−1, vi(1) = 0, 1 ≤ i ≤ 4, (5.2)

and the last function v5 satisfies the second order problem

εv′′5 + av′5 = −v′′4 , v5(0) = 0, v5(1) = 0. (5.3)

Thus, vn+1 and wn+1 satisfy

Lvn+1 = f, vn+1(0) =
5∑

i=0

vi(0), vn+1(1) = u(1), (5.4)

Lwn+1 = 0, wn+1(0) = u(0)− vn+1(0), wn+1(1) = 0. (5.5)

Theorem 5.1 Let un+1 be the solution of the problem (1.1) at the n th iteration and let un+1 = vn+1 +wn+1 .

Then for k , 0 ≤ k ≤ 6 and for all x ∈ Ω , the regular component vn+1 and the singular component wn+1 ,

defined in (5.4) and (5.5), respectively, satisfy∣∣∣∣dkvn+1(x)

dxk

∣∣∣∣ ≤ C
[
1 + ε5−k exp

(
− 2βx/ε

)]
, (5.6)

∣∣∣∣dkwn+1(x)

dxk

∣∣∣∣ ≤ Cε−k exp
(
− 2βx/ε

)
, (5.7)

for some constant C independent of ε .

Proof Firstly, the bounds on the regular component vn+1 and its derivatives are proved as follows

From (5.2), since the solutions vi, i = 0, 1, 2, 3, 4 are independent of ε , we obtain

∣∣v(k)i

∣∣ ≤ C, 0 ≤ k ≤ 6, for i = 0, 1, 2, 3, 4. (5.8)

Furthermore, v5 is the solution of the problem similar to (1.1); hence using Lemma 2.2 it follows that

∣∣v(k)5

∣∣ ≤ C
[
1 + ε−k exp

(
− 2βx/ε

)]
, 0 ≤ k ≤ 6. (5.9)

Therefore, combining (5.8), (5.9), and (5.1), we obtain the required estimates for vn+1 and its derivatives. To

obtain the required bounds on the singular component wn+1 , define

Ψ ± (x) = (vn+1(0)− κ) exp
(
− 2βx/ε

)
± wn+1(x), x ∈ Ω,
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where κ is a positive constant. Then, for a sufficiently large value of κ , and using the bounds on vn+1 , we

have Ψ±(0) ≤ 0, Ψ±(1) ≤ 0 and LεΨ
±(x) ≥ 0, for all x ∈ Ω. Therefore, using the maximum principle given

in Lemma 2.1, we get Ψ±(x) ≤ 0, for all x ∈ Ω, which gives∣∣wn+1(x)
∣∣ ≤ C exp

(
− 2βx/ε

)
, C = κ− v(0).

To find the bound on the derivatives of wn+1 , we introduce the function

φ(x) =

∫ x

0
exp(−A(t)/ε)dt∫ 1

0
exp(−A(t)/ε)dt

, where A(t) =

∫ t

0

a(s)ds.

It is clear that Lεφ ≤ 0, φ(0) = 0, φ(1) = 1 and 0 ≤ φ(x) ≤ 1. Therefore, wn+1 can be written as

wn+1(x) = C1φ(x) + C2

(
1− φ(x)

)
.

Using (5.5) and imposing the boundary value of φ at 0 and 1, it follows that

wn+1(x) =
(
u(0)− v(0)

)(
1− φ(x)

)
.

Hence ∣∣∣∣dwn+1(x)

dx

∣∣∣∣ ≤ C|φ′(x)| ≤ Cε−1 exp
(
− 2βx/ε

)
.

Now, using (5.5) and the above estimates, we obtain the bound on d2wn+1/dx2 . The proof for k ≥ 3 follows

by differentiating (5.5) and using the bounds on the derivatives obtained previously. This completes the proof. 2

It is easy to show that the local truncation error (3.5) can be written as

τi,u =T 3
i u

′′′ + T 4
i u

(4) +

[
ε

5!

(
h5
i+1r

+
i − h5

i r
−
i

hihi+1(hi + hi+1)

)
+

ε

3!

(
hi+1q

−
i − h3

(i+1)q
+
i

)]
u(5)

− ai+1R3(xi, xi+1, u
′)q+i − ai−1R3(xi, xi−1, u

′)q−i

+
ε

hihi+1(hi + hi+1)

(
R5(xi, xi+1, u)r

+
i +R5(xi, xi−1, u)r

−
i

)
− ε

(
R3(xi, xi+1, u

′′)q+i +R3(xi, xi−1, u
′′)q−i

)
,

(5.10)

where

Rn(a, b, f) =
(b− a)n+1

(n+ 1)!
f (n+1)(ξ) =

1

n!

∫ b

a

(b− ξ)nf (n+1)dξ, (5.11)

where a < ξ < b . In the following, when hi ≤ ε we use the derivative form of Rn , and when ε ≤ hi , the

integral form will be used.

Lemma 5.2 Let the hypothesis (4.4) of Lemma 4.1 be satisfied. Then the local truncation error given by (5.10)

satisfies the following:

∣∣τi,u∣∣ ≤


C
[
ε−2h4 + ε−5h4 exp

(
− 2βxi/ε

)]
, 1 ≤ i < N/2,

C
[
h2i +

1

max{hi, ε}
exp

(
− 2βxi−1/ε

)]
, N/2 ≤ i ≤ N − 1.
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Proof The estimate of the truncation error depends on the location of the mesh point xi and the relation

between the step size mesh hi and ε , so that we consider different cases as follows.

Case1 (Inner region). For 1 ≤ i < N/2, we have hi = h . Using (5.10) and the bounds (3.11) for r−i and r+i ,

we obtain ∣∣τi,u∣∣ ≤ C
(
ε−2h4

∣∣u′′′∣∣+ ε−1h4
∣∣u(4)∣∣+ h4

∣∣u(5)∣∣+ εh4
∣∣u(6)∣∣).

Using the bounds (2.3) for derivatives of u , it follows that

∣∣τi,u∣∣ ≤ C
[
ε−2h4 + ε−5h4 exp

(
− 2βxi/ε

)]
, 1 ≤ i < N/2.

Case2 (Outer region). For N/2 ≤ i ≤ N − 1, the truncation error is split into two parts τi,v and τi,w

corresponding to v and w .

Thus ∣∣τi,u∣∣ ≤ ∣∣τi,v∣∣+ ∣∣τi,w∣∣.
Here we consider two subcases depending on the relation between hm and ε .

(i) In the case hm∥a∥ < 2ε , using (3.11), (5.10) and the bounds on the derivatives of v given in Theorem

5.1, we have

∣∣τi,v∣∣ ≤ C
[
ε−2h4i + h4i exp

(
− 2βxi/ε

)]
≤ C

[
h2i + h4i exp

(
− 2βxi/ε

)]
.

Similarly, ∣∣τi,w∣∣ ≤ Cε−5h4i exp
(
− 2βxi/ε

)
≤ Cε−1 exp

(
− 2βxi−1/ε

)
,

using yke−y ≤ C, for all y ≥ 0, k is a positive integer, in the last inequality.

(ii) For the case hm∥a∥ ≥ 2ε , we use the following estimate for the local truncation error:

τi,u =
ε

hihi+1(hi + hi+1)

(
R2(xi, xi+1, u)r

+
i −R2(xi, xi−1, u)r

−
i

)
+

(
εR0(xi, xi+1, u

′′)−R1(xi, xi+1, u
′)ai+1

)
q+i

−
(
εR0(xi, xi−1, u

′′) +R1(xi, xi−1, u
′)ai−1

)
q−i .

(5.12)

Using (3.11) and (5.7) in (5.11) and integration by parts, we deduce that∣∣∣∣εR2(xi, xi−1, w)r
−
i

hihi+1(hi + hi+1)

∣∣∣∣ ≤C

hi

∣∣∣∣ ∫ xi

xi−1

(xi−1 − ξ)2ε−3 exp
(
− 2βξ/ε

)
dξ

∣∣∣∣
≤C

hi

[(hi
ε

)2

exp
(
− 2βxi/ε

)]
≤C

hi
exp

(
− 2βxi−1/ε

)
.
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In a similar way, we obtain ∣∣∣∣εR2(xi, xi+1, w)r
+
i

hihi+1(hi + hi+1)

∣∣∣∣ ≤ C

hi
exp

(
− 2βxi/ε

)
,∣∣∣εR0(xi, xi+1, w

′′)q+i

∣∣∣ ≤ Cε−1 exp
(
− 2βxi/ε

)
,∣∣∣R1(xi, xi+1, w

′)q+i

∣∣∣ ≤ Cε−1 exp
(
− 2βxi/ε

)
.

Using (5.12) and the previous bounds, we obtain

|τi,w| ≤
C

hi

[
1 +

hi
ε
exp

(
− 2βhi/ε

)]
exp

(
− 2βxi−1/ε

)
≤ C

hi
exp

(
− 2βxi−1/ε

)
, N/2 < i ≤ N − 1.

Likewise

|τi,v| ≤ C
[
h2i + ε3hi exp

(
− 2βxi−1/ε

)]
, N/2 < i ≤ N − 1.

Now, at the transition point xN/2 = σ , following the above argument, we get

|τN/2,v| ≤ C
[
H2 + ε3H exp

(
− 2βxN/2/ε

)]
.

For the layer component, since WN/2 is the solution of a homogeneous difference equation LNWN/2 = 0, it

follows that ∣∣τN/2,w

∣∣ = ε

hH(h+H)

∣∣∣(r−N/2 + rcN/2 + r+N/2

)
wN/2

∣∣∣+ ∣∣∣R0(xN/2, xN/2+1, w)r
+
N/2

∣∣∣
+

∣∣∣R0(xN/2, xN/2−1, w)r
−
N/2

∣∣∣.
From (3.11) and (5.11), we deduce that

∣∣τN/2,w

∣∣ ≤C[ 1

(h+H)

(
1− exp

(
− 2βH/ε

))
+

ε

h(h+H)

(
exp

(
2βh/ε

)
− 1

)]
exp

(
− 2βxN/2/ε

)
≤C

[
1

(h+H)

]
exp

(
− 2βxN/2/ε

)
≤C

H
exp

(
− 2βxN/2/ε

)
,

where we use exp(ϕ) ≥ 0 and exp(ϕ) ≤ 1 + Cϕ in bounded intervals of ϕ in the above inequality. Hence,

combining |τi,v| and |τi,w| in the above two cases, we have

∣∣τi,u∣∣ ≤


C
[
h2i + ε−1 exp

(
− 2βxi/ε

)]
, i = N/2,

C
[
h2i +

1

max{hi, ε}
exp

(
− 2βxi−1/ε

)]
, N/2 < i ≤ N − 1.
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This completes the proof. 2

To prove the uniform convergence of the present method, we will use the discrete maximum principle with the

following barrier functions:

Zi = 1 + xi, Φi(µ) =


i∏

j=1

(
1 +

µhj
ε

)−1
, 1 ≤ i ≤ N − 1,

1, i = 0,

where µ is a positive constant.

Lemma 5.3 Let the assumptions in Lemma 4.1 be satisfied and let µ ≤ β . Then for some constant C(µ) , we

have

−LNΦi(µ) ≥
C(µ)

max{ε, hi}
Φi(µ), 1 ≤ i ≤ N − 1.

Proof Applying the operator LN to the discrete function Φi , we obtain

−LNΦi(µ) = −
(
r̂−i Φi−1(µ) + r̂ciΦi(µ) + r̂+i Φi+1(µ)

)
= −

[(
1 +

µhi
ε

)
r̂−i + r̂ci +

(
1 +

µhi+1

ε

)−1

r̂+i

]
Φi(µ)

=
µ

ε+ µhi+1

[
hi+1r̂

+
i − hir̂

−
i − µhihi+1

ε
r̂−i

]
Φi(µ).

Thus, using (3.8), (4.5), and that µ ≤ β , we obtain the desired results. 2

Lemma 5.4 For each 1 ≤ i ≤ N − 1 and 0 < µ ≤ β , we have

exp
(
− βxi/ε

)
≤ Φi(µ). (5.13)

Moreover, for the Shishkin mesh defined in the previous section, we have

ΦN/2(µ) ≤ CN−µσ0 , (5.14)

for some positive constant C.

Proof For 1 ≤ i ≤ N − 1 and using that µ ≤ β , we have

exp
(
− βxi/ε

)
= exp

(
(−β/ε)

i∑
j=1

hj

)
=

i∏
j=1

exp
(
− βhj/ε

)
≤

i∏
j=1

exp
(
− µhj/ε

)
,

and using the inequalities

exp
(
− µhj/ε

)
=

(
exp

(
µhj/ε

))−1

≤
(
1 +

µhj
ε

)−1

, 1 ≤ j ≤ i,

yields the desired estimate (5.13).

Moreover, using that hi = 2σ0ε lnN/N, 1 ≤ i ≤ N/2, we have

ΦN/2(µ) =

N/2∏
j=1

(
1 +

µhj
ε

)−1

=

N/2∏
j=1

(
1 +

2µσ0 lnN

N

)−1

=
(
1 +

2µσ0 lnN

N

)−N/2

, (5.15)
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and using the inequality [5]

(
1 +

2σ0 lnN

N

)−N/2

≤ CN−σ0 , if 2σ0 lnN < N,

we deduce that (
1 +

2µσ0 lnN

N

)−N/2

≤ CN−µσ0 ,

where the condition (4.4) and that µ ≤ β imply that 2µσ0 lnN < N . 2

Theorem 5.5 Let u and U be the exact and the discrete solutions of (1.1) and (4.1), respectively, and assume

that N satisfies the conditions (4.4). Then if µ ≤ β , we have the following ε-uniform error estimate

∣∣u(xi)− Ui

∣∣ ≤ {
C
(
N−2µσ0 +N−4σ4

0 ln
4N

)
, 1 ≤ i < N/2,

C
(
N−2 +N−2µσ0

)
, N/2 ≤ i ≤ N − 1.

Proof We begin with the outer region. Thus, for N/2 ≤ i ≤ N − 1 we consider the following mesh function:

Ψi(µ) = −C
[
h2iZi + ΦN/2(µ)Φi−1(µ)

]
.

Using (5.13) and Lemmas 5.2 and 5.3, we have∣∣τi,u∣∣ ≤ LN
ε Ψi(µ), N/2 ≤ i ≤ N − 1.

Thus, applying the discrete maximum principle to Ψi(µ)±
(
ui − Ui

)
, we have

∣∣ui − Ui

∣∣ ≤Ψi(µ) ≤ C
[
H2 + ΦN/2(µ)Φi−1(µ)

]
≤ C

[
H2 +

(
1 +

µh

ε

)(
ΦN/2(µ)

)2]
.

It follows from (4.4) that µh/ε < 1. Using this and (5.14), we obtain∣∣ui − Ui

∣∣ ≤ C
(
N−2 +N−2µσ0

)
, N/2 ≤ i ≤ N − 1.

Now, in the inner region, we consider the following barrier function:

Ψi(µ) = −C
[(
ε−2h4 +N−2µσ0

)
Zi + h4ε−4Φi(µ)

]
, 1 ≤ i < N/2.

Again, applying the discrete maximum principle and using h = 2σ0εN
−1 lnN , we get∣∣ui − Ui

∣∣ ≤ C
(
N−2µσ0 +N−4σ4

0 ln
4N

)
, 1 ≤ i < N/2.

Thus the proof is complete. 2

Remark 5.1 From Theorem 5.5, we can see that the present method is ε-uniform convergent of order (N−4σ4
0 ln

4N)

in the boundary layer region, and it is second order ε-uniform convergent outside the boundary layer region pro-

vided that µσ0 ≥ 2 .
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Now we investigate a bound on the global error. Before analyzing the error bound, we introduce some notation.

Denote by ω(x) the error of the piecewise cubic interpolation for u(x) defined as

ω(xi + θhi+1) = u(xi + θhi+1)−
3∑

k=0

Pk(θ)u(xi−1+k), θ ∈ [0, 1).

Define

Ei = u(xi)− Ui and Ω = max
{
|ω(x)| : x ∈ [0, 1]

}
,

where u and U are the solutions of (1.1) and (4.1), respectively. It is easy to verify that Ω = O(N−3). The

main result on error estimate is given by the following theorem.

Theorem 5.6 Assume that the function f satisfies Lipschitz condition (2.2) and that the condition (4.9) holds.

Assume that N satisfies the conditions (4.4). Then if µ ≤ β and σ0 ≥ 2/µ , the method (4.1)–(4.3) is convergent

and the following error estimate holds:

∥E∥ ≤


C
[
D
(
N−4σ4

0 ln
4N

)
+
(
DK(L2 + L3) + 1

)
N−3

]
, 1 ≤ i < N/2,

C
[
DN−2 +

(
DK(L2 + L3) + 1

)
N−3

]
, N/2 ≤ i ≤ N − 1,

where

D =
M

∥∥L−1
N

∥∥
1−K

∥∥L−1
N

∥∥(L1 +M(L2 + L3)
) .

Proof Let u =
[
u(x1), u(x2), · · · , u(xN−1)

]T
and U =

[
U1, U2, · · · , UN−1

]T
. Then since

E = L−1
N

(
F (u)− F (U) + τu

)
,

we get the following: ∥∥E∥∥ ≤
∥∥L−1

N

∥∥∥∥F (u)− F (U)
∥∥+

∥∥L−1
N

∥∥∥∥τu∥∥,
and we have ∥∥F (u)− F (U)

∥∥ ≤ K max
1≤i≤N−1

(
L1|u(xi)− Ui|+ L2ζi + L3ξi

)
,

where

ζi =
∣∣u(xi − δ)− Ui,δ

∣∣ and ξi =
∣∣u(xi + η)− Ui,η

∣∣.
It is clear that, if xi ≤ δ , then ζi = 0. Otherwise, xi ∈ [xj + δ, xj+1 + δ) for some 0 ≤ j ≤ N − 1. Thus,

xi − δ = xj + θhj+1, 0 ≤ θ < 1. Using the cubic interpolation, we get

ζi ≤
∣∣∣u(xi − δ)−

3∑
k=0

Pk(θ)u(xj−1+k)
∣∣∣+ ∣∣∣ 3∑

k=0

Pk(θ)u(xj−1+k)−
3∑

k=0

Pk(θ)Uj−1+k

∣∣∣
≤Ω+M

∥∥E∥∥.
Similarly, we obtain

ξi ≤ Ω+M
∥∥E∥∥.
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Thus ∥∥E∥∥ ≤ K
∥∥L−1

N

∥∥(L1 +M(L2 + L3)
)∥∥E∥∥+

∥∥L−1
N

∥∥(∥τu∥+K(L2 + L3)Ω
)
,

which, using the condition (4.9), is equivalent to

∥∥E∥∥ ≤

∥∥L−1
N

∥∥(∥τu∥+K(L2 + L3)Ω
)

1−K
∥∥L−1

N

∥∥(L1 +M(L2 + L3)
) . (5.16)

To obtain a bound on E , let Ui,θ be the approximation of u(xi + θhi+1); then we have

∣∣∣u(xi + θhi+1)− Ui,θ

∣∣∣ ≤∣∣∣u(xi + θhi+1)−
3∑

k=0

Pk(θ)u(xi−1+k)
∣∣∣

+

3∑
k=0

∣∣∣Pk(θ)
(
u(xi−1+k)− Ui−1+k

)∣∣∣
≤Ω+M

∥∥E∥∥.
Consequently, combining the above inequality with (5.16) and using Theorem 5.5, we obtain the desired esti-

mate. 2

Lemma 5.7 Let B be the (N − 1)× (N − 1) matrix of the form

B =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

 ,

and let A = −α̃B + I − β̃BT with I being the identity matrix. Let α̃+ β̃ = 1, α̃, β̃ ≥ 0 . Then

∥A−1∥2 ≤ O
(
(N − 1)2

)
.

Proof see [30]. 2

Theorem 5.8 Let LN be the (N − 1) × (N − 1) tridiagonal matrix (4.2), and let ε = O(hpm) , where p is a

positive real number. Then

∥L−1
N ∥2 ≤

 O(h−p
m ), 0 < p < 1,

O(h3p−4
m ), p ≥ 1.

Proof We will follow the procedure as done in [7]. Let α̃ = −r−i /rci and β̃ = −r+i /rci . Then, using (3.8), it is

easy to show that α̃ and β̃ satisfy the assumptions of Lemma 5.7 (α̃+ β̃ = 1, α̃, β̃ ≥ 0). Hence, the tridiagonal

matrix LN defined by (4.2) can be written as

LN = diag
(
r̂c1, r̂

c
2, · · · , r̂cN−1

)(
− α̃B + I − β̃BT

)
= diag

(
r̂c1, r̂

c
2, · · · , r̂cN−1

)
A,
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where B and I are the matrices defined in Lemma 5.7, and A =
(
− α̃B+ I − β̃BT

)
. Therefore, using Lemma

5.7, we have

∥L−1
N ∥2 =

1

r̂cm
∥A−1∥2 ≤ 1

r̂cm
O
(
(N − 1)2

)
, r̂cm = max

1≤i≤N−1
|r̂ci |. (5.17)

From (3.8) and (3.9), it follows that

r̂cm =
O(ε4) +O(ε3hm) +O(ε2h2m) +O(εh3m) +O(h4m)

O(ε3h2m)
.

Using (5.17) and the above equation with the assumption ε = O(hpm) gives

∥L−1
N ∥2 ≤


O(h3pm )

O(h4pm )
= O(h−p

m ), 0 < p < 1,

O(h3pm )

O(h4m)
= O(h3p−4

m ), p ≥ 1.

2

6. Numerical results

In this section, we present the numerical results obtained by the FMOCI method described in Section 3. In

order to demonstrate the accuracy of the present method to solve nonlinear singularly perturbed differential

equations with small shifts, we consider four examples including both cases, when the boundary layer occurs

on the left as well as on the right side of the interval. The computational results are listed with the maximum

pointwise errors and orders of convergence for different values of δ, η , and ε . The solutions of the considered

examples are plotted for different values of δ and η to illustrate the effect of delay and advance parameters on

the boundary layer behavior of the solution.

Example 6.1 Consider the following nonlinear singularly perturbed boundary value problem with small delay

εu′′(x) + u′(x) = u2(x− δ)−
(
2(x− δ) +

1− e−
(x−δ)

ε

e
−1
ε − 1

)2

+ 2,

u(x) = 0, −δ ≤ x ≤ 0, u(1) = 1,

Example 6.2 Consider the problem with small positive shift

εu′′(x) +
1

x+ 1
u′(x) = u3(x)− 0.25u(x+ η) +

1

4(x+ η + 1)
,

u(0) = 0, u(x) = 0, 1 ≤ x ≤ 1 + η,

Example 6.3 Consider the problem with mixed type of small shift

εu′′(x) + u′(x) = −u2(x− δ) + u(x+ η) +
(e− (x−δ)

ε − 1

e
−1
ε − 1

)2

− e−
(x+η)

ε − 1

e
−1
ε − 1

,

u(x) = 0, −δ ≤ x ≤ 0, u(x) = 1, 1 ≤ x ≤ 1 + η,
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Example 6.4 Consider the following problem with right-hand side boundary layer

εu′′(x)− u′(x) = e−u − ex−1 − u(x− δ) + u(x+ η),

u(x) = 1, −δ ≤ x ≤ 0, u(x) = 0, 1 ≤ x ≤ 1 + η,

The exact solutions of the above problems are not known and so the maximum pointwise error is evaluated

using the double mesh principle [3],

EN
ε = max

0≤j≤N
|UN

j − U2N
j |,

Furthermore, the ε-uniform maximum pointwise error EN and the corresponding ε-uniform order of conver-

gence pN are computed by

EN = max
ε
EN

ε and pN = log2

( EN

E2N

)
.

Table 1. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.1 with δ = 0.5ε .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 3.99E−04 5.67E−05 6.16E−06 6.78E−07 7.29E−08

10−4 5.35E−04 6.63E−05 7.23E−06 7.10E−07 5.30E−08

10−6 5.34E−04 6.63E−05 7.31E−06 7.46E−07 7.17E−08

10−8 5.34E−04 6.63E−05 7.31E−06 7.46E−07 7.19E−08

10−10 5.34E−04 6.63E−05 7.31E−06 7.46E−07 7.19E−08

EN 5.35E−04 6.63E−05 7.31E−06 7.46E−07 7.29E−08
pN 3.01 3.18 3.29 3.36

Table 2. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.1 with δ = 0.03.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 3.64E−08 5.82E−09 1.32E−09 1.88E−10 1.62E−11

2−3 6.71E−07 9.97E−08 2.14E−08 3.03E−09 2.73E−10

2−4 4.74E−06 5.25E−07 2.63E−08 1.14E−08 2.72E−09

2−5 9.58E−05 3.14E−06 1.06E−07 1.55E−08 6.04E−10

2−6 1.55E−03 5.79E−05 1.99E−06 6.47E−08 2.37E−09

2−7 1.52E−03 1.99E−04 2.06E−05 2.01E−06 2.64E−07

EN 1.55E−03 1.99E−04 2.06E−05 2.01E−06 2.64E−07
pN 2.96 3.27 3.36 2.93

For different values of ε , δ , and η , the maximum pointwise error EN
ε has been computed and presented in

Tables 1–8. The last two rows in each table show the ε -uniform maximum pointwise errors EN and the

ε -uniform orders of convergence pN . From these tables, we conclude that the proposed method is ε-uniformly

convergent of third order, and for all values of ε the maximum pointwise error EN decreases rapidly with

increasing N . In addition, Tables 2 and 8 demonstrate that the proposed method is effective in both cases,

when shift parameters are of O(ε) or o(ε).
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Table 3. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.2 with η = 0.5ε .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 4.50E−04 5.46E−05 6.15E−06 6.33E−07 4.16E−08

10−4 4.93E−04 6.05E−05 7.08E−06 6.82E−07 9.13E−08

10−6 4.93E−04 6.05E−05 7.07E−06 7.93E−07 9.57E−08

10−8 4.93E−04 6.05E−05 7.07E−06 7.92E−07 9.56E−08

10−10 4.93E−04 6.05E−05 7.07E−06 7.92E−07 9.56E−08

EN 4.93E−04 6.05E−05 7.08E−06 7.93E−07 9.57E−08

pN 3.03 3.09 3.16 3.05

Table 4. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.2.

ε η N = 64 N = 128 N = 256 N = 512 N = 1024

10−1 ε 2.26E−07 1.53E−07 1.61E−08 6.31E−09 3.44E−10

6ε 1.71E−07 1.79E−07 1.86E−08 7.64E−09 4.07E−10

10ε 8.30E−08 5.30E−09 3.34E−10 2.10E−11 1.40E−12

10−2 ε 4.50E−04 5.43E−05 6.16E−06 6.39E−07 4.14E−08

6ε 4.29E−04 5.18E−05 5.92E−06 6.11E−07 3.88E−08

10ε 4.12E−04 4.96E−05 5.72E−06 5.93E−07 3.76E−08

10−3 ε 4.90E−04 6.03E−05 7.02E−06 7.30E−07 7.45E−08

6ε 4.84E−04 5.86E−05 6.99E−06 7.35E−07 7.54E−08

10ε 4.81E−04 5.87E−05 6.73E−06 7.43E−07 6.86E−08

EN 4.90E−04 6.03E−05 7.02E−06 7.43E−07 7.54E−08

pN 3.02 3.10 3.26 3.30

Table 5. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.3 with δ = η = 2.5ε .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.60E−04 1.98E−05 2.44E−06 2.63E−07 2.35E−08

10−4 1.13E−04 1.35E−05 1.49E−06 1.51E−07 1.45E−08

10−6 1.12E−04 1.34E−05 1.47E−06 1.49E−07 1.43E−08

10−8 1.12E−04 1.34E−05 1.47E−06 1.49E−07 1.43E−08

10−10 1.12E−04 1.34E−05 1.47E−06 1.49E−07 1.43E−08

EN 1.60E−04 1.98E−05 2.44E−06 2.63E−07 2.35E−08

pN 3.016 3.02 3.21 3.49
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Table 6. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.3 with η = δ .

ε δ N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 ε 2.38E−04 2.58E−05 3.52E−06 4.10E−07 4.97E−08

2ε 2.68E−04 2.93E−05 4.11E−06 5.04E−07 5.34E−08

3ε 3.07E−04 3.84E−05 4.92E−06 5.81E−07 6.12E−08

10−4 ε 1.77E−04 2.15E−05 2.35E−06 2.39E−07 2.36E−08

2ε 1.77E−04 2.15E−05 2.36E−06 2.41E−07 2.32E−08

3ε 1.78E−04 2.16E−05 2.37E−06 2.42E−07 2.33E−08

10−6 ε 1.76E−04 2.14E−05 2.34E−06 2.38E−07 2.28E−08

2ε 1.76E−04 2.14E−05 2.34E−06 2.38E−07 2.28E−08

3ε 1.76E−04 2.14E−05 2.34E−06 2.38E−07 2.28E−08

EN 3.07E−04 3.84E−05 4.92E−06 5.81E−07 6.12E−08

pN 3.00 2.97 3.08 3.25

Table 7. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.4 with δ = η = 0.5ε .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 2.76E−03 2.99E−04 2.85E−05 2.10E−06 1.46E−07

10−3 3.10E−03 3.47E−04 3.46E−05 2.87E−06 2.20E−07

10−4 3.14E−03 3.57E−04 3.81E−05 3.43E−06 3.26E−07

10−5 3.14E−03 3.58E−04 3.84E−05 3.57E−06 2.59E−07

10−6 3.14E−03 3.58E−04 3.85E−05 3.57E−06 2.48E−07

10−7 3.14E−03 3.58E−04 3.85E−05 3.56E−06 2.55E−07

10−8 3.14E−03 3.58E−04 3.84E−05 3.29E−06 2.73E−07

EN 3.14E−03 3.58E−04 3.85E−05 3.57E−06 3.26E−07

pN 3.13 3.22 3.43 3.46

Table 8. Maximum errors EN
ε , EN , and ε -uniform orders of convergence pN for Example 6.4 for with δ = η .

δ, η ε N = 64 N = 128 N = 256 N = 512 N = 1024

0.01 10−1 1.82E−05 2.08E−06 4.59E−07 1.96E−07 2.94E−08

10−2 2.69E−03 2.62E−04 1.61E−05 9.25E−06 1.12E−06

10−3 3.12E−03 3.51E−04 3.13E−05 2.75E−06 3.53E−07

0.03 10−1 4.88E−05 1.09E−05 1.78E−06 1.54E−07 1.18E−07

10−2 2.76E−03 2.21E−04 4.27E−05 9.61E−06 1.11E−06

10−3 5.80E−03 6.85E−04 7.86E−05 2.96E−06 8.93E−07

EN 5.80E−03 6.85E−04 7.86E−05 9.61E−06 1.12E−06

pN 3.10 3.12 3.03 3.12
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Figure 1 shows the corresponding numerical solutions of Examples 6.1 and 6.2 with ε = 2−5 and for

different values of δ and η , respectively. Similarly, the numerical solution for Example 6.4 with ε = 2−5 and

different values of δ and η are plotted in Figure 2. From these Figures, one can observe the effect of shift

parameters δ and η on the solution behavior in both cases (left and right) of boundary layer. In the case of

the left boundary layer, as δ increases, the thickness of the boundary layer decreases while it increases when η

increases, and the effect of these parameters is reverse in the right case.
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Figure 1. The numerical solution of Example 6.1 (left) and Example 6.2 (right) for ε = 2−5 .
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Figure 2. The numerical solution of Example 6.4 for ε = 2−5 .

7. Conclusion

An efficient high order uniform method has been developed for solving nonlinear singularly perturbed delay

differential equation with small shifts. Both cases, when the boundary layer occurs on the left and on the

right side of the interval, are studied. The proposed method is analyzed for convergence and the bound of

global error is also discussed. Error analysis is carried out and it has been shown that the present method

is ε-uniform convergent with third-order accuracy. The advantages of this method are the higher order of

accuracy, the simplicity of implementation, and the strong performance in both cases, when the delay and

advance parameters are of O(ε) or o(ε).

The effect of small shifts on the layer behavior of the solution has been discussed by considering both
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cases of boundary layers. It is observed that in the case of the left boundary layer, the thickness of the layer

decreases as the delay parameter δ increases while it increases when the advance parameter η increases as

shown in Figure 1. In the right boundary layer, the impact of these shifts is the reverse, i.e. as δ increases, the

thickness of the boundary layer increases and it decreases when η increases as shown in Figure 2. Moreover, we

observe that the effect of delay parameter is more in the case of the left boundary layer in comparison to the

right boundary layer case, whereas the advance parameter affects more in the right side boundary layer case.
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