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Abstract: The reciprocal super Catalan matrix studied by Prodinger is further generalized, introducing two additional
parameters. Explicit formulae are derived for the LU -decomposition and their inverses, as well as the Cholesky
decomposition. The approach is to use g-analysis and to leave the justification of the necessary identities to the ¢-

version of Zeilberger’s celebrated algorithm.
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1. Introduction
As mentioned in [8], there are many combinatorial matrices defined by a given sequence {a,}. One of them is
known as the Hankel matrix and is defined as follows:

ap aj ag

ayp as as

as as a4

for more details see [6]. Considering some special number sequences instead of {a,}, there are many special
matrices with nice algebraic properties. Moreover, some authors, such as [10], studied the Hankel matrix

considering the reciprocal sequence of {a,}

Sl &l-8-
C 8= &S
2l &8

For the sequence {a;,}, a matrix can be defined by taking (i, 7)th entries a; ;. Well-known types of
these sequences typically include binomial coefficients. As examples, we give the family of Pascal matrices whose
entries are defined via the usual binomial coefficients [2, 3]. The Pascal matrices are mainly two kinds: the first

is the left adjusted Pascal matrix P,, = (p;;) and the second is the right adjusted Pascal matrix Q,, = (m;),
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Dij = <]> and m;; = (n—l—j)’ 0<14,j <n.

The Gaussian g-binomial coefficients are defined by

where

m _ (%49,
ko, (@9 (@9),
where (z;¢),, is the g-Pochhammer symbol defined by

(59),, =1 —2)(1—2q)... (1 —xq”_l) .

Note that

where (2) is the usual binomial coefficient.

We recall that one version of the Cauchy binomial theorem is given by
n oy [ . n .
Zq(2)[k}xzn(1+mq)v

k=0 q k=1

and Rothe’s formula [1] is

Z (fl)k q(g) [Z} k= (x5q), = 1:[ (1 — zqk) .
k=0 q k=0

Recently, Prodinger [8] defined a matrix whose entries consist of super Catalan numbers. He also defined

its reciprocal analogue as well as its g-versions whose (4, j)th entries are defined for 0 < i,j5 <n
20\ " 25\ i+
i J i)’
. N o 1
21\ 25\ [1+ ]
i j i ’
HRENR
ilg L7l P
) q e, -1
L1
tlglilel v g

respectively. Then he gave some algebraic properties of these matrices.

and

Recently, Kili¢ et al. [4] defined and studied a variant of the reciprocal super Catalan matrix with two

additional parameters whose entries are defined as

CONGORGUR

961



KILIC and ARIKAN/Turk J Math

Explicit formulae for its LU-decomposition, LU decomposition of its inverse, and the Cholesky decomposition

are obtained. For all results, g-analogues are also presented.

In this paper, for nonnegative integers r and s, we define two n x n matrices M = [My;] and T = [T};]

E+7\/2k+r\"" (25 +s\ "
Mg ="}, k j

2% +1\ (25 + 5\ (k+5\ "
=1\ j k

First, we give the matrices M and 7 which are the g-analogues of the matrices M and T, respectively.

with entries
and

for 0 < k,j < n, respectively.

For both matrices, we derive explicit expressions for the LU-decomposition, which leads to a formula for the

determinant via [] U,,;. Further, we have expressions for L™ and U™}, for LU -decomposition of the inverse
0<i<n

matrix and their inverses, and for the Cholesky decomposition when the matrix is symmetric, that is, the case
r = s. Afterwards, when ¢ — 1, we get the results for the matrices M and T. Our results generalize the results
of [8] for the case r = s =0.

Firstly, we list the result related to the matrix M in the next section and secondly prove them in Section
3. Then we list results related to the matrix 7 and then give related proofs in the next section. Finally, we give
the results related to the matrices M and T as special cases of the results related to the matrices M and T .
To prove the claimed results, our main tool is to guess relevant quantities and then we will use the ¢-version of
Zeilberger’s celebrated algorithm (for more details see [7, 9]) and Rothe’s formula to justify relevant equalities.
All identities we will obtain hold for general ¢ and generalized Fibonomial analogue of our results could be

obtained by using the application of g-identities for Fibonacci numbers. We refer to [5] to give an idea.

2. The matrix M

We denote matrices L and U by A and B in LU -decomposition of any inverse matrix, respectively, that is,

M~ = AB. For the Cholesky decomposition of a matrix G, we will use the letter C' such that G = CC7.
The matrix M is defined with entries for 0 < k,j < n,

) IR -1
My, = [k—k]} [2]@4—7’] {2] +s] .
q a

k k j

q

Firstly, we list here the formulae related to matrix M that were found for 0 < k,j <n:

2k +1r] " 2j+r| [k
B i bl
q q q

L} = (-1 ¢(%) Fk; 1 ) [2j ; 1 ] m J

q

2% +r] 25 + 5]
Uijqkz[ ; } [J, } m
q Jlq q
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U];jl — (_1)k+j qk(k+1)/2—j(j+1)/2—kj 2k +s| |27 + rl [ 7
kodgl g 1oLkl

Am=(—n“j¢“”V%ﬂﬂ®ﬂwwﬁ>1—fﬁd{"—1—1 Fk+j
ktj+1 .
1——q +Jj+ k‘—] . k .
A—1ro: “1r.
LA N
k q S q S q’

. . . -1 1
Alzl _ q(k—j)(k—nJrl) {k +J] {n —J - 1] {2] -l— s} [2/6 + S} [k + s] 7
J kl,L k=3 1,L 7 1, s L8 1,
By = (=1)kHI gUHDG+2)/2=n(bti+1)+3k(k+1)/2 { J + 7"] { n+ } [g}
q q q

J k+j+1], [k
aiak
X )
S q S

q

j -1 q—1r.
B! ::qw+4+1xn_j_1)};:£fifi 2% +7r] " n+417 ()
kj 1—qgnFk k ]ngjq kq

. —1r.
2
X[J+j [g+ﬂ,
S q S q

oo [2k+ 7] [k
ijZ(J]/Q[ } H
k q ‘7 q

q
for r = s,

and

n—1 1 1
det M = ¢(n—D@n—1)/6 H [Qk;- r] {2143]:_ s] .
k=0 q

3. Proofs related to the matrix M
For L and L~1,

S Ll = Y (1 () [Qk;—r]_l [Zd;—rh[ﬂq

j<d<k j<d<k q
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By Rothe’s formula, if k£ # j then we have (l;q)k_j =0, and, if £k = j, then the last sum on the RHS of the

above equation is equal to 1. Thus we conclude

> LiaLy' =6k,

Jj<d<k
where Jy, ; is Kronecker delta, as claimed.
For U and U !,
5 sy =g B [
4 = .
k<d<j ! k q J q k q

x qMEIER/2 ()Rt [j_k] (—1)% ("5 +d(k=)
0<d<j—k d q

By the Cauchy binomial theorem, if k& # j, then the last sum on the RHS of the above equation equals

ik }
[T (1 —g¢*~9+4) = 0. Thus we have
d=1
> UraUy' = 6k,
k<d<j
as desired.
For LU -decomposition, we have to prove that
Z LkdUdj = ./\/lkj.
0<d<min{k,j}
Consider

2k +7] ' [25+ 5] 7"
> LyaUy = [ . ] [ & ] (¢:0) (4:90);
0<d<min{k,j} q J q

2 1

x>, 2 :
0<d<k (Q§Q)d (Q§Q)k7d (CBQ)J;d
Denote the last sum in the equation just above by SUMy . The Mathematica version of the ¢-Zeilberger algorithm
[7] produces the recursion
— qj+k
SUMj,=————— SUM;,_;.

(1—4%)

Since SUM( = (g; q),?l (g; q)j_1 , we obtain

_ 1 |k+y
sUMi = (¢;0); (30); [ j} -
q

k

Therefore, we get

Z LyqUgj = Myj,

0<d<min{k,j}

964



KILIC and ARIKAN/Turk J Math

which completes the proof.

For A and A~!, consider

S ApaAgt = (—1)F gE 2= (@ 9)n—j1
j<d<k Ui —

: F’“J 107,10,

« Z { } _1)? glla-1)/2- ]d(q Dar; 1—q

i (@:q)q—; 1 — gttt

2d+1

By the g-Zeilberger algorithm for the second sum in the last equation, we obtain that it is equal to 0 provided
that k # j. If k = j, it is obvious that AkkAkk = 1. Thus

Z Adele = 0k 4,

j<d<k

as claimed.
Similarly, we have

-1 _ )
E Bkdij —6k,j-
k<d<j

For the Cholesky decomposition, we examine the equation

> CriCla = My

0<d<min{k,j}

Here

N L N S a1 ]

0<d<min{k,j} 4 0<d<min{k,j}

Note that the sum on the RHS of the equation just above is the same as the sum in the LU -decomposition,

which was proven before.

For the LU -decomposition of M~™!, we should show that M~! = AB, which is same as M = B~1A~1
Hence, it is sufficient to show that
> B Ayt = My;.

max{k,j}<d<n-—1

After some arrangements, we have

Qk —1 2 —1 ‘
) BiAy = [ ;-1 [JfFj T Ut
q

max{k,j}<d<n—1 J 9 j<d<n-—1
L= ﬂ {nﬂql {dJrj] [n—j— 1}
n—k . )
1—gq qu+dq d ” d—j q
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which, by replacing (n — 1) with n and apart from the constants factors, equals

Z q(j+k+1)(n—d)1_q2d+1 dl [n+1+d] " [d+4] [n—j
=gk k]| k+d d | lda-jl,

j<d<n q

Denote this sum by SUM,,. The ¢-Zeilberger algorithm gives the following recursion provided that k # n and
J#EN
SUM,, = SUM,,_;.

Therefore, SUM,, =SUM; = [kzj]q which completes the proof except for the case (k,j) = (n —1,n — 1), which

could be easily checked. Thus the proof is complete.

4. The matrix 7T
The matrix 7 is defined with entries for 0 < k,j < n,

-

2% +r] [2j+s] [k+4]"
O O T W 2

q

For 0 < k,j < n, we have
. [2k+r] m {kw‘l{zﬁr]l{jw}
kj = . . ) ,
’ k+J qWUlql J 1y "o lyg "oy

_ ey L= [k+4] [2k+7] [k+r] "' [25+7] "
Ly = ()" ) Lg -
-4 R S N N "l

X [J—FT} for 7 > 1,
T
q

-1

and LO_O1 =1,

Ll = (-1)F (14 ¢") o) [Qk:— r} [k; 1_ ]

-9

_ 2j+s| [2k+r] [j—k+s
Ukj = (=1)"¢"* 1)/2(1+‘1k)[k+j { " } [ s ]
-q q q

—1r. —1 .
% |:k + T:| |:] + 8:| for k Z 17 UO] — |:2.7 + S:| ,
r q § q J q

j : . —1r.
U=l = (—1)F grthn/2=ithry) L4 KT 2i ) g
kj 1—qgkti|j—k . r v,

Fkﬂ}l[ms}
X b
§ q § q

q
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J

L[t k8] [2k+s] 7 5+ 8] 25 + ]
2j . s Ll os 1, s 1, s )]

A = (—1)FH QoD +2)/2- G142/ 24— m [” +2’Z - 1}
q q

. —1 - —1
A7l = k=G [F] [n B = 1) I j = 1k s) 2k 4+ s
kj j q 2]{1 q 2] q S q

. —1 .
X[]—ks} {2‘7—1—3} ’
§ q s q
A1G : —1] [4] [2k+s] "
Bkj:q(J+1)(J+2)/2—"(n—1)/2—J"+k2—1|:n+] ] H [ +S]
q q

2 KoLk
, , —1
X{]—Fr] {2]+r] 7
ol

q

q

: — ' k—1]7"[2)
B]Zjl _ (_1)n+J+1 qk:—k_]—](]+1)/2+kn+n(n—1)/2 |:J:| |:n + :| [ )+ S:|
q q

k 2k s
[zk +r] {k + 7«} -1
X b
T q T

q

q

for r=sand j > 1,

g o minval2k+r] [k+r] T k—j+
Cuy =¥ (14 /2 i [+ 7] fler) k=i
k+'7 q r q r q

where i =v/—1 and for j =0,

2k +
Cro = [ 1 r}
a

and

det T = (fl)(g) ﬁ gF3E-1/2 [Qk + s} [Zk 4 r] {k + r} -1 {k " S} 71.
k=1 q q

2k T o, s 1,

5. Proofs related to the matrix 7
For L and L™, it should be shown

> LiaLy' =6k

j<d<k

By the definitions of the matrices L and L', for the case j = 0, we have

-1 -1 -1
E , Lk,de,o :Lk0L0,0+ E , Lk,de,0~
0<d<k 1<d<k
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If k=0, we get 1 as (0,0)th entry of matrix LL™!. If k > 0, after some rearrangements we have

> LiaLy

—1 _ -1
> Lkarilzlio= Y Lesanlylig

1<d<k 0<d<k—1 0<d<n
- (—1)M (1 4 ¢4 g(#+d)/2 {2”‘*‘ 2 +T]
0aen n+d+2 g
y [nJrl] {n+1+r}1
d+1],l d+1 |,
which, by using the ¢-Zeilberger algorithm, equals —[2"7:31‘”' r} . By changing n + 1 with k again, we get

—[*7],- Finally if k> 0,

_ 2k +r _
Z Ldedolz{ k } + Z Lded01

0<d<k 4 1<d<k
2k +r 2k +r
ol R e R
q q

as desired. For the case j > 0, we have

. 2d
-1 d+j (479 1—¢q 2k +1r k
Z Lyaly; = Z (~1)" g% )1_qd+j {k:er d
j<d<k j<d<k qL%q

X[k—i—r}l[d—kj} [Qj—&—r}l{j—kr]
d q d_jq r q L

By the g-Zeilberger algorithm, we obtain that it is equal to 0 provided that k # j. The case k = j could be
easily checked. Thus

Z Lde;jl = 0k,

j<d<k

which completes the proof.

Verification of the inverse of U could be similarly done. Inverses of the matrices A and B could be
shown as in Section 3.

For LU -decomposition, we have to prove that

Z LyaUqgj = Ti;.

0<d<min{k,j}
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The cases k=0, 0< j <n,and, 7 =0, 0 <k <n could be easily shown. For other cases, consider

2k +r| |25+ s
> LeaUy=ILwUoj+ >, LiaUsg = { A } { ’ ]
0<d<min{k,j} 1<d<min{k,j} al I Jq

d _ 2k +r k
D DR @+qﬂqwinwﬂk+d][d
1<d<min{k,j} q q

" k4]t 2j+s| [j—d+s] [j+s -t
d p j—i—dq S JL S

q

{QkJrr} [2j+s} +{2k+1 [2j+s]
k q '7 q k q ‘7 q

PR S g

o L icadmmir.g

<[, [T
k+dl,lji+dl,

Without loss of generality, we may consider k < j. Hence, consider the sum
2k 29
_ d d\ (3d—1)d/2 J
sump = > ()" (1+4q%)g [ } {‘ ].
ot k+dq]+dq

The g-Zeilberger algorithm gives the recurrence relation

(Lea) (1)
=)

SUMy= SUMp—1.

Since SUM( = Q[Qkk]q, we obtain

2kl 251 Tk +41 "
am=of2] 1 1]
q ‘7 q q

Since the summand of the SUMj, is symmetric with respect to k£ and —k, we have

Z (—1)? (1+ %) q(3d1)d/2[ 2k } [‘21 } _ }SUMk_ Fk} [2]] .
1<d<k ktd li+d, 2 klglilg

Finally consider

2k +rl [25+ s 2k +r| [25+ s
o W P W
0<d<k el 7 Iq4 L 1 g

X
o
SN
—_
2 |
iR
)
.3
| I
< |
AR
VR
N
wn
[an]
=
ol
\
o
SN
| I |
[i=)
)
=3
—_
_
v

as desired.
For LU -decomposition of the inverse of the matrix 7, the argument in Section 3 could be similarly used.
We omit it here.
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6. The matrix M
Recall that the n x n matrix M = [My;] is defined for 0 < k,j < n and nonnegative integers r and s,

E+7\/2k+r\ " /25 +s\ "
My = (" . ; .

In Section 2, by taking ¢ — 1, we get the following results for 0 < k,j <mn :

(47 C70)
Ly} = (-1 <2k]j 7’) o <2j;rr> (/;)
Uss — <2k+r (2]+5> 1@)
=0 ()T
A = (~1)" k14:724i1(ngj_1> (2kl;|—3> (k;:j)—l
X (23+3> (J—i—s)
Al = <k—kw> (n j- 1) <23 +s> (21@;3) (k_;8>—17
By = (-1 <2j;rr> (k:;:k_ 1) (}7{) (2k8+ s> (k : s) *1’
m = ()OO
(1))

n—1 —1 —1
det M — H <2k]:—r) <2k]:—s> .

k=0

for r = s,

and
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7. The matrix T
Recall that the n x n matrix T' = [T};] is defined for 0 < k,j < n, and nonnegative integers r and s,

2%+ 1\ (25 + s\ (k+5\ "
o= (", ; . .

In the Section 4, by taking ¢ — 1, we obtain the following results. For 0 < k,j < n,
Lo — 2%k + 1\ (KN (k+r\ " 2]+ -1 j+r
SRV R DACYAN r r )
Lol Ly 2K 2k (k+5\[2k+r\[k+r\ (24 [i+r
ki k+j\k—j r r r r )’

2k k+r\
Ll =2(-1)F ( +r) < +r> and Ly =1,

r r

1)k2<2kjj_r;> <2k:7’> (j *l;er 5) <k‘:rr) l(j;rs)l
and Uy, = (27 + 5)
=G ) ) ()
Agj = (—1) (?) (” +2’2— 1) (n +2jj— 1)_1 <2k8+ s) -1 (k: : 5>
ey’
A = <’;> <” 2’2— 1> <n +2jj— 1)1(2k8+ s> - <k:s>
0
(TR )
Byl = ()" <2) <n +212: 1>1 <2j;r s> (Qk;rr) (k:rr>17

forr=sand j > 1,
o (2k+1\ (k+r\ " (k—j+r
,:_21/2
ow=c2 () () ()

for j > 1,

for k> 1,
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for 7 =0,

2k +r
= (%57).

Thus

ESORE

972

o T () ()T ()

k
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