Turk J Math
(2016) 40: $960-972$
(C) TÜBİTAK
doi:10.3906/mat-1504-100

The generalized reciprocal super Catalan matrix

Emrah KILIÇ ${ }^{1}$, Talha ARIKAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, TOBB Economics and Technology University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, Hacettepe University, Ankara, Turkey

Received: 30.04.2015 • Accepted/Published Online: 20.01.2016 \quad Final Version: 21.10 .2016

Abstract

The reciprocal super Catalan matrix studied by Prodinger is further generalized, introducing two additional parameters. Explicit formulae are derived for the $L U$-decomposition and their inverses, as well as the Cholesky decomposition. The approach is to use q-analysis and to leave the justification of the necessary identities to the q version of Zeilberger's celebrated algorithm.

Key words: Determinant, inverse matrix, $L U$ factorization, Gaussian q-binomial coefficient, Zeilberger's algorithm

1. Introduction

As mentioned in [8], there are many combinatorial matrices defined by a given sequence $\left\{a_{n}\right\}$. One of them is known as the Hankel matrix and is defined as follows:

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \vdots \\
\vdots & \vdots & \ldots & \ddots
\end{array}\right]
$$

for more details see [6]. Considering some special number sequences instead of $\left\{a_{n}\right\}$, there are many special matrices with nice algebraic properties. Moreover, some authors, such as [10], studied the Hankel matrix considering the reciprocal sequence of $\left\{a_{n}\right\}$

$$
\left[\begin{array}{cccc}
\frac{1}{a_{0}} & \frac{1}{a_{1}} & \frac{1}{a_{2}} & \cdots \\
\frac{1}{a_{1}} & \frac{1}{a_{2}} & \frac{1}{a_{3}} & \cdots \\
\frac{1}{a_{2}} & \frac{1}{a_{2}} & \frac{1}{a_{4}} & \vdots \\
\vdots & \vdots & \cdots & \ddots
\end{array}\right]
$$

For the sequence $\left\{a_{i, j}\right\}$, a matrix can be defined by taking (i, j) th entries $a_{i, j}$. Well-known types of these sequences typically include binomial coefficients. As examples, we give the family of Pascal matrices whose entries are defined via the usual binomial coefficients [2,3]. The Pascal matrices are mainly two kinds: the first is the left adjusted Pascal matrix $P_{n}=\left(p_{i j}\right)$ and the second is the right adjusted Pascal matrix $Q_{n}=\left(m_{i j}\right)$,

[^0]where
$$
p_{i j}=\binom{i}{j} \text { and } m_{i j}=\binom{i}{n-1-j}, \quad 0 \leq i, j<n .
$$

The Gaussian q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}},
$$

where $(x ; q)_{n}$ is the q-Pochhammer symbol defined by

$$
(x ; q)_{n}=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right) .
$$

Note that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\binom{n}{k},
$$

where $\binom{n}{k}$ is the usual binomial coefficient.
We recall that one version of the Cauchy binomial theorem is given by

$$
\sum_{k=0}^{n} q^{\binom{k+1}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}=\prod_{k=1}^{n}\left(1+x q^{k}\right),
$$

and Rothe's formula [1] is

$$
\sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}=(x ; q)_{n}=\prod_{k=0}^{n-1}\left(1-x q^{k}\right) .
$$

Recently, Prodinger [8] defined a matrix whose entries consist of super Catalan numbers. He also defined its reciprocal analogue as well as its q-versions whose (i, j) th entries are defined for $0 \leq i, j<n$

$$
\begin{gathered}
\left.\binom{2 i}{i}\right)^{-1}\binom{2 j}{j}^{-1}\binom{i+j}{i}, \\
\binom{2 i}{i}\binom{2 j}{j}\binom{i+j}{i}^{-1}, \\
{\left[\begin{array}{c}
2 i \\
i
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q}}
\end{gathered}
$$

and

$$
\left[\begin{array}{c}
2 i \\
i
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q}^{-1}
$$

respectively. Then he gave some algebraic properties of these matrices.
Recently, Kiliç et al. [4] defined and studied a variant of the reciprocal super Catalan matrix with two additional parameters whose entries are defined as

$$
\binom{2 i+r}{i}^{-1}\binom{2 j+s}{j}^{-1}\binom{i+j}{i}^{-1}
$$

Explicit formulae for its LU-decomposition, LU decomposition of its inverse, and the Cholesky decomposition are obtained. For all results, q-analogues are also presented.

In this paper, for nonnegative integers r and s, we define two $n \times n$ matrices $M=\left[M_{k j}\right]$ and $T=\left[T_{k j}\right]$ with entries

$$
M_{k j}=\binom{k+j}{k}\binom{2 k+r}{k}^{-1}\binom{2 j+s}{j}^{-1}
$$

and

$$
T_{k j}=\binom{2 k+r}{k}\binom{2 j+s}{j}\binom{k+j}{k}^{-1}
$$

for $0 \leq k, j<n$, respectively.
First, we give the matrices \mathcal{M} and \mathcal{T} which are the q-analogues of the matrices M and T, respectively. For both matrices, we derive explicit expressions for the $L U$-decomposition, which leads to a formula for the determinant via $\prod_{0 \leq i<n} U_{i, i}$. Further, we have expressions for L^{-1} and U^{-1}, for $L U$-decomposition of the inverse matrix and their inverses, and for the Cholesky decomposition when the matrix is symmetric, that is, the case $r=s$. Afterwards, when $q \rightarrow 1$, we get the results for the matrices M and T. Our results generalize the results of [8] for the case $r=s=0$.

Firstly, we list the result related to the matrix \mathcal{M} in the next section and secondly prove them in Section 3. Then we list results related to the matrix \mathcal{T} and then give related proofs in the next section. Finally, we give the results related to the matrices M and T as special cases of the results related to the matrices \mathcal{M} and \mathcal{T}. To prove the claimed results, our main tool is to guess relevant quantities and then we will use the q-version of Zeilberger's celebrated algorithm (for more details see $[7,9]$) and Rothe's formula to justify relevant equalities. All identities we will obtain hold for general q and generalized Fibonomial analogue of our results could be obtained by using the application of q-identities for Fibonacci numbers. We refer to [5] to give an idea.

2. The matrix \mathcal{M}

We denote matrices L and U by A and B in $L U$-decomposition of any inverse matrix, respectively, that is, $\mathcal{M}^{-1}=A B$. For the Cholesky decomposition of a matrix G, we will use the letter C such that $G=C C^{T}$.

The matrix \mathcal{M} is defined with entries for $0 \leq k, j<n$,

$$
\mathcal{M}_{k j}=\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1}
$$

Firstly, we list here the formulae related to matrix \mathcal{M} that were found for $0 \leq k, j<n$:

$$
\begin{gathered}
L_{k j}=\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \\
L_{k j}^{-1}=(-1)^{k+j} q^{\left({ }^{(-j}\right)}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}, \\
U_{k j}=q^{k^{2}}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1}\left[\begin{array}{l}
j \\
k
\end{array}\right]_{q},
\end{gathered}
$$

$$
\begin{aligned}
& U_{k j}^{-1}=(-1)^{k+j} q^{k(k+1) / 2-j(j+1) / 2-k j}\left[\begin{array}{c}
2 k+s \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{l}
j \\
k
\end{array}\right]_{q}, \\
& A_{k j}=(-1)^{k+j} q^{k(k+3) / 2-j(j+3) / 2-n(k-j)} \frac{1-q^{2 j+1}}{1-q^{k+j+1}}\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+s \\
k
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q}, \\
& A_{k j}^{-1}=q^{(k-j)(k-n+1)}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 k+s \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}^{-1}, \\
& B_{k j}=(-1)^{k+j} q^{(j+1)(j+2) / 2-n(k+j+1)+3 k(k+1) / 2}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n+k \\
k+j+1
\end{array}\right]_{q}\left[\begin{array}{l}
j \\
k
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
2 k+s \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}^{-1}, \\
& B_{k j}^{-1}=q^{(k+j+1)(n-j-1)} \frac{1-q^{2 j+1}}{1-q^{n-k}}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{l}
n+j \\
k+j
\end{array}\right]_{q}^{-1}\left[\begin{array}{l}
j \\
k
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
2 j+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q},
\end{aligned}
$$

for $r=s$,

$$
C_{k j}=q^{j^{2} / 2}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}
$$

and

$$
\operatorname{det} \mathcal{M}=q^{n(n-1)(2 n-1) / 6} \prod_{k=0}^{n-1}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 k+s \\
k
\end{array}\right]_{q}^{-1}
$$

3. Proofs related to the matrix \mathcal{M}

For L and L^{-1},

$$
\begin{aligned}
\sum_{j \leq d \leq k} L_{k d} L_{d j}^{-1} & =\sum_{j \leq d \leq k}(-1)^{d+j} q^{\binom{d-j}{2}}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 d+r \\
d
\end{array}\right]_{q}\left[\begin{array}{l}
k \\
d
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
2 d+r \\
d
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
d \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q} \\
& =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \sum_{0 \leq d \leq k-j}\left[\begin{array}{c}
k-j \\
d
\end{array}\right]_{q}(-1)^{d} q^{\binom{d}{2}}
\end{aligned}
$$

By Rothe's formula, if $k \neq j$ then we have $(1 ; q)_{k-j}=0$, and, if $k=j$, then the last sum on the RHS of the above equation is equal to 1 . Thus we conclude

$$
\sum_{j \leq d \leq k} L_{k d} L_{d j}^{-1}=\delta_{k, j}
$$

where $\delta_{k, j}$ is Kronecker delta, as claimed.
For U and U^{-1},

$$
\begin{aligned}
\sum_{k \leq d \leq j} U_{k d} U_{d j}^{-1} & =q^{k^{2}-\binom{j+1}{2}}\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
j \\
k
\end{array}\right]_{q} \\
& \times q^{k(2 j+k) / 2}(-1)^{k+j} \sum_{0 \leq d \leq j-k}\left[\begin{array}{c}
j-k \\
d
\end{array}\right]_{q}(-1)^{d} q^{\binom{d+1}{2}+d(k-j)}
\end{aligned}
$$

By the Cauchy binomial theorem, if $k \neq j$, then the last sum on the RHS of the above equation equals $\prod_{d=1}^{j-k}\left(1-q^{(k-j)+d}\right)=0$. Thus we have

$$
\sum_{k \leq d \leq j} U_{k d} U_{d j}^{-1}=\delta_{k, j}
$$

as desired.
For $L U$-decomposition, we have to prove that

$$
\sum_{0 \leq d \leq \min \{k, j\}} L_{k d} U_{d j}=\mathcal{M}_{k j}
$$

Consider

$$
\begin{aligned}
\sum_{0 \leq d \leq \min \{k, j\}} L_{k d} U_{d j} & =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1}(q ; q)_{k}(q ; q)_{j} \\
& \times \sum_{0 \leq d \leq k} q^{d^{2}} \frac{1}{(q ; q)_{d}^{2}(q ; q)_{k-d}(q ; q)_{j-d}}
\end{aligned}
$$

Denote the last sum in the equation just above by SUM_{k}. The Mathematica version of the q-Zeilberger algorithm [7] produces the recursion

$$
\operatorname{SUM}_{k}=\frac{1-q^{j+k}}{\left(1-q^{k}\right)^{2}} \operatorname{SUM}_{k-1}
$$

Since $\operatorname{SUM}_{0}=(q ; q)_{k}^{-1}(q ; q)_{j}^{-1}$, we obtain

$$
\operatorname{SUM}_{k}=(q ; q)_{k}^{-1}(q ; q)_{j}^{-1}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}
$$

Therefore, we get

$$
\sum_{0 \leq d \leq \min \{k, j\}} L_{k d} U_{d j}=\mathcal{M}_{k j}
$$

which completes the proof.
For A and A^{-1}, consider

$$
\begin{aligned}
\sum_{j \leq d \leq k} A_{k d} A_{d j}^{-1} & =(-1)^{k} q^{k(k+3) / 2-j+n(j-k)} \frac{(q ; q)_{n-j-1}}{(q ; q)_{n-k-1}} \\
& \times\left[\begin{array}{c}
2 k+s \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \\
& \times \sum_{j \leq d \leq k}\left[\begin{array}{c}
k-j \\
d-j
\end{array}\right]_{q}(-1)^{d} q^{d(d-1) / 2-j d} \frac{(q ; q)_{d+j}}{(q ; q)_{d-j}} \frac{1-q^{2 d+1}}{1-q^{k+d+1}}
\end{aligned}
$$

By the q-Zeilberger algorithm for the second sum in the last equation, we obtain that it is equal to 0 provided that $k \neq j$. If $k=j$, it is obvious that $A_{k k} A_{k k}^{-1}=1$. Thus

$$
\sum_{j \leq d \leq k} A_{k d} A_{d j}^{-1}=\delta_{k, j}
$$

as claimed.
Similarly, we have

$$
\sum_{k \leq d \leq j} B_{k d} B_{d j}^{-1}=\delta_{k, j}
$$

For the Cholesky decomposition, we examine the equation

$$
\sum_{0 \leq d \leq \min \{k, j\}} C_{k d} C_{j d}=\mathcal{M}_{k j}
$$

Here

$$
\sum_{0 \leq d \leq \min \{k, j\}} C_{k d} C_{j d}=\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1} \sum_{0 \leq d \leq \min \{k, j\}} q^{d^{2}}\left[\begin{array}{l}
k \\
d
\end{array}\right]_{q}\left[\begin{array}{l}
j \\
d
\end{array}\right]_{q}
$$

Note that the sum on the RHS of the equation just above is the same as the sum in the $L U$-decomposition, which was proven before.

For the $L U$-decomposition of \mathcal{M}^{-1}, we should show that $\mathcal{M}^{-1}=A B$, which is same as $\mathcal{M}=B^{-1} A^{-1}$. Hence, it is sufficient to show that

$$
\sum_{\max \{k, j\} \leq d \leq n-1} B_{k d}^{-1} A_{d j}^{-1}=\mathcal{M}_{k j}
$$

After some arrangements, we have

$$
\begin{aligned}
\sum_{\max \{k, j\} \leq d \leq n-1} B_{k d}^{-1} A_{d j}^{-1} & =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}^{-1} \sum_{j \leq d \leq n-1} q^{(j+k+1)(n-1-d)} \\
& \times \frac{1-q^{2 d+1}}{1-q^{n-k}}\left[\begin{array}{c}
d \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n+d \\
k+d
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
d+j \\
d
\end{array}\right]_{q}\left[\begin{array}{c}
n-j-1 \\
d-j
\end{array}\right]_{q}
\end{aligned}
$$

which, by replacing $(n-1)$ with n and apart from the constants factors, equals

$$
\sum_{j \leq d \leq n} q^{(j+k+1)(n-d)} \frac{1-q^{2 d+1}}{1-q^{n+1-k}}\left[\begin{array}{l}
d \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n+1+d \\
k+d
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
d+j \\
d
\end{array}\right]_{q}\left[\begin{array}{l}
n-j \\
d-j
\end{array}\right]_{q}
$$

Denote this sum by SUM_{n}. The q-Zeilberger algorithm gives the following recursion provided that $k \neq n$ and $j \neq n$

$$
\operatorname{SUM}_{n}=\operatorname{SUM}_{n-1} .
$$

Therefore, $\operatorname{SUM}_{n}=\operatorname{SUM}_{j}=\left[\begin{array}{c}k+j \\ k\end{array}\right]_{q}$ which completes the proof except for the case $(k, j)=(n-1, n-1)$, which could be easily checked. Thus the proof is complete.

4. The matrix \mathcal{T}

The matrix \mathcal{T} is defined with entries for $0 \leq k, j<n$,

$$
\mathcal{T}_{k j}=\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}^{-1}
$$

For $0 \leq k, j<n$, we have

$$
\begin{gathered}
L_{k j}=\left[\begin{array}{c}
2 k+r \\
k+j
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+r \\
r
\end{array}\right]_{q} \\
L_{k j}^{-1}=(-1)^{k+j} q^{\left(c_{2}^{k-j}\right)} \frac{1-q^{2 k}}{1-q^{k+j}}\left[\begin{array}{c}
k+j \\
k-j
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+r \\
r
\end{array}\right]_{q}^{-1} \\
\times\left[\begin{array}{c}
j+r \\
r
\end{array}\right]_{q} \text { for } j \geq 1, \\
L_{k 0}^{-1}=(-1)^{k}\left(1+q^{k}\right) q^{\binom{k}{2}}\left[\begin{array}{c}
2 k+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1} \text { and } L_{00}^{-1}=1, \\
U_{k j}=(-1)^{k} q^{k(3 k-1) / 2}\left(1+q^{k}\right)\left[\begin{array}{c}
2 j+s \\
k+j
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
j-k+s \\
s
\end{array}\right]_{q} \\
\times\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q}^{-1} \text { for } k \geq 1, U_{0 j}=\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q} \\
U_{k j}^{-1}= \\
\times(-1)^{k} q^{k(k+1) / 2-j(k+j)} \frac{1-q^{j}}{1-q^{k+j}}\left[\begin{array}{c}
k+j \\
j-k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+r \\
r
\end{array}\right]_{q} \\
\times\left[\begin{array}{c}
2 k+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}^{,}
\end{gathered}
$$

$$
\begin{aligned}
& A_{k j}=(-1)^{k+j} q^{(k+1)(k+2) / 2-(j+1)(j+2) / 2+n(j-k)}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n+k-1 \\
2 k
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
n+j-1 \\
2 j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
s
\end{array}\right]_{q} \\
& A_{k j}^{-1}= q^{(k-j)(k-n+1)}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n+k-1 \\
2 k
\end{array}\right]_{q}\left[\begin{array}{c}
n+j-1 \\
2 j
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+s \\
s
\end{array}\right]_{q}^{-1} \\
& \times\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
s
\end{array}\right]_{q}, \\
& B_{k j}= q^{(j+1)(j+2) / 2-n(n-1) / 2-j n+k^{2}-1}\left[\begin{array}{c}
n+j-1 \\
2 j
\end{array}\right]_{q}\left[\begin{array}{c}
j \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+s \\
k
\end{array}\right]_{q}^{-1} \\
& \times\left[\begin{array}{c}
j+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+r \\
r
\end{array}\right]_{q}^{-1}, \\
& B_{k j}^{-1}=(-1)^{n+j+1} q^{k-k j-j(j+1) / 2+k n+n(n-1) / 2}\left[\begin{array}{c}
j \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n+k-1 \\
2 k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
s
\end{array}\right]_{q} \\
& \times {\left[\begin{array}{c}
2 k+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1}, }
\end{aligned}
$$

for $r=s$ and $j \geq 1$,

$$
C_{k j}=\mathbf{i}^{j}(1+q)^{j / 2} q^{j(3 j-1) / 4}\left[\begin{array}{c}
2 k+r \\
k+j
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k-j+r \\
r
\end{array}\right]_{q}
$$

where $\mathbf{i}=\sqrt{-1}$ and for $j=0$,

$$
C_{k 0}=\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}
$$

and

$$
\operatorname{det} \mathcal{T}=(-1)^{\binom{n}{2}} \prod_{k=1}^{n-1} q^{k(3 k-1) / 2}\left[\begin{array}{c}
2 k+s \\
2 k
\end{array}\right]_{q}\left[\begin{array}{c}
2 k+r \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
k+s \\
s
\end{array}\right]_{q}^{-1}
$$

5. Proofs related to the matrix \mathcal{T}

For L and L^{-1}, it should be shown

$$
\sum_{j \leq d \leq k} L_{k d} L_{d j}^{-1}=\delta_{k, j}
$$

By the definitions of the matrices L and L^{-1}, for the case $j=0$, we have

$$
\sum_{0 \leq d \leq k} L_{k, d} L_{d, 0}^{-1}=L_{k 0} L_{0,0}^{-1}+\sum_{1 \leq d \leq k} L_{k, d} L_{d, 0}^{-1}
$$

If $k=0$, we get 1 as $(0,0)$ th entry of matrix $L L^{-1}$. If $k>0$, after some rearrangements we have

$$
\begin{aligned}
\sum_{1 \leq d \leq k} L_{k d} L_{d 0}^{-1} & =\sum_{0 \leq d \leq k-1} L_{k, d+1} L_{d+1,0}^{-1}=\sum_{0 \leq d \leq n} L_{n+1, d+1} L_{d+1,0}^{-1} \\
& =\sum_{0 \leq d \leq n}(-1)^{d+1}\left(1+q^{d+1}\right) q^{\left(d^{2}+d\right) / 2}\left[\begin{array}{c}
2 n+2+r \\
n+d+2
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
n+1 \\
d+1
\end{array}\right]_{q}\left[\begin{array}{c}
n+1+r \\
d+1
\end{array}\right]_{q}^{-1}
\end{aligned}
$$

which, by using the q-Zeilberger algorithm, equals $-\left[\begin{array}{c}2 n+2+r \\ n+1\end{array}\right]_{q}$. By changing $n+1$ with k again, we get $-\left[\begin{array}{c}2 k+r \\ k\end{array}\right]_{q}$. Finally if $k>0$,

$$
\begin{aligned}
\sum_{0 \leq d \leq k} L_{k d} L_{d 0}^{-1} & =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}+\sum_{1 \leq d \leq k} L_{k d} L_{d 0}^{-1} \\
& =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}-\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}=0
\end{aligned}
$$

as desired. For the case $j>0$, we have

$$
\begin{aligned}
\sum_{j \leq d \leq k} L_{k d} L_{d j}^{-1} & =\sum_{j \leq d \leq k}(-1)^{d+j} q^{\left({ }^{d-j}\right)} \frac{1-q^{2 d}}{1-q^{d+j}}\left[\begin{array}{c}
2 k+r \\
k+d
\end{array}\right]_{q}\left[\begin{array}{l}
k \\
d
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
k+r \\
d
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
d+j \\
d-j
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+r \\
r
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
j+r \\
r
\end{array}\right]_{q}
\end{aligned}
$$

By the q-Zeilberger algorithm, we obtain that it is equal to 0 provided that $k \neq j$. The case $k=j$ could be easily checked. Thus

$$
\sum_{j \leq d \leq k} L_{k d} L_{d j}^{-1}=\delta_{k, j}
$$

which completes the proof.
Verification of the inverse of U could be similarly done. Inverses of the matrices A and B could be shown as in Section 3.

For $L U$-decomposition, we have to prove that

$$
\sum_{0 \leq d \leq \min \{k, j\}} L_{k d} U_{d j}=\mathcal{T}_{k j}
$$

KILIÇ and ARIKAN/Turk J Math

The cases $k=0,0 \leq j<n$, and, $j=0,0 \leq k<n$ could be easily shown. For other cases, consider

$$
\begin{aligned}
\sum_{0 \leq d \leq \min \{k, j\}} L_{k d} U_{d j} & =L_{k 0} U_{0 j}+\sum_{1 \leq d \leq \min \{k, j\}} L_{k d} U_{d j}=\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q} \\
& +\sum_{1 \leq d \leq \min \{k, j\}}(-1)^{d}\left(1+q^{d}\right) q^{(3 d-1) d / 2}\left[\begin{array}{c}
2 k+r \\
k+d
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
d
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
k+r \\
d
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j+s \\
j+d
\end{array}\right]_{q}\left[\begin{array}{c}
j-d+s \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
j+s \\
s
\end{array}\right]_{q}^{-1} \\
& =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}+\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}^{-1} \sum_{1 \leq d \leq \min \{k, j\}}(-1)^{d}\left(1+q^{d}\right) q^{(3 d-1) d / 2} \\
& \times\left[\begin{array}{c}
2 k \\
k+d
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j+d
\end{array}\right]_{q} .
\end{aligned}
$$

Without loss of generality, we may consider $k \leq j$. Hence, consider the sum

$$
\mathrm{SUM}_{k}=\sum_{-k \leq d \leq k}(-1)^{d}\left(1+q^{d}\right) q^{(3 d-1) d / 2}\left[\begin{array}{c}
2 k \\
k+d
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j+d
\end{array}\right]_{q} .
$$

The q-Zeilberger algorithm gives the recurrence relation

$$
\operatorname{SUM}_{k}=\frac{\left(1+q^{k}\right)\left(1-q^{2 k-1}\right)}{\left(1-q^{j+k}\right)} \operatorname{SUM}_{k-1}
$$

Since $\operatorname{SUM}_{0}=2\left[\begin{array}{c}2 k \\ k\end{array}\right]_{q}$, we obtain

$$
\operatorname{SUM}_{k}=2\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}^{-1} .
$$

Since the summand of the SUM_{k} is symmetric with respect to k and $-k$, we have

$$
\sum_{1 \leq d \leq k}(-1)^{d}\left(1+q^{d}\right) q^{(3 d-1) d / 2}\left[\begin{array}{c}
2 k \\
k+d
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j+d
\end{array}\right]_{q}=\frac{1}{2} \mathrm{SUM}_{k}-\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}
$$

Finally consider

$$
\begin{aligned}
\sum_{0 \leq d \leq k} L_{k d} U_{d j} & =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}+\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q} \\
& \times\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}^{-1}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}^{-1}\left(\frac{1}{2} \mathrm{SUM}_{k}-\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j \\
j
\end{array}\right]_{q}\right) \\
& =\left[\begin{array}{c}
2 k+r \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
2 j+s \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{q}^{-1}=\mathcal{T}_{k j}
\end{aligned}
$$

as desired.
For $L U$-decomposition of the inverse of the matrix \mathcal{T}, the argument in Section 3 could be similarly used. We omit it here.

6. The matrix M

Recall that the $n \times n$ matrix $M=\left[M_{k j}\right]$ is defined for $0 \leq k, j<n$ and nonnegative integers r and s,

$$
M_{k j}=\binom{k+j}{k}\binom{2 k+r}{k}^{-1}\binom{2 j+s}{j}^{-1}
$$

In Section 2, by taking $q \rightarrow 1$, we get the following results for $0 \leq k, j<n$:

$$
\begin{aligned}
& L_{k j}=\binom{2 k+r}{k}^{-1}\binom{2 j+r}{j}\binom{k}{j}, \\
& L_{k j}^{-1}=(-1)^{k+j}\binom{2 k+r}{k}^{-1}\binom{2 j+r}{j}\binom{k}{j}, \\
& U_{k j}=\binom{2 k+r}{k}^{-1}\binom{2 j+s}{j}^{-1}\binom{j}{k}, \\
& U_{k j}^{-1}=(-1)^{k+j}\binom{2 k+s}{k}\binom{2 j+r}{j}\binom{j}{k}, \\
& A_{k j}=(-1)^{k+j} \frac{1+2 j}{k+j+1}\binom{n-j-1}{k-j}\binom{2 k+s}{k}\binom{k+j}{k}^{-1} \\
& \times\binom{ 2 j+s}{s}^{-1}\binom{j+s}{s}, \\
& A_{k j}^{-1}=\binom{k+j}{k}\binom{n-j-1}{k-j}\binom{2 j+s}{j}^{-1}\binom{2 k+s}{s}\binom{k+s}{s}^{-1}, \\
& B_{k j}=(-1)^{k+j}\binom{2 j+r}{j}\binom{n+k}{k+j+1}\binom{j}{k}\binom{2 k+s}{s}\binom{k+s}{s}^{-1}, \\
& B_{k j}^{-1}=\frac{2 j+1}{n-k}\binom{2 k+r}{k}^{-1}\binom{n+j}{k+j}^{-1}\binom{j}{k}\binom{2 j+s}{s}^{-1}\binom{j+s}{s},
\end{aligned}
$$

for $r=s$,

$$
C_{k j}=\binom{2 k+r}{k}^{-1}\binom{k}{j}
$$

and

$$
\operatorname{det} \mathcal{M}=\prod_{k=0}^{n-1}\binom{2 k+r}{k}^{-1}\binom{2 k+s}{k}^{-1}
$$

7. The matrix T

Recall that the $n \times n$ matrix $T=\left[T_{k j}\right]$ is defined for $0 \leq k, j<n$, and nonnegative integers r and s,

$$
T_{k j}=\binom{2 k+r}{k}\binom{2 j+s}{j}\binom{k+j}{k}^{-1}
$$

In the Section 4 , by taking $q \rightarrow 1$, we obtain the following results. For $0 \leq k, j<n$,

$$
L_{k j}=\binom{2 k+r}{k+j}\binom{k}{j}\binom{k+r}{j}^{-1}\binom{2 j+r}{r}^{-1}\binom{j+r}{r}
$$

for $j \geq 1$,

$$
\begin{gathered}
L_{k j}^{-1}=(-1)^{k+j} \frac{2 k}{k+j}\binom{k+j}{k-j}\binom{2 k+r}{r}\binom{k+r}{r}^{-1}\binom{2 j+r}{r}^{-1}\binom{j+r}{r} \\
L_{k 0}^{-1}=2(-1)^{k}\binom{2 k+r}{r}\binom{k+r}{r}^{-1} \text { and } L_{00}^{-1}=1
\end{gathered}
$$

for $k \geq 1$,

$$
\begin{gathered}
U_{k j}=(-1)^{k} 2\binom{2 j+s}{k+j}\binom{2 k+r}{r}\binom{j-k+s}{s}\binom{k+r}{r}^{-1}\binom{j+s}{s}^{-1} \\
\text { and } U_{0 j}=\binom{2 j+s}{j}, \\
U_{k j}^{-1}=(-1)^{k} \frac{j}{k+j}\binom{k+j}{j-k}\binom{2 j+r}{r}^{-1}\binom{j+r}{r}\binom{2 k+s}{s}^{-1}\binom{k+s}{s}, \\
A_{k j}=(-1)^{k+j}\binom{k}{j}\binom{n+k-1}{2 k}\binom{n+j-1}{2 j}^{-1}\binom{2 k+s}{s}^{-1}\binom{k+s}{s} \\
\times\binom{ 2 j+s}{s}\binom{j+s}{s}^{-1}, \\
A_{k j}^{-1}=\binom{k}{j}\binom{n+k-1}{2 k}\binom{n+j-1}{2 j}^{-1}\binom{2 k+s}{s}^{-1}\binom{k+s}{s} \\
\times\binom{ 2 j+s}{s}\binom{j+s}{s}, ~ \\
B_{k j}=\binom{n+j-1}{2 j}\binom{j}{k}\binom{2 k+s}{k}^{-1}\binom{j+r}{r}\binom{2 j+r}{r}^{-1}, \\
B_{k j}^{-1}=(-1)^{n+j+1}\binom{j}{k}\binom{n+k-1}{2 k}\left(\begin{array}{c}
-1 \\
2 j+s \\
s
\end{array}\right)\binom{2 k+r}{r}
\end{gathered}
$$

for $r=s$ and $j \geq 1$,

$$
C_{k j}=(-2)^{j / 2}\binom{2 k+r}{k+j}\binom{k+r}{r}^{-1}\binom{k-j+r}{r}
$$

for $j=0$,

$$
C_{k 0}=\binom{2 k+r}{k}
$$

Thus

$$
\operatorname{det} \mathcal{T}=(-1)^{\binom{n}{2}} \prod_{k=1}^{n-1}\binom{2 k+s}{2 k}\binom{2 k+r}{r}\binom{k+r}{r}^{-1}\binom{k+s}{s}^{-1}
$$

References

[1] Andrews GE, Askey R, Roy R. Special Functions. Cambridge, UK: Cambridge University Press, 2000.
[2] Carlitz L. The characteristic polynomial of a certain matrix of binomial coefficients. The Fibonacci Quarterly 1965; 3: 81-89.
[3] Edelman A, Strang G. Pascal matrices. Am Math Mon 2004; 111: 189-197.
[4] Kılıç E, Akkus I, Kızılaslan G. A variant of the reciprocal super Catalan matrix. Special Matrices 2015; 3: 163-168.
[5] Kılıç E, Prodinger H. Variants of the Filbert matrix. The Fibonacci Quarterly 2013; 51: 153-162.
[6] Pan VY. Structured Matrices and Polynomials. New York, NY, USA: Springer-Verlag, 2001.
[7] Paule P, Riese A. A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in special functions, q-series and related topics, Fields Inst Commun 1997; 14: 179-210.
[8] Prodinger H. The reciprocal super Catalan matrix. Special Matrices 2015; 1: 111-117.
[9] Petkovsek M, Wilf H, Zeilberger D. "A = B". Wellesley, MA, USA: A K Peters, 1996.
[10] Richardson TM. The Filbert matrix. The Fibonacci Quarterly 2001; 39: 268-275.

[^0]: *Correspondence: tarikan@hacettepe.edu.tr
 2010 AMS Mathematics Subject Classification: 15B36, 15A15, 15A23, 11B65.

