Factorizations related to the reciprocal Pascal matrix

Helmut PRODINGER*

Department of Mathematics, University of Stellenbosch, Stellenbosch, South Africa
Received: 10.04 .2015 - Accepted/Published Online: 16.12.2015 \quad Final Version: 21.10 .2016

Abstract: The reciprocal Pascal matrix has entries $\binom{i+j}{j}^{-1}$. Explicit formulæ for its LU-decomposition, the LUdecomposition of its inverse, and some related matrices are obtained. For all results, q-analogues are also presented.

Key words: Pascal matrix, LU-decomposition, q-analogue, Zeilberger's algorithm

1. Introduction

Recently, there has been some interest in the reciprocal Pascal matrix M, defined by

$$
M_{i, j}=\binom{i+j}{j}^{-1}
$$

the indices start here for convenience with 0,0 , and the matrix is either infinite or has N rows and columns, depending on the context.

Richardson [7] has provided the decomposition $S=G M G$, where the diagonal matrix G has entries $G_{i, i}=\binom{2 i}{i}$, and S is the super Catalan matrix $[2,4]$ with entries

$$
S_{i, j}=\frac{(2 i)!(2 j)!}{i!j!(i+j)!}
$$

We want to give an alternative decomposition of M, provided by the LU-decomposition. We will give explicit expressions for L and U, defined by $L U=M$, as well as for L^{-1} and U^{-1}.

Since there is also interest in M^{-1}, in particular in the integrality of its coefficients, we also provide the LU-decomposition $A B=M^{-1}$, and give expressions for A, B, A^{-1}, and B^{-1}.

In the following section, we provide q-analogues of these results.
The paper closes with a list of similar results with two additional parameters, but for the matrix with entries $\binom{i+r+j+s}{j+s}^{-1}$ and $\binom{i+r+j+s}{j+s}$.

We would like to mention that results of the type as presented here are useful to find and prove new expansion formulæ for "Fibonomial sums"; see, for instance, [5].

[^0]
PRODINGER/Turk J Math

2. Identities

The LU-decomposition $M=L U$ is given by

$$
L_{i, j}=\frac{i!i!(2 j)!}{(i+j)!(i-j)!j!j!}
$$

and

$$
U_{i, j}=\frac{(-1)^{i} j!j!!!(i-1)!}{(j+i)!(j-i)!(2 i-1)!} \quad \text { for } i \geq 1
$$

For $i=0$, the formula is $U_{0, j}=1$.
The formula that needs to be proved is

$$
\sum_{0 \leq k \leq \min \{i, j\}} L_{i, k} U_{k, j}=\binom{i+j}{j}^{-1}
$$

which is equivalent to

$$
1+\frac{2 i!i!j!j!}{(2 i)!(2 j)!} \sum_{1 \leq k \leq \min \{i, j\}}(-1)^{k}\binom{2 i}{i+k}\binom{2 j}{j+k}=\binom{i+j}{j}^{-1}
$$

The von Szily identity $[2,3,8]$ is

$$
\frac{(2 i)!(2 j)!}{i!j!(i+j)!}=\sum_{k \in \mathbb{Z}}(-1)^{k}\binom{2 i}{i+k}\binom{2 j}{j+k}
$$

and an equivalent form is, by symmetry,

$$
\frac{(2 i)!(2 j)!}{i!j!(i+j)!}=\binom{2 i}{i}\binom{2 j}{j}+2 \sum_{k \geq 1}(-1)^{k}\binom{2 i}{i+k}\binom{2 j}{j+k}
$$

Thus, the identity to be proven is now

$$
\binom{i+j}{j}+\frac{i!j!(i+j)!}{(2 i)!(2 j)!}\left[\frac{(2 i)!(2 j)!}{i!j!(i+j)!}-\binom{2 i}{i}\binom{2 j}{j}\right]=1
$$

which is obviously correct.
The formula for L^{-1} is for $i \geq j \geq 0$:

$$
L_{i, j}^{-1}=\frac{(-1)^{i-j} i!i!(i+j-1)!}{(2 i-1)!(i-j)!j!j!}
$$

If necessary $(i=j=0)$, this must be interpreted as a limit.
To check this, we consider

$$
\begin{aligned}
\sum_{k} & \frac{i!i!(2 k)!}{(i+k)!(i-k)!k!k!} \frac{(-1)^{k-j} k!k!(k+j-1)!}{(2 k-1)!(k-j)!j!j!} \\
& =\frac{2 i!!!(-1)^{j}}{j!j!} \sum_{j \leq k \leq i} \frac{k}{(i+k)!(i-k)!} \frac{(-1)^{k}(k+j-1)!}{(k-j)!} .
\end{aligned}
$$

PRODINGER/Turk J Math

The sum can be evaluated by computer algebra (or otherwise), and the result is indeed $\llbracket i=j \rrbracket$, as desired.
The formula for U^{-1} is for $j \geq i \geq 1$

$$
U_{i, j}^{-1}=\frac{(-1)^{i}(j+i-1)!(2 j)!}{(j-i)!j!(j-1)!i!i!}
$$

and for $i=0$

$$
U_{0, j}^{-1}=\frac{(2 j)!}{j!j!}
$$

The fact that $\sum_{k} U_{i, k} U_{k, j}^{-1}=\llbracket i=j \rrbracket$ can also be done by computer algebra. Since there are a few cases to be distinguished, it is omitted here.

The LU-decomposition $A B=M^{-1}$ depends on the dimension N and is given by

$$
\begin{gathered}
A_{i, j}=\frac{(-1)^{i-j}(N-j-1)!j!(N+i-1)!}{i!(N-i-1)!(N+j-1)!(i-j)!} \\
B_{i, j}=\frac{(-1)^{j+N-1}(N+j-1)!}{j!(j-i)!(N-j-1)!i!}
\end{gathered}
$$

Since M^{-1} does not have "nice" entries, we rather provide formulæ for A^{-1} and B^{-1} and prove the identity $B^{-1} A^{-1}=M$ instead. The results are:

$$
\begin{gathered}
A_{i, j}^{-1}=\frac{(N-j-1)!j!(N+i-1)!}{i!(N-i-1)!(N+j-1)!(i-j)!} \\
B_{i, j}^{-1}=\frac{(-1)^{j+N-1}(N-1-i)!j!i!}{(j-i)!(N+i-1)!}
\end{gathered}
$$

First we prove that these are indeed the inverses. We consider

$$
\begin{aligned}
\sum_{k} & \frac{(-1)^{i-k}(N-k-1)!k!(N+i-1)!}{i!(N-i-1)!(N+k-1)!(i-k)!} \frac{(N-j-1)!j!(N+k-1)!}{k!(N-k-1)!(N+j-1)!(k-j)!} \\
& =(-1)^{i} \frac{(N+i-1)!(N-j-1)!j!}{(N-i-1)!(N+j-1)!i!} \sum_{j \leq k \leq i} \frac{(-1)^{k}}{(i-k)!(k-j)!} \\
& =\frac{(N+i-1)!(N-j-1)!j!}{(N-i-1)!(N+j-1)!i!(i-j)!} \sum_{j \leq k \leq i}(-1)^{i-k}\binom{i-j}{i-k} \\
& =\frac{(N+i-1)!(N-j-1)!j!}{(N-i-1)!(N+j-1)!i!(i-j)!} \llbracket i=j \rrbracket=\llbracket i=j \rrbracket
\end{aligned}
$$

which proves $A A^{-1}=I$. Similarly

$$
\begin{aligned}
\sum_{k} & \frac{(-1)^{k+N-1}(N-1-i)!k!i!}{(k-i)!(N+i-1)!} \frac{(-1)^{j+N-1}(N+j-1)!}{j!(j-k)!(N-j-1)!k!} \\
& =(-1)^{j} \frac{(N-1-i)!i!(N+j-1)!}{(N+i-1)!j!(N-j-1)!} \sum_{k} \frac{(-1)^{k}}{(k-i)!(j-k)!} \\
& =\frac{(N-1-i)!i!(N+j-1)!}{(N+i-1)!j!(N-j-1)!(j-i)!} \sum_{k}(-1)^{j-k}\binom{j-i}{j-k} \\
& =\frac{(N-1-i)!i!(N+j-1)!}{(N+i-1)!j!(N-j-1)!(j-i)!} \llbracket i=j \rrbracket=\llbracket i=j \rrbracket
\end{aligned}
$$

which proves $B^{-1} B=I$.
Now we compute an entry in $B^{-1} A^{-1}$:

$$
\begin{aligned}
\sum_{k} & \frac{(-1)^{k+N-1}(N-1-i)!k!i!}{(k-i)!(N+i-1)!} \frac{(N-j-1)!j!(N+k-1)!}{k!(N-k-1)!(N+j-1)!(k-j)!} \\
& =(-1)^{N-1} \frac{(N-1-i)!i!(N-j-1)!j!}{(N+i-1)!(N+j-1)!} \sum_{k} \frac{(-1)^{k}(N+k-1)!}{(k-i)!(N-k-1)!(k-j)!} \\
& =(-1)^{N-1} \frac{i!j!(N-j-1)!}{(N+i-1)!} \sum_{k}(-1)^{k}\binom{N-1-i}{N-1-k}\binom{N+k-1}{N-1+j} \\
& =\frac{i!j!(N-j-1)!}{(N+i-1)!} \sum_{k}\binom{i-1-k}{N-1-k}\binom{N+k-1}{N-1+j} \\
& =\frac{i!j!(N-j-1)!}{(N+i-1)!} \sum_{k}\binom{i-1-k}{i-N}\binom{N+k-1}{N-1+j} \\
& =\frac{i!j!(N-j-1)!}{(N+i-1)!}\binom{i-1+N}{i+j} \\
& =\frac{i!j!}{(i+j)!}=M_{i, j},
\end{aligned}
$$

as claimed.
Now we use the form $M^{-1}=A B$ and write the (i, j) entry:

$$
\begin{aligned}
\sum_{k} & \frac{(N-k-1)!k!(N+i-1)!}{i!(N-i-1)!(N+k-1)!(i-k)!} \frac{(-1)^{j+N-1}(N+j-1)!}{j!(j-k)!(N-j-1)!k!} \\
& =\frac{(N+i-1)!(N+j-1)!}{i!(N-i-1)!j!(N-j-1)!} \sum_{k} \frac{(N-k-1)!}{(N+k-1)!(i-k)!} \frac{(-1)^{j+N-1}}{(j-k)!} \\
& =\binom{N-1}{i}\binom{N+j-1}{j} \sum_{0 \leq k \leq \min \{i, j\}}(-1)^{j+N-1}\binom{N+i-1}{i-k}\binom{N-k-1}{j-k}
\end{aligned}
$$

From this representation, it is clear that this is an integer. This was a question that was addressed in the affirmative in [7].

3. q-analogues

In this section we present q-analogues. Define $(q)_{n}:=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)$, and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}
$$

these definitions are standard, see [1]. Then we have the following results for the matrix M with entries $\left[\begin{array}{c}i+j \\ j\end{array}\right]^{-1}$.

$$
\begin{gathered}
L_{i, j}=\frac{(q)_{i}(q)_{i}(q)_{2 j}}{(q)_{i+j}(q)_{i-j}(q)_{j}(q)_{j}}, \\
U_{i, j}=\frac{(-1)^{i} q^{i(3 i-1) / 2}\left(1+q^{i}\right)(q)_{j}(q)_{j}(q)_{i}(q)_{i}}{(q)_{i+j}(q)_{j-i}(q)_{2 i}} \text { for } i \geq 1, \quad U_{0, j}=1, \\
L_{i, j}^{-1}=\frac{q^{i(i-1) / 2+j(j+1) / 2-i j}(-1)^{i-j}(q)_{i}(q)_{i}(q)_{i+j-1}}{(q)_{2 i-1}(q)_{i-j}} \text { for } j<i, \quad L_{i, i}^{-1}=1, \\
U_{i, j}^{-1}=\frac{(-1)^{i} q^{-j^{2}-j i+i(i+1) / 2}(q)_{j+i-1}(q)_{2 j}(q)_{i}(q)_{i}}{(q)_{j-i}(q)_{j}(q)_{j-1}} \quad \text { for } j>i, \\
U_{i, i}^{-1}=\frac{(-1)^{i} q^{i(3 i+1) / 2}(q)_{2 i}(q)_{2 i}}{(q)_{i}(q)_{i}(q)_{i}(q)_{i}\left(1+q^{i}\right)} \text { for } i \geq 1, \quad U_{0,0}^{-1}=1, \\
A_{i, j}=\frac{(-1)^{i-j} q^{(i+j+3)(i-j) / 2+N(j-i)^{2}(q)_{N-j-1}(q)_{j}(q)_{N+i-1}}}{(q)_{N-i-1}(q)_{i}(q)_{N+j-1}(q)_{i-j}}, \\
B_{i, j}=\frac{(-1)^{j+N-1} q^{i^{2}+j(j+3) / 2-N j-N(N-1) / 2}(q)_{N+j-1}}{(q)_{j}(q)_{j-i}(q)_{N-j-1}(q)_{i}}, \\
B_{i, j}^{-1}=\frac{(-1)^{j+1+N} q^{-j(j+1) / 2-i j+N(N-1) / 2+(N-1) i}(q)_{N-1-i}(q)_{j}(q)_{i}}{(q)_{j-i}(q)_{N+i-1}},
\end{gathered}
$$

Note that for $q \rightarrow 1$, we get the previous formulæ. We do not display all the proofs here, since Zeilberger's algorithm (aka WZ-theory) [6] proves all these results (which were obtained by guessing), using a computer algebra system (such as, e.g., Maple). However, as suggested by a referee, in the next section, we provide how a typical proof is obtained with a computer.

Remark. Richardson's decomposition $S=G M G$ still holds when all binomial coefficients are replaced by the corresponding Gaussian q-binomial coefficients.

4. A sample proof

We deal here with

$$
\begin{aligned}
\sum_{j \leq k \leq i} A_{i, k} A_{k, j}^{-1}= & \sum_{j \leq k \leq i} \frac{(-1)^{i-k} q^{(i+k+3)(i-k) / 2+N(k-i)}(q)_{N-k-1}(q)_{k}(q)_{N+i-1}}{(q)_{N-i-1}(q)_{i}(q)_{N+k-1}(q)_{i-k}} \\
& \times \frac{q^{(k-j)(k-N+1}(q)_{N-j-1}(q)_{N+k-1}(q)_{j}}{(q)_{N-k-1}(q)_{N+j-1}(q)_{k}(q)_{k-j}} \\
= & \frac{q^{i(i+3) / 2-j+N(j-i)}(q)_{N+i-1}(q)_{N-j-1}(q)_{j}}{(q)_{N-i-1}(q)_{i}(q)_{N+j-1}(q)_{i-j}} \sum_{j \leq k \leq i} \frac{(-1)^{i-k} q^{k(k-1) / 2-k j}(q)_{i-j}}{(q)_{i-k}(q)_{k-j}} .
\end{aligned}
$$

Now Zeilberger's algorithm provides the formula

$$
\frac{(-1)^{i-k} q^{k(k-1) / 2-k j}(q)_{i-j}}{(q)_{i-k}(q)_{k-j}}=\frac{(-1)^{i-k} q^{k(k+1) / 2-j-k j}(q)_{i-j-1}}{(q)_{i-1-k}}-\frac{(-1)^{i-(k-1)} q^{k(k-1) / 2-j-(k-1) j}(q)_{i-j-1}}{(q)_{i-k}},
$$

so the sum over k is telescoping, with the result

$$
\sum_{j \leq k \leq \ell} \frac{(-1)^{i-k} q^{k(k-1) / 2-k j}(q)_{i-j}}{(q)_{i-k}(q)_{k-j}}=\frac{(-1)^{i-\ell} q^{\ell(\ell+1) / 2-j-\ell j}(q)_{i-j-1}\left(1-q^{i-\ell}\right)}{(q)_{i-\ell}}
$$

For $j<i$ and $\ell=i$, this evaluates to 0 . For $j=i$, we have directly

$$
\sum_{i \leq k \leq i} \frac{(-1)^{i-k} q^{k(k-1) / 2-k i}}{(q)_{i-k}(q)_{k-i}}=q^{i(i-1) / 2-i^{2}}=q^{-i(i+1) / 2}
$$

Therefore

$$
\sum_{i \leq k \leq i} A_{i, k} A_{k, j}^{-1}=\frac{q^{i(i+3) / 2-i}(q)_{N+i-1}(q)_{N-i-1}(q)_{i}}{(q)_{N-i-1}(q)_{i}(q)_{N+i-1}} q^{-i(i+1) / 2}=1,
$$

as desired.

5. A two parameter extension

It is even possible to extend the results by replacing $i \rightarrow i+r$ and $j \rightarrow j+s$, for $r, s \geq 0$. In other words, the matrix now has entries $\binom{i+r+j+s}{j+s}^{-1}$.

We only give the formulæ in a list:

$$
\begin{gathered}
L_{i, j}=\frac{(i+r)!i!(2 j+r+s)!}{(i+j+r+s)!(i-j)!(j+r)!j!} \\
U_{i, j}=\frac{(-1)^{i}(j+s)!j!(i+r)!(i+r+s-1)!}{(j+i+r+s)!(j-i)!(2 i+r+s-1)!} \\
L_{i, j}^{-1}=\frac{(-1)^{i-j}(i+r)!i!(i+j+r+s-1)!}{(2 i+r+s-1)!(i-j)!(j+r)!j!} \\
U_{i, j}^{-1}=\frac{(-1)^{i}(i+j+r+s-1)!(2 j+r+s)!}{(j-i)!(j+r)!(j+i)!(j+r+s-1)!(i+s)!i!} \\
A_{i, j}=\frac{(-1)^{i-j}(N-j-1)!(j+s)!(N+i+r+s-1)!}{(i+s)!(N-i-1)!(N+j+r+s-1)!(i-j)!} \\
B_{i, j}=\frac{(-1)^{j+N-1}(N+j+r+s-1)!}{(j+r)!(j-i)!(N-j-1)!(i+s)!} \\
A_{i, j}^{-1}=\frac{(N-j-1)!(j+s)!(N+i+r+s-1)!}{(i+s)!(N-i-1)!(N+j+r+s-1)!(i-j)!} \\
B_{i, j}^{-1}=\frac{(-1)^{j+1+N}(N-1-i)!(j+s)!(i+r)!}{(j-i)!(N+i+r+s-1)!}
\end{gathered}
$$

For $\left[\begin{array}{c}i+r+j+s \\ j+s\end{array}\right]^{-1}$ we get q-analogues:

$$
\begin{gathered}
L_{i, j}=\frac{(q)_{i+r}(q)_{i}(q)_{2 j+r+s}}{(q)_{i+j+r+s}(q)_{i-j}(q)_{j+r}(q)_{j}}, \\
U_{i, j}=\frac{(-1)^{i} q^{i(3 i-1) / 2}(q)_{j+s}(q)_{j}(q)_{i+r}(q)_{i+r+s-1}}{(q)_{j+i+r+s}(q)_{j-i}(q)_{2 i+r+s-1}}, \\
L_{i, j}^{-1}=\frac{(-1)^{i-j} q^{i(i-1) / 2+j(j+1) / 2-i j}(q)_{i+r}(q)_{i}(q)_{i+j+r+s-1}}{(q)_{2 i+r+s-1}(q)_{i-j}(q)_{j+r}(q)_{j}}, \\
U_{i, j}^{-1}=\frac{(-1)^{i} q^{i(i+1) / 2-j^{2}-i j-(r+s) j}(q)_{i+j+r+s-1}(q)_{2 j+r+s}}{(q)_{j-i}(q)_{j+r}(q)_{j+i}(q)_{j+r+s-1}(q)_{i+s}(q)_{i}}, \\
A_{i, j}=\frac{(-1)^{i-j} q^{i(i+3) / 2-j(j+3) / 2+N(j-i)}(q)_{N-j-1}(q)_{j+s}(q)_{N+i+r+s-1}}{(q)_{i+s}(q)_{N-i-1}(q)_{N+j+r+s-1}(q)_{i-j}}, \\
B_{i, j}=\frac{(-1)^{j+N-1} q^{(r+s)(i+1)+i^{2}+j(j+3) / 2-(r+s+j) N-N(N-1) / 2}(q)_{N+j+r+s-1}}{(q)_{j+r}(q)_{j-i}(q)_{N-j-1}(q)_{i+s}} \\
A_{i, j}^{-1}=\frac{q^{i(i+1)-j-i j+N(j-i)}(q)_{N-j-1}(q)_{j+s}(q)_{N+i+r+s-1}}{(q)_{i+s}(q)_{N-i-1}(q)_{N+j+r+s-1}(q)_{i-j}}, \\
B_{i, j}^{-1}=\frac{(-1)^{j+1+N} q^{-j(j+1) / 2-i j+N(N-1) / 2+(N-1)(r+s+i)-(r+s) j}(q)_{N-1-i}(q)_{j+s}(q)_{i+r}}{(q)_{j-i}(q)_{N+i+r+s-1}}
\end{gathered}
$$

The previous results follow from these by plugging in $r=s=0$ or taking appropriate limits.

PRODINGER/Turk J Math

6. Additional results

For completeness, we also deal with the binomial matrix (no reciprocals)

$$
\mathscr{M}_{i, j}=\left(\binom{i+r+j+s}{j+s}\right)_{i, j \geq 0}
$$

We get the same type of factorizations and use calligraphic letters to mark the difference. We only cite the results; justifications are in the same style as in the previous instances.

$$
\begin{gathered}
\mathscr{L}_{i, j}=\frac{i!(i+r+s)!(j+r)!}{(i-j)!j!(i+r)!(j+r+s)!}, \\
\mathscr{U}_{i, j}=\frac{(j+r+s)!j!}{(j-i)!(i+r)!(j+s)!}, \\
\mathscr{L}_{i, j}^{-1}=\frac{(-1)^{i-j}(i+r+s)!i!(j+r)!}{(i-j)!(j+r+s)!(i+r)!j!}, \\
\mathscr{U}_{i, j}^{-1}=\frac{(-1)^{i-j}(j+r)!(i+s)!}{(j-i)!(i+r+s)!i!}, \\
\mathscr{A}_{i, j}=\frac{(-1)^{i-j}(N-j-1)!(i+s)!(2 j+r+s+1)!}{(i-j)!(N-i-1)!(i+j+r+s+1)!(j+s)!}, \\
\mathscr{B}_{i, j}=\frac{(-1)^{i-j}(N+i+r+s)!(j+r)!(i+s)!}{(j-i)!(N-j-1)!(2 i+r+s)!(i+j+r+s+1)!}, \\
\mathscr{A}_{i, j}^{-1}=\frac{(N-j-1)!(i+j+r+s)!(i+s)!}{(i-j)!(N-i-1)!(2 i+r+s)!(j+s)!}, \\
\mathscr{B}_{i, j}^{-1}=\frac{(N-i-1)!(2 j+r+s+1)!(i+j+r+s)!}{(j-i)!(N+j+r+s)!(i+r)!(j+s)!}
\end{gathered}
$$

There are also q-analogues for the matrix

$$
\begin{gathered}
\mathscr{M}_{i, j}=\left(\left[\begin{array}{c}
i+r+j+s \\
j+s
\end{array}\right]\right)_{i, j \geq 0} \\
\mathscr{L}_{i, j}=\frac{(q)_{i}(q)_{i+r+s}(q)_{j+r}}{(q)_{i-j}(q)_{j}(q)_{i+r}(q)_{j+r+s}}, \\
\mathscr{U}_{i, j}=\frac{q^{i^{2}+(r+s) i}(q)_{j+r+s}(q)_{j}}{(q)_{j-i}(q)_{i+r}(q)_{j+s}} \\
\mathscr{L}_{i, j}^{-1}=\frac{(-1)^{i-j} q^{i(i-1) / 2-i j+j(j+1) / 2}(q)_{i+r+s}(q)_{i}(q)_{j+r}}{(q)_{i-j}(q)_{j+r+s}(q)_{i+r}(q)_{j}} \\
\mathscr{U}_{i, j}^{-1}=\frac{(-1)^{i-j} q^{i(i+1) / 2-i j-j(j+1) / 2-(r+s) j}(q)_{j+r}(q)_{i+s}}{(q)_{j-i}(q)_{i+r+s}(q)_{i}}
\end{gathered}
$$

$$
\begin{gathered}
\mathscr{A}_{i, j}=\frac{(-1)^{i-j} q^{i(i+3) / 2-j(j+3) / 2+N(j-i)}(q)_{N-j-1}(q)_{i+s}(q)_{2 j+r+s+1}}{(q)_{i-j}(q)_{N-i-1}(q)_{i+j+r+s+1}(q)_{j+s}}, \\
\mathscr{B}_{i, j}=\frac{(-1)^{i-j} q^{(j+1)(j+2) / 2+3 i(i+1) / 2+(r+s)(i+1)-N(j+1+i+r+s)}(q)_{N+i+r+s}(q)_{j+r}(q)_{i+s}}{(q)_{j-i}(q)_{N-j-1}(q)_{2 i+r+s}(q)_{i+j+r+s+1}}, \\
\mathscr{A}_{i, j}^{-1}=\frac{q^{i^{2}-(N-1)(i-j)-i j}(q)_{N-j-1}(q)_{i+j+r+s}(q)_{i+s}}{(q)_{i-j}(q)_{N-i-1}(q)_{2 i+r+s}(q)_{j+s}}, \\
\mathscr{B}_{i, j}^{-1}=\frac{q^{(i+j+1+r+s)(N-j-1)}(q)_{N-i-1}(q)_{2 j+r+s+1}(q)_{i+j+r+s}}{(q)_{j-i}(q)_{N+j+r+s}(q)_{i+r}(q)_{j+s}} .
\end{gathered}
$$

References

[1] Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge, UK: Cambridge University Press, 2004.
[2] Gessel IM. Super ballot numbers. J Symb Comput 1992; 14: 179-194.
[3] Gessel IM, Larcombe PJ, French DR. On the identity of von Szily: original derivation and a new proof. Util Math 2003; 64: 167-181.
[4] Heubach S, Li NY, Mansour T. A garden of k-Catalan structures. Preprint, http://web.calstatela.edu/faculty/sheubac/papers/k-Catalan.
[5] Kılıç E, Prodinger H. Variants of the Filbert matrix. Fibonacci Quart 2013; 51: 153-162.
[6] Petkovšek M, Wilf H, Zeilberger D. $A=B$. Wellesley, MA: AK Peters, 1996.
[7] Richardson TM. The reciprocal Pascal matrix. math.CO:arXiv:1405.6315, 2014.
[8] von Szily K. Über die Quadratsummen der Binomialcoefficienten. Ungar Ber 1894; 12: 84-91 (in German).

[^0]: *Correspondence: hproding@sun.ac.za
 The author was supported by an incentive grant of the National Research Foundation of South Africa.

