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Abstract: Let (L,N) be a pair of Lie algebras where N is an ideal of the finite dimensional nilpotent Lie algebra L .

Some upper bounds on the dimension of the Schur multiplier of (L,N) are obtained without considering the existence

of a complement for N . These results are applied to derive a new bound on the dimension of the Schur multiplier of a

nilpotent Lie algebra.
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1. Introduction

Throughout this paper, we denote by (L,N) a pair of Lie algebras where N is an ideal of the Lie algebra

L . The Schur multiplier of the pair (L,N) is defined to be the abelian Lie algebra M(L,N), whose principal

feature is the following natural exact sequence of Lie algebras:

H3(L) → H3(L/N) → M(L,N) → H2(L) → H2(L/N)

→ N/[N,L] → H1(L) → H1(L/N) → 0, (1)

where Hi(−) is the i-th Chevalley–Eilenberg homology group of a Lie algebra. From the homotopical point of

view, M(L,N) is the second relative homology of (L,N), see [3, 4] for more details and a brief introduction.

Taking N = L we find that M(L,N) = H2(L), which is called the Schur multiplier of L and denoted by

M(L).

Determining bounds on the dimension of the Schur multiplier of a (nilpotent) Lie algebra was a hot topic

in recent decades. Nilpotent Lie algebras have been widely discussed in the literature in order to be classified by

their multipliers; however, there are many other interesting open problems on the dimension of the homology

groups of nilpotent Lie algebras; see [1, 2, 5, 6, 8] for instance.

Most of the bounds that have been obtained on the dimension of the Schur multiplier of the pair (L,N)

are just generalizations of a previously known bound on the dimension of the Schur multiplier of L . In the

most discussed case, authors have considered that the ideal N is complemented in L . Thus, the morphisms

Hi(L) ↠ Hi(L/N) split for any i , and M(L,N) is a complement of H2(L/N) in H2(L). Therefore, if L ∼= F/R

and N ∼= S/R are arbitrary free presentations of L and N respectively, then by Hopf’s formula we have

M(L) = (R ∩ [F, F ])/[R,F ] , M(L/N) = (S ∩ [F, F ])/[F, S].
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This dedicates the free presentation (R∩ [S, F ])/[R,F ] for M(L,N) that applies to determine the bounds; see

[9, 12] for instance.

By assuming that N admits a complement in L , the following theorem was proved in [12]. We use

different tools to eliminate this limitation and give a similar bound that can widely extend some results of

[11, 12].

Theorem A. Let L be a finite dimensional nilpotent Lie algebra and N an ideal of L . Then

dim(M(L,N)) ≤ dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ dim([L,N ])(d(

L

Z(L,N)
)− 1),

where d(X) is the minimal number of generators of a Lie algebra X and Z(L,N) = {n ∈ N | [l, n] =

0, for all l ∈ L} = Z(L) ∩N .

It was shown in [13] that if L is a nilpotent Lie algebra then dim(M(L))+ dim(L2) ≤ dim(L)d(L). The

following theorem can be a generalization of this bound on the dimension of M(L,N).

Theorem B. Let L be a finite dimensional nilpotent Lie algebra with an ideal N . Then

dim(M(L,N)) + dim([L,N ]) ≤ dim(N)(d(N) + d(L/N)).

We finally give the following theorem, which can be used to obtain a new bound for the Schur multiplier

of a nilpotent Lie algebra.

Theorem C. Let L be a finite dimensional nilpotent Lie algebra and N be an ideal of L which is not central.

Then

dim(M(L,N)) ≤ d(L)(dim(N)− 1)− dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
.

2. Proof of theorems

Let K,N be ideals of a Lie algebra L . The nonabelian exterior product K ∧ N is the Lie algebra generated

by the elements k ∧ n with (k, n) ∈ K ×N , subject to the relations

c(k ∧ n) = ck ∧ n = k ∧ cn , [k, k′] ∧ n = k ∧ [k′, n]− k′ ∧ [n, k]

(k + k′) ∧ n = k ∧ n+ k′ ∧ n , k ∧ [n, n′] = [n′, k] ∧ k − [k, n] ∧ n′

k ∧ (n+ n′) = k ∧ n+ k ∧ n′ , [(k ∧ n), (k′ ∧ n′)] = [k, n] ∧ [k′, n′]

x ∧ x = 0,

for all x ∈ K ∩N , k, k′ ∈ K , n, n′ ∈ N and scalar c . It follows from [4, Theorem 35] that the Schur multiplier

of (L,N) can be computed as

M(L,N) ∼= ker(L ∧N
[−,−]→ L), (2)

where [−,−] is the commutator map defined on generators of L ∧N by [−,−](l ∧ n) = [l, n] .

The following theorem plays a key role in our main results.

Theorem 2.1 Let L be a Lie algebra and N,K be ideals of L such that K ⊆ N ∩ Z(L) . Then the following

sequence is exact:

K ∧ L → M(L,N) → M(L/K,N/K) → K ∩ [N,L] → 0.
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Proof Using the functorial properties of the nonabelian exterior product, the short exact sequence of Lie

algebras 0 → K → L
π→ L/K → 0 induces the exact sequence

L ∧K → L ∧N
π∧π→ L/K ∧N/K → 0. (3)

Now, we have the following diagram of Lie algebras

L ∧K −−−−→ L ∧N
π∧π−−−−→ L/K ∧N/K −−−−→ 0

[ , ]1

y [ , ]2

y [ , ]3

y
0 −−−−→ ([L,N ] ∩K) −−−−→ [L,N ]

π−−−−→ [L/K,N/K] −−−−→ 0,

where the vertical arrows are the commutator maps; see [4]. In this diagram, the right-hand-side square is

always commutative. Note that since K is a central ideal of L the commutator map [−,−]1 is equal to the

zero morphism and so the left-hand-side square is also commutative. Now the ”Snake Lemma” yields that there

is the following exact sequence:

ker([ , ]1) → ker([ , ]2) → ker([ , ]3) → coker([ , ]1) → 0.

The last homomorphism is surjective because [−,−]2 is onto. Finally, the result follows from (2). 2

Remark 2.2 By taking N = L in Theorem 2.1, we can obtain the Ganea sequence in homology of Lie algebras;

see [11, Proposition 4.1]. In the case that L splits over N , a similar sequence was obtained in [9].

Using Theorem 2.1, we obtain the following corollary that generalizes [11, corollary 4.2] and [12, Proposition

2.2].

Corollary 2.3 Let L be a finite dimensional Lie algebra and N,K be ideals of L such that K ⊆ N ∩ Z(L) .

Then dim(M(L/K,N/K)) ≤ dim(M(L,N))+dim([N,L]∩K) ; in particular, if N is a central ideal of L then

dim(M(L/K,N/K)) ≤ dim(M(L,N)).

Now, we are ready to prove the theorems.

Proof [Proof of Theorem A] The proof is stated on induction on dim(L). If N is central then [L,N ] = 0 and

there is nothing to prove. Therefore, suppose that [L,N ] ̸= 0 and choose a one-dimensional ideal K of L such

that K ⊆ Z(L) ∩ [L,N ] . Thanks to Theorem 2.1 and applying the induction hypothesis, we have

dim(M(L,N)) ≤ dim(M(L/K,N/K)) + dim(K ∧ L)− 1

≤ dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ (dim([L,N ])− 1)×

(d(
L/K

Z(L/K,N/K)
)− 1) + dim(K ∧ L)− 1

≤ dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ (dim([L,N ])− 1)(d(

L

Z(L,N)
)− 1) + d(L)− 1

= dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ dim([L,N ])(d(

L

Z(L,N)
)− 1),
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which completes the proof. 2

Proof [Proof of Theorem B] Similar to the previous proof, we proceed by induction on the dimension of L .

Suppose that the result occurs for any Lie algebra of dimension less than dim(L). Choose a one-dimensional

ideal K such that K ⊆ N ∩ Z(L). Since L is a finite dimensional nilpotent Lie algebra, d(L) is equal to

dim(L/L2) and

d(L) ≤ dim(L)− dim(L2) + dim(L2 ∩N)− dim(N2) = d(L/N) + d(N).

Hence, the sequence (3) implies that

dim(L ∧N) ≤ dim(K ∧ L) + dim(L/K ∧N/K)

≤ d(L) + dim(N/K)(d(N/K) + d(L/N))

≤ d(L/N) + d(N) + (dim(N)− 1)(d(N) + d(L/N))

= dim(N)(d(N) + d(L/N)),

Since dim(M(L,N)) + dim([L,N ]) = dim(L ∧N) by (2) the proof completes. 2

We can use a similar method of Theorem B to prove the following proposition.

Proposition 2.4 Let L be a finite dimensional nilpotent Lie algebra and N be an ideal of L that is not

contained in Z(L) . Then

dim(M(L,N)) ≤ dim(N)(d(N) + d(L/N)− 1).

Proof [Proof of Theorem C] Similarly, the proof is based on induction on dim(L). Suppose that dim(L) > 1

and choose a one-dimensional ideal K of L such that K ⊆ Z(L) ∩ [L,N ] . Using Theorem 2.1 and applying

the induction hypothesis, we have

dim(M(L,N)) ≤ dim(M(L/K,N/K)) + dim(K ∧ L)

≤ d(L/K)(dim(N/K)− 1)− dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ dim(K ∧ L)

≤ d(L)(dim(N)− 2)− dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
+ d(L)

≤ d(L)(dim(N)− 1)− dim

(
M

(
L

[L,N ]
,

N

[L,N ]

))
.

Note that since K is a central ideal of L , the Lie actions of K and L on each other are trivial, and so

K ∧ L ∼= K ∧ L/L2 and

dim(K ∧ L) ≤ dim(L/L2) = d(L).

2

Now we can derive a new bound for the dimension of the Schur multiplier of a nilpotent Lie algebra.

Corollary 2.5 Let L be a d-generator nilpotent Lie algebra of dimension n . Then

dim(M(L)) ≤ 1

2
d(2n− d− 1).
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Proof If L is an abelian Lie algebra then d = n , dim(M(L)) = 1
2n(n − 1) and the statement is obviously

true. Hence, suppose that L is not an abelian Lie algebra. Using the fact

dim(M(L/L2, L/L2)) = dim(M(L/L2)) =
1

2
d(d− 1),

the desired result follows by taking N = L in Theorem C. 2

Note that since d(2n− d− 1) ≤ n(n− 1) for all integers 1 ≤ d ≤ n , the upper bound obtained in Corollary 2.5

is sharper than the known bound dim(M(L)) ≤ 1
2n(n− 1), which is due to Moneyhum [7].

Remark 2.6 Let (L,N) be a pair of Lie algebras such that N is of codimension less than two. Since

H3(L/N) = 0 in the sequence (1), one can deduce that dim(M(L,N)) ≤ dim(M(L)) . Hence any upper

bound on the dimension of M(L) can be considered as an upper bound for dim(M(L,N)) . In particular, if N

is an ideal of codimension one, then M(L/N) = H3(L/N) = 0 , which immediately implies M(L) ∼= M(L,N) .

Therefore, any upper and lower bound on M(L) is a bound for M(L,N) . The result obtained in [12, Theorem

D] is an example of the bound that was previously obtained by Jones (1974) on the dimension of M(L) .
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