Turk J Math
(2016) 40: $1020-1024$
(c) TÜBİTAK

т $̈$ вітак

Research Article

Some upper bounds on the dimension of the Schur multiplier of a pair of nilpotent Lie algebras

Behrouz EDALATZADEH*
Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

| Received: 05.04.2015 \quad Accepted/Published Online: 22.12.2015 | Final Version: 21.10 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let (L, N) be a pair of Lie algebras where N is an ideal of the finite dimensional nilpotent Lie algebra L. Some upper bounds on the dimension of the Schur multiplier of (L, N) are obtained without considering the existence of a complement for N. These results are applied to derive a new bound on the dimension of the Schur multiplier of a nilpotent Lie algebra.

Key words: Pair of Lie algebras, Schur multiplier, nilpotent Lie algebra

1. Introduction

Throughout this paper, we denote by (L, N) a pair of Lie algebras where N is an ideal of the Lie algebra L. The Schur multiplier of the pair (L, N) is defined to be the abelian Lie algebra $\mathcal{M}(L, N)$, whose principal feature is the following natural exact sequence of Lie algebras:

$$
\begin{align*}
H_{3}(L) & \rightarrow H_{3}(L / N) \rightarrow \mathcal{M}(L, N) \rightarrow H_{2}(L) \rightarrow H_{2}(L / N) \\
& \rightarrow N /[N, L] \rightarrow H_{1}(L) \rightarrow H_{1}(L / N) \rightarrow 0, \tag{1}
\end{align*}
$$

where $H_{i}(-)$ is the i-th Chevalley-Eilenberg homology group of a Lie algebra. From the homotopical point of view, $\mathcal{M}(L, N)$ is the second relative homology of (L, N), see $[3,4]$ for more details and a brief introduction. Taking $N=L$ we find that $\mathcal{M}(L, N)=H_{2}(L)$, which is called the Schur multiplier of L and denoted by $\mathcal{M}(L)$.

Determining bounds on the dimension of the Schur multiplier of a (nilpotent) Lie algebra was a hot topic in recent decades. Nilpotent Lie algebras have been widely discussed in the literature in order to be classified by their multipliers; however, there are many other interesting open problems on the dimension of the homology groups of nilpotent Lie algebras; see $[1,2,5,6,8]$ for instance.

Most of the bounds that have been obtained on the dimension of the Schur multiplier of the pair (L, N) are just generalizations of a previously known bound on the dimension of the Schur multiplier of L. In the most discussed case, authors have considered that the ideal N is complemented in L. Thus, the morphisms $H_{i}(L) \rightarrow H_{i}(L / N)$ split for any i, and $\mathcal{M}(L, N)$ is a complement of $H_{2}(L / N)$ in $H_{2}(L)$. Therefore, if $L \cong F / R$ and $N \cong S / R$ are arbitrary free presentations of L and N respectively, then by Hopf's formula we have

$$
\mathcal{M}(L)=(R \cap[F, F]) /[R, F] \quad, \quad \mathcal{M}(L / N)=(S \cap[F, F]) /[F, S]
$$

[^0]
EDALATZADEH/Turk J Math

This dedicates the free presentation $(R \cap[S, F]) /[R, F]$ for $\mathcal{M}(L, N)$ that applies to determine the bounds; see $[9,12]$ for instance.

By assuming that N admits a complement in L, the following theorem was proved in [12]. We use different tools to eliminate this limitation and give a similar bound that can widely extend some results of [11, 12].
Theorem A. Let L be a finite dimensional nilpotent Lie algebra and N an ideal of L. Then

$$
\operatorname{dim}(\mathcal{M}(L, N)) \leq \operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+\operatorname{dim}([L, N])\left(d\left(\frac{L}{Z(L, N)}\right)-1\right)
$$

where $d(X)$ is the minimal number of generators of a Lie algebra X and $Z(L, N)=\{n \in N \mid[l, n]=$ 0 , for all $l \in L\}=Z(L) \cap N$.

It was shown in [13] that if L is a nilpotent Lie algebra then $\operatorname{dim}(\mathcal{M}(L))+\operatorname{dim}\left(L^{2}\right) \leq \operatorname{dim}(L) d(L)$. The following theorem can be a generalization of this bound on the dimension of $\mathcal{M}(L, N)$.
Theorem B. Let L be a finite dimensional nilpotent Lie algebra with an ideal N. Then

$$
\operatorname{dim}(\mathcal{M}(L, N))+\operatorname{dim}([L, N]) \leq \operatorname{dim}(N)(d(N)+d(L / N))
$$

We finally give the following theorem, which can be used to obtain a new bound for the Schur multiplier of a nilpotent Lie algebra.
Theorem C. Let L be a finite dimensional nilpotent Lie algebra and N be an ideal of L which is not central. Then

$$
\operatorname{dim}(\mathcal{M}(L, N)) \leq d(L)(\operatorname{dim}(N)-1)-\operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right) .
$$

2. Proof of theorems

Let K, N be ideals of a Lie algebra L. The nonabelian exterior product $K \wedge N$ is the Lie algebra generated by the elements $k \wedge n$ with $(k, n) \in K \times N$, subject to the relations

$$
\begin{array}{lll}
c(k \wedge n)=c k \wedge n=k \wedge c n & , & {\left[k, k^{\prime}\right] \wedge n=k \wedge\left[k^{\prime}, n\right]-k^{\prime} \wedge[n, k]} \\
\left(k+k^{\prime}\right) \wedge n=k \wedge n+k^{\prime} \wedge n & , & k \wedge\left[n, n^{\prime}\right]=\left[n^{\prime}, k\right] \wedge k-[k, n] \wedge n^{\prime} \\
k \wedge\left(n+n^{\prime}\right)=k \wedge n+k \wedge n^{\prime} & , & {\left[(k \wedge n),\left(k^{\prime} \wedge n^{\prime}\right)\right]=[k, n] \wedge\left[k^{\prime}, n^{\prime}\right]} \\
x \wedge x=0, & &
\end{array}
$$

for all $x \in K \cap N, k, k^{\prime} \in K, n, n^{\prime} \in N$ and scalar c. It follows from [4, Theorem 35] that the Schur multiplier of (L, N) can be computed as

$$
\begin{equation*}
\mathcal{M}(L, N) \cong \operatorname{ker}(L \wedge N \xrightarrow{[-,-]} L), \tag{2}
\end{equation*}
$$

where $[-,-]$ is the commutator map defined on generators of $L \wedge N$ by $[-,-](l \wedge n)=[l, n]$. The following theorem plays a key role in our main results.

Theorem 2.1 Let L be a Lie algebra and N, K be ideals of L such that $K \subseteq N \cap Z(L)$. Then the following sequence is exact:

$$
K \wedge L \rightarrow \mathcal{M}(L, N) \rightarrow \mathcal{M}(L / K, N / K) \rightarrow K \cap[N, L] \rightarrow 0
$$

EDALATZADEH/Turk J Math

Proof Using the functorial properties of the nonabelian exterior product, the short exact sequence of Lie algebras $0 \rightarrow K \rightarrow L \xrightarrow{\pi} L / K \rightarrow 0$ induces the exact sequence

$$
\begin{equation*}
L \wedge K \rightarrow L \wedge N \xrightarrow{\pi \wedge \pi} L / K \wedge N / K \rightarrow 0 \tag{3}
\end{equation*}
$$

Now, we have the following diagram of Lie algebras

where the vertical arrows are the commutator maps; see [4]. In this diagram, the right-hand-side square is always commutative. Note that since K is a central ideal of L the commutator map $[-,-]_{1}$ is equal to the zero morphism and so the left-hand-side square is also commutative. Now the "Snake Lemma" yields that there is the following exact sequence:

$$
\operatorname{ker}\left([,]_{1}\right) \rightarrow \operatorname{ker}\left([,]_{2}\right) \rightarrow \operatorname{ker}\left([,]_{3}\right) \rightarrow \operatorname{coker}\left([,]_{1}\right) \rightarrow 0
$$

The last homomorphism is surjective because $[-,-]_{2}$ is onto. Finally, the result follows from (2).

Remark 2.2 By taking $N=L$ in Theorem 2.1, we can obtain the Ganea sequence in homology of Lie algebras; see [11, Proposition 4.1]. In the case that L splits over N, a similar sequence was obtained in [9].

Using Theorem 2.1, we obtain the following corollary that generalizes [11, corollary 4.2] and [12, Proposition 2.2].

Corollary 2.3 Let L be a finite dimensional Lie algebra and N, K be ideals of L such that $K \subseteq N \cap Z(L)$. Then $\operatorname{dim}(\mathcal{M}(L / K, N / K)) \leq \operatorname{dim}(\mathcal{M}(L, N))+\operatorname{dim}([N, L] \cap K)$; in particular, if N is a central ideal of L then

$$
\operatorname{dim}(\mathcal{M}(L / K, N / K)) \leq \operatorname{dim}(\mathcal{M}(L, N))
$$

Now, we are ready to prove the theorems.
Proof [Proof of Theorem A] The proof is stated on induction on $\operatorname{dim}(L)$. If N is central then $[L, N]=0$ and there is nothing to prove. Therefore, suppose that $[L, N] \neq 0$ and choose a one-dimensional ideal K of L such that $K \subseteq Z(L) \cap[L, N]$. Thanks to Theorem 2.1 and applying the induction hypothesis, we have

$$
\begin{aligned}
\operatorname{dim}(\mathcal{M}(L, N)) \leq & \operatorname{dim}(\mathcal{M}(L / K, N / K))+\operatorname{dim}(K \wedge L)-1 \\
\leq & \operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+(\operatorname{dim}([L, N])-1) \times \\
& \left(d\left(\frac{L / K}{Z(L / K, N / K)}\right)-1\right)+\operatorname{dim}(K \wedge L)-1 \\
\leq & \operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+(\operatorname{dim}([L, N])-1)\left(d\left(\frac{L}{Z(L, N)}\right)-1\right)+d(L)-1 \\
= & \operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+\operatorname{dim}([L, N])\left(d\left(\frac{L}{Z(L, N)}\right)-1\right)
\end{aligned}
$$

which completes the proof.

Proof [Proof of Theorem B] Similar to the previous proof, we proceed by induction on the dimension of L. Suppose that the result occurs for any Lie algebra of dimension less than $\operatorname{dim}(L)$. Choose a one-dimensional ideal K such that $K \subseteq N \cap Z(L)$. Since L is a finite dimensional nilpotent Lie algebra, $d(L)$ is equal to $\operatorname{dim}\left(L / L^{2}\right)$ and

$$
d(L) \leq \operatorname{dim}(L)-\operatorname{dim}\left(L^{2}\right)+\operatorname{dim}\left(L^{2} \cap N\right)-\operatorname{dim}\left(N^{2}\right)=d(L / N)+d(N)
$$

Hence, the sequence (3) implies that

$$
\begin{aligned}
\operatorname{dim}(L \wedge N) & \leq \operatorname{dim}(K \wedge L)+\operatorname{dim}(L / K \wedge N / K) \\
& \leq d(L)+\operatorname{dim}(N / K)(d(N / K)+d(L / N)) \\
& \leq d(L / N)+d(N)+(\operatorname{dim}(N)-1)(d(N)+d(L / N)) \\
& =\operatorname{dim}(N)(d(N)+d(L / N))
\end{aligned}
$$

Since $\operatorname{dim}(\mathcal{M}(L, N))+\operatorname{dim}([L, N])=\operatorname{dim}(L \wedge N)$ by (2) the proof completes.
We can use a similar method of Theorem B to prove the following proposition.
Proposition 2.4 Let L be a finite dimensional nilpotent Lie algebra and N be an ideal of L that is not contained in $Z(L)$. Then

$$
\operatorname{dim}(\mathcal{M}(L, N)) \leq \operatorname{dim}(N)(d(N)+d(L / N)-1)
$$

Proof [Proof of Theorem C] Similarly, the proof is based on induction on $\operatorname{dim}(L)$. Suppose that $\operatorname{dim}(L)>1$ and choose a one-dimensional ideal K of L such that $K \subseteq Z(L) \cap[L, N]$. Using Theorem 2.1 and applying the induction hypothesis, we have

$$
\begin{aligned}
\operatorname{dim}(\mathcal{M}(L, N)) & \leq \operatorname{dim}(\mathcal{M}(L / K, N / K))+\operatorname{dim}(K \wedge L) \\
& \leq d(L / K)(\operatorname{dim}(N / K)-1)-\operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+\operatorname{dim}(K \wedge L) \\
& \leq d(L)(\operatorname{dim}(N)-2)-\operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)+d(L) \\
& \leq d(L)(\operatorname{dim}(N)-1)-\operatorname{dim}\left(\mathcal{M}\left(\frac{L}{[L, N]}, \frac{N}{[L, N]}\right)\right)
\end{aligned}
$$

Note that since K is a central ideal of L, the Lie actions of K and L on each other are trivial, and so $K \wedge L \cong K \wedge L / L^{2}$ and

$$
\operatorname{dim}(K \wedge L) \leq \operatorname{dim}\left(L / L^{2}\right)=d(L)
$$

Now we can derive a new bound for the dimension of the Schur multiplier of a nilpotent Lie algebra.
Corollary 2.5 Let L be a d-generator nilpotent Lie algebra of dimension n. Then

$$
\operatorname{dim}(\mathcal{M}(L)) \leq \frac{1}{2} d(2 n-d-1)
$$

EDALATZADEH/Turk J Math

Proof If L is an abelian Lie algebra then $d=n, \operatorname{dim}(\mathcal{M}(L))=\frac{1}{2} n(n-1)$ and the statement is obviously true. Hence, suppose that L is not an abelian Lie algebra. Using the fact

$$
\operatorname{dim}\left(\mathcal{M}\left(L / L^{2}, L / L^{2}\right)\right)=\operatorname{dim}\left(\mathcal{M}\left(L / L^{2}\right)\right)=\frac{1}{2} d(d-1)
$$

the desired result follows by taking $N=L$ in Theorem C.
Note that since $d(2 n-d-1) \leq n(n-1)$ for all integers $1 \leq d \leq n$, the upper bound obtained in Corollary 2.5 is sharper than the known bound $\operatorname{dim}(M(L)) \leq \frac{1}{2} n(n-1)$, which is due to Moneyhum [7].

Remark 2.6 Let (L, N) be a pair of Lie algebras such that N is of codimension less than two. Since $H_{3}(L / N)=0$ in the sequence (1), one can deduce that $\operatorname{dim}(\mathcal{M}(L, N)) \leq \operatorname{dim}(\mathcal{M}(L))$. Hence any upper bound on the dimension of $\mathcal{M}(L)$ can be considered as an upper bound for $\operatorname{dim}(\mathcal{M}(L, N))$. In particular, if N is an ideal of codimension one, then $\mathcal{M}(L / N)=H_{3}(L / N)=0$, which immediately implies $\mathcal{M}(L) \cong \mathcal{M}(L, N)$. Therefore, any upper and lower bound on $\mathcal{M}(L)$ is a bound for $\mathcal{M}(L, N)$. The result obtained in [12, Theorem $D]$ is an example of the bound that was previously obtained by Jones (1974) on the dimension of $\mathcal{M}(L)$.

Acknowledgments

This research was in part supported by a grant from IPM (No. 92160037).

References

[1] Arabyani H, Saeedi F, Moghaddam MRR, Khamseh E. Characterization of nilpotent Lie algebras pair by their Schur multipliers. Comm Algebra 2014; 42: 5474-5483.
[2] Batten P, Moneyhun K, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers. Comm Algebra 1996; 24: 4319-4330.
[3] Edalatzadeh B. Some notes on the Schur multiplier of a pair of Lie algebras. J Lie Theory 2013; 23: 483-492.
[4] Ellis G. A non-abelian tensor product of Lie algebras. Glasgow Math J 1991; 39: 101-120.
[5] Hardy P, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers $t(L)=3,4,5,6$. Comm Algebra 1998; 26: 3527-3539.
[6] Hardy P. On characterizing nilpotent Lie algebras by their multipliers III. Comm Algebra 2005; 33: 4205-4210.
[7] Moneyhum K. Isoclinisms in Lie algebras. Algebras Groups Geom 1994; 11: 9-22.
[8] Pouseele H. Betti number behavior for nilpotent Lie algebras. Geometriae Dedicata 2006; 122: 77-88.
[9] Rismanchian MR, Araskhan M. Some inequalities for the dimension of the Schur multiplier of a pair of (nilpotent) Lie algebras. J Algebra 2012; 352: 173-179.
[10] Saeedi F, Salemkar AR, Edalatzadeh B. The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras. J Lie Theory 2011; 21: 491-498.
[11] Salemkar AR, Alamian V, Mohammadzadeh H. Some properties of the Schur multiplier and covers of Lie Algebras. Comm Algebra 2008; 36: 697-707.
[12] Salemkar AR, Alizadeh Niri S. Bounds for the dimension of the Schur multiplier of a pair of nilpotent lie algebras. Asian-Eur J Math 2012; 5.
[13] Salemkar AR, Tavallaee H, Mohammadzadeh H, Edalatzadeh B. On the nonabelian tensor product of Lie algebras. Linear Multilinear A 2010; 58: 333-341.

[^0]: *Correspondence: edalatzadeh@gmail.com
 2010 AMS Mathematics Subject Classification: 17B30, 17B60, 17B99.

