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Received: 11.06.2015 • Accepted/Published Online: 28.11.2015 • Final Version: 21.10.2016

Abstract: Let FN denote the vector space of all scalar sequences. If A is an infinite matrix with nonnegative entries

and λ is a solid subspace of FN , then sol − A−1(λ) = {x ∈ FN : A|x| ∈ λ} is also a solid subspace of FN that, under

certain conditions on A and λ , inherits a solid topological vector space topology from any such topology on λ . Letting

Λ0 = λ and Λm = sol − A−1(Λm−1) for m > 0, we derive an infinite sequence Λ0,Λ1,Λ2, ... of solid subspaces of FN

from the inputs A and λ . For A and λ confined to certain classes, we ask many questions about this derived sequence

and answer a few.
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1. Introduction

Throughout the paper the scalar field F will be either R , the real numbers or C , the complex numbers, and

N = {1, 2, ...} .
Although the only spaces appearing in this paper will be spaces of sequences of scalars, in hopes of

inspiring generalizations to a wider context, we give some basic definitions and properties concerning Riesz

spaces. For more details on Riesz spaces, see the classical manuscripts [1, 2, 9].

A real vector space E , endowed with a partial order ≤ in E2 , is called a Riesz space or a vector lattice

if sup{x, y} and inf{x, y} exist in E for all x, y ∈ E , and x ≤ y implies αx + z ≤ αy + z for all z ∈ E and

0 ≤ α ∈ R . We define the modulus or absolute value of an element x in E by the formula |x| := sup{x,−x} .
Typical examples of Riesz spaces are provided by function spaces. For example, C(Ω), all continuous

real valued functions on a topological space Ω and B(K), all bounded real valued functions on a set K are

Riesz spaces under pointwise ordering.

If E is a vector lattice, then the set E+ = {x ∈ E : x ≥ 0} is called the positive cone of E .

The solid hull of an element a in a vector lattice E is given by S(a) = {b ∈ E : |b| ≤ |a|} . A vector

subspace S in a vector lattice E is said to be solid or an order ideal if it follows from |u| ≤ |v| in E and v ∈ S

that u ∈ S . In the sequel, we will use the term solid in preference to order ideal.

A norm ∥.∥ on a vector lattice E is said to be a lattice norm or solid norm if |x| ≤ |y| implies ∥x∥ ≤ ∥y∥
for each x, y ∈ E .
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A vector lattice endowed with a solid norm is known as a normed vector lattice. If a normed vector lattice
E is also norm complete, then it is called a Banach lattice. It should be obvious that in a normed vector lattice

E , ∥x∥ = ∥ |x| ∥ holds for all x ∈ E .

The space of all scalar valued sequences will be denoted by FN . The subspace of FN consisting of

sequences with only finitely many nonzero entries will be denoted by c00 , whether F is R or C . All operations

on sequences will be coordinate-wise. If x = (xn) ∈ FN , then we write |x| = (|xn|). Let x = (xn) and y = (yn)

be elements of RN ; x ≤ y means that xn ≤ yn for each n ∈ N . It is clear that (RN,≤) is a vector lattice, and

the vector lattice definition of |x| , x ∈ RN agrees with the definition given here, |x| = (|xn|). CN = RN+ iRN is

the space of complex valued sequences with the usual addition and multiplication. CN can be partially ordered

coordinate-wise, i.e. (zn) = (xn + iyn) ≤ (tn) = (an + ibn) in CN whenever (xn) ≤ (an) and (yn) ≤ (bn)

in RN for each n ∈ N . Then CN is a Riesz space and, for (zn) = (xn + iyn), the element |(zn)| is given by

|(zn)| = |(xn)|+ i|(yn)| . For complex Riesz spaces, see [10].

The sequence of zeros (0, 0, 0, ...) will be denoted by 0.

For 0 < p < ∞ , we denote

lp = {(xn) ∈ FN :
∞∑

n=1

|xn|p < ∞}.

The usual “norm” or distance from 0 in lp is defined by

||x||p = (
∞∑

n=1

|xn|p)
1
p ,

and for each x ∈ lp ; ∥.∥p is really a norm for p ≥ 1.

If λ is a solid subspace of FN , a topology on λ with which λ becomes a t.v.s. is a solid topology if it has

a basis of neighborhoods at the origin consisting of solid sets.

The spaces lp , 1 ≤ p < ∞ , l∞ , the space of bounded sequences, and c0 , the space of null sequences, are

solid subspaces of FN , and their usual norms, ||.||p on lp , the sup norm on l∞ and c0 , are solid norms. The

space of convergent sequences, c , is not solid.

Let A = [aij : i, j ≥ 1] = [aij ] be an infinite matrix with nonnegative entries and no zero columns. The

domain of A , denoted by dom(A), is

dom(A) = {x ∈ FN :
∞∑
j=1

aijxj converges for each i ∈ N}.

For x ∈ dom(A), the sequence Ax , the A -transform of x , is given by (Ax)i =
∞∑
j=1

aijxj for each i ∈ N . If

λ ⊆ dom(A), then Aλ = {Ax : x ∈ λ} .
If λ ⊆ FN , then A−1(λ) = {x ∈ dom(A) : Ax ∈ λ} .
If A = [aij ] is a lower triangular matrix (i.e. aij = 0, for i < j ) with nonnegative entries and positive entries

on the main diagonal (i.e. aii > 0, for i ∈ N), then dom(A) = FN . The assumption of nonzero diagonal entries

implies that A has a matricial inverse A−1 . This inverse A−1 is also lower triangular. A−1 will fail to have
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all nonnegative entries unless A is diagonal. For more details on infinite matrices, see the book [3].

The following definition inspired by [8] was introduced in [6].

Definition 1 If λ ⊆ FN and A is an infinite matrix, with nonnegative entries,

sol −A−1(λ) = {x ∈ FN : |x| ∈ A−1(λ)} = {x ∈ FN : |x| ∈ dom(A) and A|x| ∈ λ}.

The next result, given in [6], justifies the name “sol −A−1(λ)”.

Proposition 2 Let A be an infinite matrix with nonnegative entries and λ be a solid subspace of FN . Then

we have:

(a) sol −A−1(λ) is solid;

(b) sol −A−1(λ) ⊆ A−1(λ) ;

(c) sol −A−1(λ) is the largest solid set of sequences contained in A−1(λ) ;

(d) sol −A−1(λ) is a subspace of FN .

From now on, we shortly write t.v.s. and l.c.t.v.s. for topological vector space and locally convex

topological vector space, respectively.

If τ is a solid t.v.s. topology on λ , then it naturally induces a solid t.v.s. topology on sol −A−1(λ).

Suppose λ is a solid subspace of FN with solid topology τ , and U is a neighborhood base at the origin in (λ, τ)

consisting of solid sets. It is shown in [6] that the sets

sol −A−1(U) = {x ∈ sol −A−1(λ) : A|x| ∈ U}, (U ∈ U)

constitute a neighborhood base at the origin for a solid t.v.s. topology sol−A−1(τ) on sol−A−1(λ). Furthermore,

if the topology on λ is Hausdorff and A has no zero columns, then the induced topology on sol − A−1(λ) is

Hausdorff. As mentioned earlier, all our matrices will have no zero columns.

In addition, when λ and A are given, we will require that the columns of A are in λ . This implies that

c00 ⊆ sol −A−1(λ).

Clearly, if λ is equipped with a solid norm ∥.∥ , then the topology induced on sol − A−1(λ) is induced

by the solid norm x → ∥ A|x| ∥ . A similar comment holds for quasinorms, pseudonorms, and seminorms.

We say that (λ, τ) is AK if and only if for each x ∈ λ , the projections Pn(x) = (x1, . . . , xn, 0, 0, . . .)

converge to x in (λ, τ), as n → ∞ .

In [6] and [5], it is shown that (sol−A−1(λ), sol−A−1(τ)) inherits the following properties from the solid space

(λ, τ).

Proposition 3 If λ is a solid subspace of FN with a solid Hausdorff t.v.s. topology τ , and A is an infinite

matrix with nonnegative entries, with every column in λ \ {0} , then:
(a) if (λ, τ) is AK , then so is (sol −A−1(λ), sol −A−1(τ)) ; and

(b) if (λ, τ) is complete, then so is (sol −A−1(λ), sol −A−1(τ)) , provided either

(i) (λ, τ) is AK or (ii) A is lower triangular.

In fact, (sol−A−1(λ), sol−A−1(τ)) inherits the completeness of (λ, τ) under much more general conditions than

(i) or (ii) above. (See [6]; in fact, no example is known in which (λ, τ) is complete but (sol−A−1(λ), sol−A−1(τ))
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is not.) However, a discussion of this thorny question, the completeness of (sol−A−1(λ), sol−A−1(τ)), would

distract from our main purpose.

Given (λ, τ) and A , satisfying the hypothesis of Proposition 3, set Λ0 = λ and Λm = sol−A−1(Λm−1),

m ∈ N . (Even if not every column of A is in Λm−1 , we can still form Λm , and give it a topology (sol−A−1)m(τ).

If, say, the jth column of A is not in Λm−1 , then x ∈ Λm implies xj = 0.) This gives us an infinite sequence

Λ0,Λ1,Λ2, . . . of solid sequence spaces each with a solid topology.

Since x → A|x| maps Λm into Λm−1 , and Λm−1 is solid, it follows that x → Ax , that is, multiplication by

A maps Λm into Λm−1 , and the map is clearly continuous, by the way the topology on Λm = sol−A−1(Λm−1)

is derived from that on Λm−1 . Therefore, we have the projective limit of the Λm with respect to the maps

A : Λm → Λm−1 , m ∈ N , defined by

X = {(x(m)) ∈
∞∏

m=0

Λm : for m > 0, Ax(m) = x(m−1)}.

In specific cases, even the most fundamental questions about the sequence Λ0,Λ1,Λ2, . . . , and X are not

so easy to answer:

1) Is Λm nontrivial ({0} ⊊ Λm ) for every m > 0 ?

2) Related to 1): is c00 ⊆ Λm for every m > 0?

3) Is X nontrivial ? That is, does X contain any sequence (x(0), x(1), ...) other than (0, 0, ...)?

In these introductory studies we think it wise to confine A to be lower triangular and invertible. Under

this restriction it is easy to see that for each m > 0, Λm = {x ∈ FN : Am|x| ∈ λ} , and if x(m) ∈ Λm ,

m = 0, 1, 2, . . . , then (x(0), x(1), . . .) ∈ X if and only if x(m) = (A−1)mx(0) = A−mx(0) for each m > 0. It follows

that in these circumstances (when A is lower triangular and invertible ), X is in one-to-one correspondence

with a mysterious subspace of λ ,

λX = {x ∈ λ : for all m ≥ 1, A−mx ∈ Λm}

= {x ∈ λ : Am|A−mx| ∈ λ}.

The one-to-one correspondence between X and λX is simply: (x(0), x(1), ...) ∈ X corresponds to x(0) ∈ λX .

This is very interesting and raises a lot of questions, such as: is the topology on X induced by the product

topology on
∞∏

m=0
Λm the same as the topology on X induced by its identification with λX , which bears the

relative topology induced upon it by τ , the topology on λ = Λ0 ? Certainly the product topology on X is no

weaker than the topology on it as λX , and the two are the same, trivially, when X is trivial (λX = {0}).
From previous work [7] we know that the product topology on X can be strictly finer than the relative

topology induced by τ on λX
∼= X . We wonder if they can ever be the same when X is nontrivial. In that

previous work we concentrated on matrices of Cesàro type,

C = C(1, a2, a3, ...) =



1 0 0 . . . .
a2 a2 0 . . . .
a3 a3 a3 0 . . .
a4 a4 a4 a4 0 . .
. . . . . . .
. . . . . . .
. . . . . . .


,
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and λ satisfying Cλ ⊆ λ . (The Cesàro matrix is the Cesàro type matrix with an = 1
n , n ∈ N ; for that C we

have Clp ⊆ lp for all p ∈ (1,∞), by Hardy’s inequality [4].)

In [7], we show that for all such C and λ , Λ0 ⊆ Λ1 ⊆ ..., whence c00 ⊆ Λm for all m , and also that X

is nontrivial. However, even in the special case where C is the Cesàro matrix and λ = lp for some p ∈ (1,∞),

there are straightforward questions about the (relative) product topology on X that we are not able to answer;

for instance, is this topology on X given by a norm?

Here we concentrate on Toeplitz type matrices,

T = T (1, a2, a3, . . .) =



1 0 0 . . . .
a2 1 0 . . . .
a3 a2 1 0 . . .
a4 a3 a2 1 0 . .
. . . . . . .
. . . . . . .
. . . . . . .


.

As always, we require λ to be solid with a solid topology τ , and (1, a2, a3, ...) ∈ λ , which guarantees

c00 ⊆ Λ1 = sol−T−1(λ), if, as is usually the case, λ is closed under the right shift, (x1, x2, . . .) → (0, x1, x2, . . .).

2. Results and examples

Consider an infinite lower triangular Toeplitz matrix,

T =



1 0 0 . . . .
a2 1 0 . . . .
a3 a2 1 0 . . .
a4 a3 a2 1 0 . .
. . . . . . .
. . . . . . .
. . . . . . .


, (ak ≥ 0 ∀k ∈ N),

and let λ ⊆ FN be a solid sequence space such that each column of T is in λ . For this matrix T and any

sequence b = (b1, b2, b3, . . .), we have

Tb =



1 0 0 . . . .
a2 1 0 . . . .
a3 a2 1 0 . . .
a4 a3 a2 1 0 . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .


.



b1
b2
b3
b4
.
.
.
.
.
.


=



b1
b2 + a2b1

b3 + a2b2 + a3b1
b4 + a2b3 + a3b2 + a4b1

.

.

bn +
n∑

j=2

ajbn−j+1

.

.

.


.

Observe that b ∈ S(T |b|), because the aj are nonnegative.

We define Λ0,Λ1,Λ2, ..., as in the preceding section, by Λ0 = λ and for k > 0,

Λk = sol − T−1(Λk−1) = {x ∈ FN : T |x| ∈ Λk−1} = {x ∈ FN : T k|x| ∈ λ}.
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As discussed in the introduction, if λ is equipped with a solid Hausdorff t.v.s. topology τ , there will be a

solid Hausdorff t.v.s. topology τ1 = sol− T−1(τ) naturally induced on Λ1 , possibly the coarsest such topology

such that multiplication by T is a continuous linear map from Λ1 into Λ0 . Then with Λ1 replacing λ = Λ0

and Λ2 = sol − T−1(Λ1) we obtain a solid t.v.s topology τ2 = sol − T−1(τ1), and so on through Λ3,Λ4, .....

As noted in the introduction, the apparent impediment to all this topologizing -- the possibility that Λk may

fail to contain one or more of T ′s columns -- is not really an impediment at all. If the jth column of T is not

in Λk then for every x ∈ Λk+1 = sol − T−1(Λk), xj = 0. Thus, Λk+1 can be considered to be a solid space

of functions from Nk = {j ∈ N : the jth column of T is an element of Λk} into the scalar field, a perfectly

good solid sequence space if Nk is infinite. If Nk = ∅ , then Λk+1 = {0} .
Since T is lower triangular, by Proposition 3 the properties of being complete, and/or AK , will be

inherited by Λ1 from λ , and the inheritance proceeds to Λ2 , Λ3 , etc.

Proposition 4 (Λk)k≥0 is a decreasing sequence.

Proof As noted above, because the aj are nonnegative, x ∈ S(T |x|) for every x ∈ FN . Therefore, if x ∈ Λk+1 ,

i.e. if T |x| ∈ Λk , then x ∈ S(T |x|) ⊆ Λk . Thus, Λk+1 ⊆ Λk . 2

Corollary 5 Λj = λ for some j > 0 if and only if Λj = λ for all j > 0 .

When λ is a Banach lattice with a solid norm ∥.∥λ , then (Λk, τk) is a Banach lattice with a solid norm

∥.∥k , defined by ∥x∥k = ∥ T k|x| ∥λ . Sometimes ∥.∥λ will be denoted ∥.∥0 , because λ = Λ0 .

Proposition 6 Λ1 = λ if and only if T multiplies λ into λ . When λ is a solid Banach lattice (with a solid

norm) and T multiples λ into λ , then multiplication by T is a bounded linear operator on λ . Furthermore,

∥.∥0 and ∥.∥1 are equivalent norms on λ in this case.

Proof Suppose that T multiplies λ into λ . If x ∈ λ then |x| ∈ λ , so T |x| ∈ λ . Thus, λ ⊆ Λ1 . By Proposition

4, it follows that λ = Λ1 .

Suppose that λ = Λ1 . If x ∈ λ then |x| ∈ λ = Λ1 , so T |x| ∈ λ . Since Tx ∈ S( T |x| ), it follows that

Tx ∈ λ . Since x ∈ λ was arbitrary, it follows that T multiplies λ into λ .

Still supposing that λ = Λ1 , we have that the identity injection from (λ, ∥.∥1) to (λ, ∥.∥0) is onto, and

is therefore an open mapping. Consequently, the inverse injection from (λ, ∥.∥0) onto (λ, ∥.∥1) is continuous,

meaning that for some C > 0, ∥x∥1 = ∥ T |x| ∥0 ≤ C∥x∥0 for all x ∈ λ .

Since we already have ∥x∥1 ≥ ∥x∥0 for all x ∈ Λ1 = λ (because x ∈ S( T |x| )), it follows that ∥.∥0 and

∥.∥1 are equivalent norms on λ = Λ1 .

Since T : (Λ1, ∥.∥1) = (λ, ∥.∥1) → (λ, ∥.∥0) is continuous, it follows that T : (λ, ∥.∥0) → (λ, ∥.∥0) is

continuous. 2

Surprisingly, λ = Λ1 does not imply that T multiplies λ onto λ .

Proposition 7 Suppose that T multiplies λ into λ . Then T multiplies λ onto λ if and only if T−1 multiplies

λ into λ .

Proof Since both T and T−1 are invertible lower triangular matrices, multiplication by either takes FN

one-to-one onto FN , and these maps are inverses of each other. From this the conclusion follows, not only for
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solid subspaces λ of FN , but for any subset of FN . 2

Proposition 8 Suppose that T multiplies λ onto λ . Let X ⊆
∞∏
k=0

Λk be the projective limit defined in the

introduction, with respect to T and λ . Then

X = {(x, T−1x, T−2x, . . .) : x ∈ λ}, and

P : X → λ , defined by P (x, T−1x, T−2x, ...) = x , is a linear isomorphism of X onto λ . If λ is equipped with

a solid t.v.s. topology τ and X is equipped with the relative topology from the product topology on
∞∏
k=0

Λk , then

P is continuous, as a linear map between topological vector spaces. If τ is a locally convex complete metric

topology, then P−1 is continuous as well, so λ and X are isomorphic as topological vector spaces.

Proof By Propositions 6 and 7, Λk = λ for all k , and, by the proof of Proposition 7, T−1 multiplies λ onto

λ . Therefore, for any k > 0 and x ∈ λ , T−kx = (T−1)kx ∈ λ = Λk . Therefore,

X = {(x, T−1x, T−2x, . . .) : T−kx ∈ Λk for all k > 0}

= {(x, T−1x, T−2x, . . .) : x ∈ λ}.

If λ is equipped with a solid t.v.s. topology τ , then each Λk inherits a solid t.v.s. topology τk from τ

and the action of T . Clearly P is the restriction of projection onto Λ0 on
∞∏
k=0

Λk , and this is continuous with

respect to the product topology on
∞∏
k=0

Λk and τ on Λ0 = λ . (This holds whether or not T multiplies λ onto

λ .)

Now suppose that τ is a locally convex, complete metric topology. Then so is the product topology on
∞∏
k=0

Λk . Clearly X is a closed subspace of
∞∏
k=0

Λk . (This holds for any solid t.v.s. topology τ , and without the

assumption that T multiplies λ onto λ ; it suffices to note that multiplication by T maps (Λk, τk) continuously

into (Λk−1, τk−1), for k > 0.)

Therefore, P is a one-to-one continuous map from one locally convex complete metric t.v.s. onto another.

By the open mapping theorem for such spaces, P−1 is continuous. 2

Example 9 Let

T = T (1, 1, 0, 0, . . .) =



1 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 0 . . .
...

...
...

...
...

...
. . .

...


.
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Then

T−1 = T (1,−1, 1,−1, . . .) =



1 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −1 1 0 0 0 . . .
−1 1 −1 1 0 0 . . .
1 −1 1 −1 1 0 0 . . .
...

...
...

...
...

...
. . .

...


.

Clearly T maps many λ into themselves, for instance, all λ = lp , 0 < p ≤ ∞ . For 1 < p ≤ ∞ ,

(1, 0, 1
2 , 0,

1
3 , 0, . . .) ∈ lp while clearly T−1x /∈ l∞ , so T−1x /∈ lp . By Propositions 6 and 7, if λ = lp , 0 < p ≤ ∞ ,

then Λ1 = sol − T−1(λ) = λ , and T multiplies λ into λ , but not onto λ .

The next example will show that it can easily happen that T maps λ onto λ . To understand this

example, the reader will need to be acquainted with the connection between Toeplitz matrices and formal

power series. Suppose (a1, a2, . . .) = a is a sequence of scalars, not necessarily nonnegative, and a1 may be 0.

Let f(z) =
∞∑

n=1
anz

n−1 , and let

T (f) = T (a) =


a1 0 0 0 0 . . .
a2 a1 0 0 0 0 . . .
a3 a2 a1 0 0 0 . . .
a4 a3 a2 a1 0 0 . . .
...

...
...

...
...

...
. . .

...

 .

If b = (bn)n≥1 is another sequence of scalars, let a ⋆ b = (
n∑

k=1

akbn−k+1)n≥1 , the sequence of coefficients of the

formal power series product (f � g)(z) = f(z)g(z). If f(z) and g(z) represent functions in a neighborhood of

0, i.e. if the radii of convergence of these series are both positive, then the power series f(z)g(z) represents the

product of the functions f and g in that neighborhood of 0.

The following matrix products are elementary:

T (a) �

b1b2
...

 = T (a) � b = a ⋆ b,

and T (a)T (b) = T (a ⋆ b).

Therefore, when f(z) and g(z) represent functions in a neighborhood of 0, T (f)T (g) = T (f � g).
Therefore, if f(z) has radius of convergence ≥ r > 0 and f(z) ̸= 0 for all complex z such that |z| < r ,

then, because 1
f is analytic in the open disc of radius r centered at 0, the function 1

f has a power series

representation about 0, in that disc, and T ( 1f ) = T (f)−1 . For instance, in Example 9, T = T (1, 1, 0, . . .) =

T (1 + z), so

T−1 = T (
1

1 + z
) = T (

∞∑
n=1

(−z)n−1) = T (1,−1, 1,−1, . . .).
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Example 10 Fix ρ ∈ (0,∞] and let

λ = {(xn) ∈ FN :
∞∑

n=1

xnz
n−1 has radius of convergence ≥ ρ}

= {(xn) ∈ FN :
1

lim sup
n

|xn|
1
n

≥ ρ}.

[Convention : 1
0 = ∞] . Clearly λ is a solid vector subspace of FN . If (1, a2, a3, . . .) ∈ λ , ai ≥ 0, i = 2, 3, . . . ,

and f(z) = 1 +
∞∑

n=2
anz

n−1 ̸= 0 for all z ∈ C , |z| < ρ , then both f and 1
f multiply the space of analytic

functions on the disc {z ∈ C : |z| < ρ} onto itself; therefore, T = T (f) and T−1 = T ( 1f ) multiply λ onto

itself.

For a specific instance, let ρ = 1 and T, T−1 be the matrices of Example 9, corresponding to f(z) =

1 + z ̸= 0 for all z ∈ C such that |z| < 1. But obviously, the possible examples of such T and T−1 are an

uncountable legion.

If λ is as in Example 10, for some ρ > 0, ai ≥ 0, i = 2, 3, . . . , and f(z) = 1 +
∞∑

n=2
anz

n−1 converges

for all |z| < ρ , but f takes the value 0 in that open disc, then the power series for 1
f will have a radius of

convergence in the open interval (0, ρ). In such a case, T (f) will multiply λ into λ , and T ( 1f ) = T (f)−1 will

not, so T (f) does not multiply λ onto λ . These remarks do not imply the conclusions of Example 9, because

the lp are quite a different case from the spaces λ of Example 10.

A sequence space λ as in Example 10 bears a natural, solid, metric, locally convex t.v.s. topology called

the “topology of uniform convergence on compact subsets of the disc U(ρ) = {z ∈ C : |z| < ρ} . As the norm

suggests, this topology is usually described on the space of analytic functions on U(ρ) associated with λ , by

the association (xn) ∈ λ ↔ f(z) =
∞∑

n=1
xnz

n−1 . The space λ is complete with this topology. The topology

is not normable, but it can be described by a sequence of norms as follows: let (rk)k≥1 be any increasing

sequence of positive reals, tending to ρ , and define ∥.∥k by ∥x∥k =
∞∑

n=1
|xn|rn−1

k . It is not completely trivial

to see that the topology on λ defined by the sequence of norms ∥.∥1, ∥.∥2, . . . is the same as the topology of

uniform convergence on compact subsets of U(ρ) as usually defined on the function space associated with λ ; the

conclusion follows by elementary functional analysis from the observations that the sequence-of-norms topology

is the finer of the two, and that they are both complete metric l.c.t.v.s. topologies.

An important payoff from the verification of the equivalence of the two topologies is the conclusion that

if x ∈ λ and T (x) is the Toeplitz matrix associated with x , then not only does T (x) multiply λ into λ , but

also, this multiplication is a continuous linear operator on λ , equipped with its natural topology.

Before looking at our last example, which concerns the Toeplitz matrix T (1, 1
2 ,

1
3 , . . .), we resurrect a

result from [7], which bears on the preceding discussion and on the questions to be posed in the last section.

If B = [bij ] is an infinite matrix with nonnegative entries, we will permit B to be raised to positive

integer powers even if ∞ appears as a matrix entry. In the arithmetic performed in taking these products, as
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usual, c.∞ = ∞ for any c > 0, 0.∞ = 0, and any sum of nonnegative terms including ∞ is ∞ . If ∞ appears

in the jth column of Bk then for x ∈ FN , Bk|x| ∈ FN (i.e. the entries of Bk|x| are all finite) only if xj = 0.

Proposition 11 Suppose that B = [bij ] is an infinite matrix with nonnegative entries, and λ is a solid subspace

of FN containing c00 . For k ≥ 1 let Λk = {x ∈ FN : Bk|x| ∈ λ} , and let

X = {(x(k))k≥0 ∈
∞∏
k=0

Λk : for all k > 0, Bx(k) = x(k−1)}.

(a) If every column of B is finitely nonzero (i.e. in c00 ), then c00 ⊆ Λk for all k ≥ 1 .

(b) If B has a matricial inverse, B−1 , with every column of B−1 in c00 , and c00 ⊆ Λk for all k = 1, 2, . . . ,

then X is nontrivial.

Proof (a) If x ∈ c00 , then Bx is a finite linear combination of columns of B ; since each of those columns is

in c00 , it follows that Bx ∈ c00 .

Thus, every column of B2 is in c00 ; by induction on k , every column of Bk = B.Bk−1 is in c00 . If

x ∈ c00 , then |x| ∈ c00 , so Bk|x| ∈ c00 ⊆ λ . Thus, c00 ⊆ Λk , k = 1, 2, . . . .

(b) By the argument in (a), if the columns of B−1 are finitely nonzero, then so are the columns of

(B−1)k = B−k , n = 1, 2, . . . By the argument in (a), B−k has finite entries, in fact columns in c00 , for all

positive integers k .

Because B−k has columns in c00 , for every x ∈ c00 , B−kx ∈ c00 ⊆ Λk , by hypothesis. Therefore, for

every x ∈ c00 ⊆ λ , (x,B−1x,B−2x, . . .) ∈ X . 2

Corollary 12 (a) Suppose that B = T (f) where f(z) is a polynomial in z with nonnegative real coefficients.

Then, for any λ as in Example 10 and with Λk as defined there, c00 ⊆ Λk , k = 1, 2, . . .

(b) Suppose that p(z) is a polynomial with real coefficients such that

f(z) =
1

p(z)
=

k∑
j=1

cj
(aj − z)nj

for some positive real numbers a1, a2, . . . , ak, c1, . . . , ck and positive integers n1, . . . , nk . Let B = T (f) , and let

λ,Λk , k = 1, 2, . . . , and X be as in Example 10. If c00 ⊆ Λk for all k = 1, 2, . . . , then X is nontrivial.

Proof (a) Obviously the columns of B are nonnegative finitely nonzero sequences. The conclusion follows

from Proposition 11 (a).

(b) The entries of the Toeplitz matrix B = T (f) are nonnegative, because the coefficients of the power

series for f around 0 are nonnegative. The inverse of B is B−1 = T ( 1f ) = T (p), which has all columns in c00

because p(z) is a polynomial. The conclusion now follows from Proposition 11 (b). 2

Example 13 Let T = T (1, 1
2 ,

1
3 , . . .) = T (f), where f(z) = 1+

∞∑
n=2

zn−1

n . Obviously, f is analytic on the open
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unit disc {z ∈ C : |z| < 1} , and it is also nonzero there. To see this, observe that for |z| < 1,

− ln(1− z) =

z∫
0

dt

1− t
=

z∫
0

∞∑
k=0

tkdt =
∞∑
k=1

zk

k
,

from which it follows that f(z) = − log(1−z)
z , where log is defined (and analytic) in the right half plane by

log(w) = ln |w|+ i arg(w), with arg(w) ∈ (−π
2 ,

π
2 ) satisfying w = |w|ei arg(w) . Since logw = 0 only for w = 1,

if Re(w) > 0, it follows that f(z) ̸= 0 for all z such that |z| < 1.

Therefore, if λ is as in Example 10, for any ρ ∈ (0, 1], both T and T−1 = T ( 1f ) multiply λ onto λ .

Therefore, Λk = λ for all k > 0, and, by Proposition 8, we know a lot about the projective limit X .

But what if λ = lp for some p ∈ (1,∞]? Here we have many questions and few answers. We will ask the

questions in the next section. Here we will put forth the few things that we know. Let ej denote the sequence

with 1 in the jth position.

If a lower triangular one-sided infinite matrix or, indeed, simply a matrix with every row in c00 multiplies

a Banach lattice of sequences in which the coordinate projections are continuous into another such space, then

that multiplication is a bounded linear transformation. This conclusion is straightforward from the closed graph

theorem. (Perhaps we should have mentioned this earlier! It provides an alternate proof of part of Proposition

6.)

With this in mind we can see that T does not multiply lp into lp , 1 < p ≤ ∞ . For p = ∞ this is easy:

T multiplies the sequence of all ones into an unbounded sequence. In the case of 1 < p < ∞ , we observe that

∥T (
n∑

j=1

ej)∥p

∥
n∑

j=1

ej∥p
→ ∞ as n → ∞.

(Verification of this is left as a pleasurable exercise for the reader.)

Therefore, T does not multiply lp into itself, for, if it did, that multiplication would have to be a bounded

linear operator on lp , by the remark above, and that manifestly cannot be so.

By Propositions 4 and 6, it follows that Λ1 = sol − T−1(lp) ⊊ lp , for 1 < p ≤ ∞ . Can it be that the

sequence lp = Λ0 ⊇ Λ1 ⊇ Λ2 . . . , shrinks to 0, i.e. that
∩
k≥0

Λk = {0}?

We shall show that this is not the case by showing that c00 ⊆ Λk for all k . This is clear for k = 0, 1.

To show that c00 ⊆ Λk it suffices to show that T kej ∈ lp , j=1,2,. . . . Since T k is a Toeplitz matrix,

T kej is just a shift of T ke1 , so it suffices to show that T ke1 ∈ lp . If this holds for any p < ∞ then it holds for

p = ∞ , so we may as well suppose that p < ∞ .

We will show that T ke1 ∈ lp by showing, by induction on k ≥ 1, that

(T ke1)n ≤ 2k−1(1 + lnn)k−1

n+ k − 1
, n ≥ 1.
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This will do it, since (2
k−1(1+lnn)k−1

n+k−1 )n≥1 ∈ lp for all k ≥ 1, as it is quite easy to see.

(Te1)n =
1

n
=

21−1(1 + lnn)1−1

n+ 1− 1
,

so the claim holds for k = 1. Suppose that k > 1. Note that

(T ke1)1 = 1 ≤ 2k−1

k
,

so we may as well suppose that n > 1. Let (T k−1e1)n = bn, n = 1, 2, . . . By induction hypothesis, for all n ≥ 1,

bn ≤ 2k−2(1+lnn)k−2

n+k−2 . Then

(T ke1)n = (TT k−1e1)n =
n∑

j=1

1

j
bn−j+1

≤
n∑

j=1

1

j

2k−2(1 + ln(n− j + 1))k−2

n− j + k − 1

≤ 2k−2(1 + lnn)k−2

n+ k − 1

n∑
j=1

(
1

j
+

1

n− j + k − 1
)

≤ 2k−2(1 + lnn)k−2

n+ k − 1

n∑
j=1

(
1

j
+

1

n− j + 1
)

≤ 2k−2(1 + ln(n))k−2

n+ k − 1
2(1 + lnn) =

2k−1(1 + ln(n))k−1

n+ k − 1
.

3. Questions

Throughout this section T = T (1, a2, a3, . . .), aj ≥ 0, j ≥ 2, and λ will be a solid vector subspace of FN

containing c00 and the columns of T ; Λk , k = 0, 1, 2, . . . , and X will be as defined earlier, with reference to T

and λ .

1. If T multiplies λ onto λ , then by Propositions 4, 6, and 8, Λk = λ for all k and X =

{(x, T−1x, T−2x, . . .) : x ∈ λ} . If T multiplies λ into λ , but not onto, then Λk = λ for all k , but

λX = {x ∈ λ : T−kx ∈ Λk, k = 1, 2, . . .}

= {x ∈ λ : (x, T−1x, T−2x, . . .) ∈ X}

is a proper subspace of λ .

Is it possible that λX = {0} if Λk = λ for all k?

Is it possible that λX could be a solid subspace of λ other than {0} or λ itself, whether Λk = λ for all

k , or not?

2. Are there examples of λ and T such that Λk = {0} for some k > 1 ? (Because the columns of T are

in λ , c00 ⊆ Λ1 .)

Are there examples of λ and T such that Λk ̸= {0} for all k , but
∩
k≥0

Λk = {0}?
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Are there examples of λ and T such that Λ1 ⊊ λ , Λk ̸= {0} for all k , and
∩
k≥0

Λk = Λm for some m?

3. We are especially interested in all the questions above when T = T (1, 1
2 ,

1
3 , . . .) and λ = lp , 1 < p < ∞ .
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