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Abstract: Based on the Hermitian and skew-Hermitian (HS) splitting for non-Hermitian matrices, a nonalternating

preconditioned Hermitian and skew-Hermitian splitting-Krylov plus inverted Krylov subspace (NPHSS-KPIK) iteration

method for solving a class of large and low-rank complex Sylvester equations arising from the two-dimensional time-

periodic fractional diffusion problem is established. The local convergence condition is proposed and the optimal

parameter is given. Numerical experiments are used to show the efficiency of the NPHSS-KPIK iteration method

for solving the Sylvester equations arising from the time-periodic fractional diffusion equations.

Key words: Sylvester equation, Krylov-plus-inverted-Krylov subspace method, time-periodic fractional diffusion equa-

tion, NPHSS method, low-rank

1. Introduction

Consider the following Sylvester equation

AU + UB = C, (1.1)

where A ∈ Cm×m , B ∈ Cn×n , and C ∈ Cm×n are given complex matrices. Assume

(A1 ) A , B , and C are large matrices;

(A2 ) A = W1 + iT1 , B = W2 + iT2 , with W1 and W2 being both symmetric positive matrices, at least

one of T1 and T2 being a nonzero matrix;

(A3 ) C = FGT has much lower rank than the problem size, i.e. F ∈ Cm×s , G ∈ Cn×s , where s ≪ m

and s≪ n .

The Sylvester equation of the form (1.1) arises in numerous applications, such as control and system

theory, image restoration, and the discretized approximation of fractional diffusion equations. We refer to [3]

for a detailed description. If C ̸= 0, according to [3], when A and −B do not have disjoint spectra, the

Sylvester equation (1.1) has a unique solution under the assumptions (A1 )–(A3 ).

The standard methods for numerical solution of the Sylvester equation (1.1) are the Bartels–Stewart [7]

and the Hessenberg–Schur methods [9]. They consist of transforming the matrices A and B into triangular
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Hessenberg form by an orthogonal similarity transformation or a full Schur decomposition and then solving

the resulting system of linear equations directly by a backward substitution. The Bartels–Stewart and the

Hessenberg–Schur methods are applicable and effective for general Sylvester equations of reasonably small sizes.

When A and B are large and sparse, iterative methods such as Smith’s method [22], the alternating

direction implicit (ADI) method [25], the successive over-relaxation (SOR) method [24], and the matrix splitting

methods [10] are often the methods of choices for efficiently and accurately solving the Sylvester equation (1.1).

Those iterative methods are efficient when A and B are both Hermitian. However, when the matrix A or B

is not Hermitian, the convergence of those iterative methods may be theoretically not guaranteed, even if both

of A and B are either asymptotically stable or N-stable, or the skew-Hermitian part of A or B is dominantly

strong.

When A and B are positive semidefinite, and at least one of them is positive definite, based on the

Hermitian and skew-Hermitian (HS) splittings [5], Bai [3] proposed a Hermitian and skew-Hermitian splitting

(HSS) iteration method. The HSS iteration method for solving Sylvester equations is decomposed into a

sequence of subproblems about two coupled Sylvester equations with respect to shifted Hermitian positive

definite matrices and shifted skew-Hermitian matrices, respectively. The HSS iteration method is an efficient

and robust solver for the large sparse Sylvester equations with non-Hermitian and positive definite matrices.

For more details about the solvers for the Sylvester equation, we refer to [26, 29] and some references therein.

It is well known that the Sylvester equation (1.1) can be rewritten mathematically equivalent to the linear

system (I ⊗ A + BT ⊗ I)x = c , where the vectors x and c contain the concatenated columns of the matrices

X and C , respectively, and ⊗ denotes the Kronecker product. However, this is a numerically poor way to get

the solution X , because the linear system matrix is of size mn×mn , which is an extremely large number.

When the right-hand side matrix C is lower rank than the problem dimension, Simoncini et al. [21]

proposed a Krylov-plus-inverted-Krylov (KPIK) subspace method for solving large-scale Lyapunov equations.

The KPIK subspace method projects the problem onto a much smaller approximation space; then the reduced

problem can be solved by means of a direct Schur decomposition method. For more details, we refer to [12].

In this paper, we concentrate on an efficient solver for the discretized Sylvester equation arising from

two-dimensional time-periodic fractional diffusion equations. The resulting system is a complex discretization

Sylvester equation, which is obtained by applying the shifted Grünwald finite difference discretization both of

x-direction and y -direction space-fractional diffusion terms. According to the special structure and extremely

great size properties of the discretized coefficient matrix, we use the project method to rewrite the original

discretization system as a reduced Sylvester equation, which can be directly solved by Schur decomposition

method. The iterative generation of the extended space requires solving systems with coefficient matrices A

and B , which are both complex symmetric, non-Hermitian, and of great size. Therefore, based on the single-

step HSS iteration scheme proposed by Li and Wu et al.[13] for solving the linear systems at each step of the

KPIK method, we name the new method the NPHSS-KPIK method. The local convergent properties for the

NPHSS-KPIK method are proposed and the optimal parameters are given. Numerical experiments also show

that the NPHSS-KPIK iteration method is an efficient and robust solver for the low-rank complex Sylvester

equation (1.1).

The remainder of this paper is organized as follows. In Section 2, we review the discretized Sylvester

matrix equation from the two-dimensional time-periodic fractional diffusion equations (FDEs). Then we derive

the NPHSS-KPIK iteration method for the Sylvester equation. In Section 3, we study the local convergence

properties and the optimal choice of the iterative parameter for the NPHSS-KPIK method. Numerical exper-
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iments are presented in Section 4 to illustrate the efficiency of the NPHSS-KPIK iteration method for solving

two-dimensional time-periodic FDEs. In Section 5, some conclusions are given to end this paper.

Throughout the paper, we use i =
√
−1 to denote the imaginary unit. ∥ · ∥2 is defined as the 2-norm

of a vector or a matrix. MT and M∗ denote the transpose and the conjugate transpose of the matrix M ,

respectively. Range(M) indicates the space spanned by the columns of M .

2. The discretized system and the NPHSS-KPIK method

Consider the following two-dimensional time-periodic FDEs
∂u(x, y, t)

∂t
− xD

β1

R u(x, y, t)− yD
β2

R u(x, y, t) = f(x, y, t), ax ≤ x ≤ bx, ay ≤ y ≤ by, t ∈ [0, T ],

u(ax, y, t) = u(bx, y, t) = u(x, ay, t) = u(x, by, t) = 0, 0 ≤ t ≤ T,

u(x, y, 0) = 0, ax ≤ x ≤ bx, ay ≤ y ≤ by,

(2.1)

where f(x, y, t) is the source and sink term, the differentiation parameter β1, β2 ∈ (1, 2). Assume there is a

time-periodic solution to the system (2.1), i.e. u(x, y, t) = u(x, y)eiωt with ω = 2πM
T for some M ∈ Z . Here the

Riesz derivatives xD
β1

R u(x, y) and yD
β2

R u(x, y) are defined as the weighted average of the left- and right-sided

derivative [17]. That is,

xD
β1

R u(x, y, t) =
1

2
(
∂β1u(x, y, t)

∂+xβ1
+

∂β1u(x, y)

∂−xβ1
),

yD
β2

R u(x, y, t) =
1

2
(
∂β2u(x, y, t)

∂+yβ2
+

∂β2u(x, y)

∂−yβ2
).

The left and right fractional derivatives are defined in the Grünwald–Letnikov form [16]

∂β1u(x, y, t)

∂+xβ1
= lim

hx→0

1

hβ1
x

⌊(x−ax)/hx⌋∑
k=0

g
(β1)
k u(x− khx, y, t),

∂β1u(x, y, t)

∂−xβ1
= lim

hx→0

1

hβ1
x

⌊(bx−x)/hx⌋∑
k=0

g
(β1)
k u(x+ khx, y, t),

∂β2u(x, y, t)

∂+yβ2
= lim

hy→0

1

hβ2
y

⌊(y−ay)/hy⌋∑
k=0

g
(β2)
k u(x, y − khy, t),

∂β2u(x, y, t)

∂−yβ2
= lim

hy→0

1

hβ2
y

⌊(by−y)/hy⌋∑
k=0

g
(β2)
k u(x, y + khy, t),

where ⌊x⌋ denotes the largest integer that is not greater than x and the coefficients g
(β)
k (k = 1, 2, · · · .) are

defined as

g
(β)
0 = 1, g

(β)
k =

(−1)k

k!
β(β − 1) · · · (β − k + 1).

The FDEs of form (2.1) arise in variety of research areas such as modeling chaotic dynamics of classical

conservative systems [27], turbulent flow [20], and groundwater contaminant transport [8], and applications

in finance [18], image processing [2], physics [23], and biology [14].
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Because the solution u(x, y, t) of Eq. (2.1) is time-periodic, then u(x, y, t) and f(x, y, t) are both time-

harmonic, i.e. u(x, y, t) = u(x, y)eiωt and f(x, y, t) = f(x, y)eiωt , where u(x, y) and f(x, y) solve the following

time-independent fractional differential equation:

iωu(x, y)− xD
β1

R u(x, y)− yD
β2

R u(x, y) = f(x, y), ax ≤ x ≤ bx, ay ≤ y ≤ by. (2.2)

Let hx = bx−ax

Nx+1 , hy =
by−ay

Ny+1 be the mesh grid of the x−direction and y−direction, respectively. Use the

spatial partitions:

xi = ax + ihx, yj = ay + jhy, i = 0, 1, · · · , Nx + 1; j = 0, 1, · · · , Ny + 1.

Denote ui,j = u(xi, yj), fi,j = f(xi, yj). At each node (xi, yj), we employ the shifted Grünwald approxima-

tions [15] as

∂β1u(xi, yj)

∂+xβ1
=

1

hβ1
x

i+1∑
k=0

g
(β1)
k ui−k+1,j +O(hx),

∂β1u(xi, yj)

∂−xβ1
=

1

hβ1
x

Nx−i+2∑
k=0

g
(β1)
k ui+k−1,j +O(hx),

∂β2u(xi, yj)

∂+yβ2
=

1

hβ2
y

j+1∑
k=0

g
(β2)
k ui,j−k+1 +O(hy),

∂β2u(xi, yj)

∂−yβ2
=

1

hβ2
y

Ny−j+2∑
k=0

g
(β2)
k ui,j+k−1 +O(hy).

Then Eq. (2.2) leads to the following finite difference scheme:

− 1

2hβ1
x

( i+1∑
k=0

g
(β1)
k ui−k+1,j+

Nx−i+2∑
k=0

g
(β1)
k ui+k−1,j

)
− 1

2hβ2
y

( j+1∑
k=0

g
(β)
k ui,j−k+1+

Ny−j+2∑
k=0

g
(β)
k ui,j+k−1

)
= fi,j . (2.3)

According to the boundary condition u0,j = uNx+1,j = ui,0 = ui,Ny+1 = 0 and let

U =


u1,1 u1,2 · · · u1,Ny

u2,1 u2,2 · · · u2,Ny

...
...

...
...

uNx,1 uNx,2 · · · uNx,Ny

 , C =


f1,1 f1,2 · · · f1,Ny

f2,1 f2,2 · · · f2,Ny

...
...

...
...

fNx,1 fNx,2 · · · fNx,Ny

 ;

then we can rewrite the finite difference scheme (2.3) into a matrix form

iωU + (LNx

β1
)TU + U(L

Ny

β2
)T = C, (2.4)

where LN
β = 1

2 (G
N
β + (GN

β )T ) is a Toeplitz matrix, and

GN
β = −



g
(β)
1 g

(β)
0 0 · · · 0

g
(β)
2 g

(β)
1 g

(β)
0 · · · 0

g
(β)
3

. . .
. . .

. . .
...

...
. . .

. . .
. . . g

(β)
0

g
(β)
N · · · g

(β)
3 g

(β)
2 g

(β)
1


, (β,N) ∈ {(β1, Nx), (β2, Ny)}.
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The linear equation (2.4) can be rewritten as

(
1

2
iωINx + LNx

β1
)TU + U(

1

2
iωINy + L

Ny

β2
)T = C. (2.5)

For simplicity, we will omit the subscription Nx and Ny of the identity matrix when it is easy to distinguish.

Therefore, we reformulate matrix equation (2.5) into the form of (1.1), with

A = (
1

2
iωI + LNx

β1
)T =

1

2
iωI + LNx

β1
; B = (

1

2
iωI + L

Ny

β2
)T =

1

2
iωI + L

Ny

β2
. (2.6)

Obviously, A and B are both non-Hermitian positive definite matrices [28].

Based on the low-rank property of the right-hand side matrix C = FGT defined by Eq. (1.1), we need to

seek an approximation Û ≈ U , such that Û = VaY V T
b for some matrix Y . Here Va and Vb have much fewer

columns than rows. Then a general projection method for Eq. (1.1) will be considered first.

Given two approximation spaces Range (Va ) and Range (Vb ), an approximation Û = VaY V T
b is

determined by requiring that the residual R = AÛ + ÛB − C satisfies V T
a RVb = 0.

If Va and Vb have orthogonal columns, by substituting Û = VaY V T
b , we can obtain the reduced matrix

equation as

(V T
a AVa)Y + Y (V T

b BVb) = V T
a FGTVb.

Denote Ha = V T
a AVa , Hb = V T

b BVb , Fa = V T
a F , Gb = V T

b G ; then we obtain a matrix equation of small size
as

HaY + Y Hb = FaG
T
b ,

which can be efficiently solved by the Bartels–Stewart method. However, different choices of Range (Va ) and

Range (Vb ) will lead to different approximate solutions. According to [12], for Range (Va ), we can choose the

Krylov-Plus-Inverted-Krylov (KPIK) subspace, which is an approximation space generated by powers of A and

A−1 . Then the space Range (Va ) can be generated as

Range(Va) = span([F,A−1F,AF,A−2F,A2F,A−3F, · · · ]).

By the same strategy, we can choose the space for Range (Vb ) as

Range(Vb) = span([G,B−1G,BG,B−2G,B2G,B−3G, · · · ]).

Both of the spaces Range (Va ) and Range (Vb ) can be expanded until the approximate solution Û is sufficiently

good. For more details about the KPIK subspace method, we refer to [21].

Therefore, from a computational standpoint, when we are expanding the space in the iterative generation,

we have to solve systems with coefficient matrices A and B , which are both large and complex non-Hermitian

matrices. According to [13], we will solve those systems by the NPHSS iteration method, and we name the

corresponding method an NPHSS-KPIK method. At the end of this section, we will remark on the main steps

in the NPHSS-KPIK iteration method for solving the Sylvester equation (1.1) as the following algorithm.

Algorithm 2.1 (The NPHSS-KPIK iteration method)

Given tolerances εout > 0 and εin > 0 , an integer parameter k1 , and set k = 0 , m = k1 . Use the NPHSS
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iteration method to solve AZa = F and BZb = G to obtain Z̃a ≈ A−1F until ∥AZ̃a − F∥/∥F∥ < εin and

Z̃b ≈ B−1G until ∥BZ̃b − G∥/∥G∥ < εin . Set Va,1 = gram sh([F, Z̃a]) , Va,0 = [ ] ; Vb,1 = gram sh([G, Z̃b]) ,

Vb,0 = [ ] ;

For j = 1, 2, · · · ,m , do Step 1–Step 9:

Step 1. Va,j = [Va,j−1, Va,j ] , Vb,j = [Vb,j−1, Vb,j ] ;

Step 2. Set Ha,j = V T
a,jAVa,j and Fa,j = Va,jF ; Hb,j = V T

b,jAVb,j and Gb,j = Vb,jG ;

Step 3. Solve Ha,jYj + YjHb,j = Fa,jG
T
b,j to obtain Yj ;

Step 4. Compute the upper bound rj for the residual norm according to (Theorem 3,[12]);

Step 5. If rj < εout , then Û = Va,jYjV
T
b,j and stop. If not convergent, go to Step 8;

Step 6. Set V
(1)
a,j : first s (here s is defined by condition (A3 ) of Eq. (1.1)) columns of Va,j ; V

(2)
a,j :

second s columns of Va,j ; V
(1)
b,j : first s columns of Vb,j ; V

(2)
b,j : second s columns of Vb,j ;

Step 7. Use the NPHSS iteration method to obtain the approximations of Z̃a ≈ A−1V
(2)
a,j and

Z̃b ≈ B−1V
(2)
b,j until converge. Set V ′

a,j+1 = [AV
(1)
a,j , Z̃a] and V ′

b,j+1 = [BV
(1)
b,j , Z̃b] ;

Step 8. V̂a,j+1 ← orthogonalize V ′
a,j+1 w.r. to Va,j ; V̂b,j+1 ← orthogonalize V ′

b,j+1 w.r. to Vb,j ;

Step 9. Set Va,j+1 = gram sh(V̂a,j+1) and Vb,j+1 = gram sh(V̂b,j+1) , j = j + 1 , turn to Step 1.

end

We remark in the NPHSS-KPIK iteration method that the function gram sh constructs an orthogonal basis

and a Hessenberg matrix; for more details, we refer to [21].

3. The local convergence analysis

The theoretical analysis about the convergence property of the KPIK method can be found in [12, 21]. In this

section, we only consider the local convergent property of the NPHSS-KPIK iteration method in Algorithm 2.1.

From Algorithm 2.1, we find that, at each iterative step of the NPHSS-KPIK iteration method, one needs

to solve the following complex linear system:

Kx = b, (3.1)

where K ∈ Cn×n and b ∈ Cn . When the coefficient matrix K is with a dominant indefinite symmetric

part, Bai and Qiu proposed a class of splitting minimal residual (SMINRES) and preconditioned SMINRES

(PSMINRES) method by making use of the inner/outer iteration technique [6]. When the coefficient matrix K

is with a dominant symmetric positive definite part, Axelsson further introduced the nested-splitting conjugate

gradient (NSCG) and preconditioned NSCG (PNSCG) schemes, which are a class of nested iteration schemes.

These schemes employ the classical conjugate gradient methods as inner iteration to approximate each outer

iterate [1]. Those methods are efficient when they are used to solve the linear systems with a dominant indefinite

or definite symmetric part.

Furthermore, if we let W = 1
2 (K+K∗) and iT = 1

2 (K−K∗) be the Hermitian parts and skew-Hermitian

parts of K , respectively, then we can split the coefficient matrix K as (αP + W ) − (αP − iT ), where α is

a given positive constant and P ∈ Rn×n is a symmetric positive definite matrix. According to [13], we can
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propose the nonalternating preconditioned HSS (NPHSS) iteration method for solving the system (3.1) as the

following algorithm:

Algorithm 3.1 (The NPHSS iteration method [13]) Given an initial guess x(0) , a positive constant α , and a

symmetric positive definite matrix P ∈ Rn×n , for k = 1, 2, · · · , until {x(k)} converges, compute

(αP +W )x(k+1) = (αP − iT )x(k) + b,

or equivalently

x(k+1) = x(k) + (αP +W )−1(b−Kx(k)).

The convergence result for the NPHSS iteration method can be given as the following theorem.

Theorem 3.1 [13] Suppose α to be a positive constant and P to be a symmetric positive definite matrix; then

the iterative matrix of the NPHSS iteration method is

M(P ;α) = (αP +W )−1(αP − iT ),

and its spectral radius ρ(M(P ;α)) is bounded by

δ(α) =

√
α2 + σ2

max

α+ λmin
,

where σmax is the maximum singular value of the matrix iP−1T , and λmin is the minimum eigenvalue of the

matrix P−1W . Moreover, if

α >
σ2
max − λ2

min

2λmin
,

then the upper bound δ(α) < 1 . Particularly, if σmax ≤ λmin , then the NPHSS iteration method is uncondi-

tionally convergent.

Next, we will give the quasi-optimal α to minimize the upper bound δ(α).

Theorem 3.2 [13] Let σmax , λmin be defined by Theorem 3.1; then the optimal parameter α is α∗ =
σ2
max

λmin

and the corresponding upper bound for ρ(M(P ;α)) is

δ(α∗) =
σmax√

σ2
max + λ2

min

.

Remark 3.3 According to [1, 6] and based on the splitting K = (αP +W )− (αP − iT ) , we can also solve the

linear equations (3.1) approximatively by the minimal residual method or the conjugate gradient (CG) method.

As αP + W is symmetric positive definite, then, at each step of iteration, a system of linear equations with

coefficient matrix αP +W can be solved by the CG method. For more details, we refer to [1].
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4. Numerical results

In this section, we use the following example to examine the numerical behaviour of the NPHSS-KPIK iteration

method. Our tests are performed in MATLAB R2012a on an Intel Core i7-3770 CPU 3.40 GHz and 8.00 GB

of RAM, with machine precision 10−16 . When we use the NPHSS iteration method to solve the system at the

inner iteration, because the system matrix is symmetric positive definite, then we will solve the system exactly

by Cholesky factorization. In all the numerical experiments, the stopping criteria for all the inner iteration

method are the maximum iteration counts exceeding by 1000.

The tolerance (εout in Algorithm 2.1) for the KPIK iteration method is set to be 10−8 . The iteration

counts (denoted by ’it’) containing the average iterations for solving systems A and B , respectively, and the

elapsed CPU time to get the numerical solutions of the problems in seconds (denoted by ’CPU’) are reported

in the tables. The absolute error norm (denoted by ’RES’) reported in all the tables is defined by

RES = ∥AÛ + ÛB − C∥2,

where Û is the numerical solution obtained by the corresponding iteration method.

Example 1 The initial-boundary value problem of two-dimensional time-periodic FDE (2.1) is considered with

ax = ay = 0 , bx = by = 1 and T = 1 . The source term is given by f(x, y, t) = 100 sin(10x) cos(y)eiωt , where

ω is the problem parameter.

By applying the shifted Grünwald approximations to discretize the fractional spatial derivative and substituting

u(x, y, t) = u(x, y)eiωt and f(x, y, t) = f(x, y)eiωt into the above equation, we can obtain the system (2.5)

according to Section 2. In order to test the efficiency of the NPHSS-KPIK iteration method, we will rewrite

the equation (2.5) as AU + UB = C with A = 1
2 iωI + LNx

β1
; B = 1

2 iωI + L
Ny

β2
. The low-rank right-hand side

matrix C has the form

C = 100


sin(10hx)
sin(20hx)
sin(30hx)

...
sin(10Nxhx)


(
cos(hy) cos(2hy) cos(3hy) · · · cos(Nyhy)

)
:= FGT ,

where F ∈ RNx×s , G ∈ RNy×s with s = 1.

We will replace the inner iterative method, i.e. NPHSS iteration method in Algorithm 3.1, instead

of some other methods, such as GMRES method [19], MINRES method [11], HSS iteration method [5], and

MHSS iteration method [4], and the corresponding methods are named GMRES-KPIK method, MINRES-KPIK

method, HSS-KPIK method, and MHSS-KPIK method, respectively.

When we use the HSS-KPIK method and the MHSS-KPIK method, the optimal parameters obtained by

Bai in [4, 5] are used as

α =
√
λminλmax,

where λmin , λmax are the minimum eigenvalue and maximum eigenvalue of the Hermitian parts of the matrix

A or B , respectively. When the NPHSS-KPIK method is used, we set the preconditioner P as an identity
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matrix and use the optimal parameter α∗ =
σ2
max

λmin
[13], where σmax and λmin are the maximum singular-values

of the skew-Hermitian parts and the maximum eigenvalue of the Hermitian parts, respectively.

We compare the NPHSS-KPIK iteration method with the GMRES-KPIK method, the MINRES-KPIK

method, the HSS-KPIK method, and the MHSS-KPIK method according to different mesh grids. We test the

problem when the mesh grid is 2Nx+1 × 2Ny+1 , the size of the matrix A is 2Nx+1 × 2Nx+1 , the size of the

matrix B is 2Ny+1 × 2Ny+1 , and the size of the unknown matrix U is 2Nx+1 × 2Ny+1 , whose total number of

unknowns is 2Nx+1 × 2Ny+1 .

We will report the iteration counts for the NPHSS iteration method for solving the linear systems with

coefficient matrix being A and B , and denote the average iteration counts by itA and itB , respectively. We

test the methods according to different choices of mesh grids and of different derivative parameters, i.e.

(β1, β2) ∈ {(1.3, 1.3), (1.3, 1.7), (1.7, 1.3), (1.9, 1.9)}.

We remark the results by ’-’ in Table 1–Table 4, if the iteration counts achieve the maximum iteration count

1000.

From Table 1–Table 4, we can see that the GMRES-KPIK method and the MINRES-KPIK method are

independent of the derivative parameters β1 , β2 and the parameter ω . Furthermore, because of the large and

complex properties of the matrices A and B , the GMRES-KPIK method and the MINRES-KPIK method are

sensitive to the mesh grids. The iteration counts and CPU time increase rapidly when the mesh grids become

small.

The HSS iteration method and the MHSS iteration method are famous for their efficiency and uncondi-

tionality convergent properties for general complex systems. Then we can find from Table 1–Table 4 that the

HSS iteration method and MHSS iteration method are independent of the parameter ω and are both more

efficient than the GMRES-KPIK method and MINRES-KPIK method. However, we can also find that when

the derivative parameters β1 and β2 are closer to 2, they become less efficient. Furthermore, they both depend

greatly on the mesh grids.

However, it can be seen from Table 1–Table 4 that the NPHSS-KPIK method is independent of the mesh

grids and it is the most efficient. Furthermore, the NPHSS-KPIK method becomes more efficient when the

derivative parameters β1 and β2 are closer to 2.

5. Conclusions

In this paper, we derive an NPHSS-KPIK iteration method for the low-rank Sylvester equations arising from the

time-periodic fractional diffusion equations. When the right-hand side matrix of the Sylvester equation is low-

rank, the Krylov-plus-inverted-Krylov subspace method can be efficiently used to reformulate the original large

Sylvester equation into a reduced matrix equation, which is of small size and can be solved directly by Bartels–

Stewart and Hessenberg–Schur decomposition method. However, when we use the NPHSS-KPIK method for

solving the Sylvester equation arising from the discretization of two-dimensional time-periodic FDEs, we have

to solve systems with the coefficient matrix being A and B , which are large and non-Hermitian. According

to the special structure of the matrices A and B , we consider the NPHSS iteration method [13]. The main

advantage of the NPHSS iteration method for solving linear systems is that one only needs to solve a system

with a symmetric positive definite coefficient matrix. Experiments are also used to illustrate the feasibility and

the efficiency of the NPHSS-KPIK iteration method. It can be seen from the experiments that the NPHSS-

KPIK iteration method is independent of the mesh grids. Furthermore, when the derivative parameters β1 and

β2 are closer to 2, the NPHSS-KPIK method becomes more efficient.
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Table 1. Numerical results for the proposed methods (β1 = β2 = 1.3).

ω Nx+1 Ny+1 GMRES-KPIK MINRES-KPIK HSS-KPIK MHSS-KPIK NPHSS-KPIK

0.1 27 26 (itA, itB) (62,32) (62,32) (268,169) (268,169) (6,6)

CPU 0.39 0.1 0.009 0.009 0.001

RES 3.02E-05 3.02E-05 3.02E-05 3.02E-05 3.02E-05

28 27 (itA, itB) (107,62) (107,62) (423,268) (423,268) (6,6)

CPU 1.7 0.29 0.04 0.04 0.002

RES 9.80E-06 7.58E-06 5.59E-06 5.58E-06 5.59E-06

29 28 (itA, itB) (175,107) (175,107) (665,423) (666,423) (6,6)

CPU 7.48 1.03 0.2 0.17 0.006

RES 1.91E-06 1.91E-06 2.40E-06 2.37E-06 1.91E-06

210 29 (itA, itB) (279,175) (279,175) (-,665) (-,666) (6,6)

CPU 35.85 9.62 1.34 0.95 0.02

RES 5.69E-06 5.69E-06 9.12E-06 9.12E-06 5.69E-06

211 210 (itA, itB) (443,279) (443,279) (-,-) (-,-) (6,6)

CPU 191.94 68.58 9.12 7.49 0.12

RES 8.13E-06 1.15E-05 0.0088 0.0088 1.15E-05

1 27 26 (itA, itB) (62,32) (62,32) (268,169) (270,171) (16,16)

CPU 0.39 0.1 0.009 0.008 0.001

RES 3.02E-05 3.02E-05 3.02E-05 3.02E-05 3.02E-05

28 27 (itA, itB) (107,62) (107,62) (423,268) (425,270) (16,16)

CPU 1.7 0.29 0.04 0.04 0.002

RES 5.76E-06 7.21E-06 5.59E-06 5.58E-06 5.61E-06

29 28 (itA, itB) (174,107) (174,107) (665,423) (667,425) (16,16)

CPU 7.54 1.02 0.2 0.15 0.006

RES 2.00E-06 2.00E-06 2.16E-06 2.27E-06 1.91E-06

210 29 (itA, itB) (279,174) (279,174) (-,665) (-,667) (16,16)

CPU 35.95 9.58 1.57 0.96 0.03

RES 5.69E-06 5.67E-06 8.04E-06 8.51E-06 5.69E-06

211 210 (itA, itB) (442,279) (442,279) (-,-) (-,-) (16,16)

CPU 194.42 70.36 8.98 6.59 0.13

RES 8.34E-06 1.30E-05 0.0092 0.0094 1.15E-05
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Table 2. Numerical results for the proposed methods (β1 = 1.3,β2 = 1.7).

ω Nx+1 Ny+1 GMRES-KPIK MINRES-KPIK HSS-KPIK MHSS-KPIK NPHSS-KPIK

0.1 27 26 (itA, itB) (62,32) (62,32) (268,245) (268,245) (6,4)

CPU 0.39 0.1 0.01 0.01 0.001

RES 5.45E-05 5.45E-05 5.45E-05 5.45E-05 5.45E-05

28 27 (itA, itB) (107,64) (107,64) (423,440) (423,440) (6,4)

CPU 1.72 0.29 0.07 0.06 0.002

RES 1.88E-05 1.46E-05 1.07E-05 1.07E-05 1.08E-05

29 28 (itA, itB) (175,121) (175,121) (665,791) (666,791) (6,4)

CPU 8.35 1.13 0.35 0.31 0.006

RES 1.21E-06 1.21E-06 2.86E-06 2.85E-06 1.68E-06

210 29 (itA, itB) (279,221) (279,221) (-,-) (-,-) (6,4)

CPU 42.57 10.27 2.36 1.86 0.02

RES 4.45E-06 4.44E-06 0.0012 0.0012 3.65E-06

211 210 (itA, itB) (443,401) (443,401) (-,-) (-,-) (6,4)

CPU 234.14 78.23 9.7 8.3 0.11

RES 1.01E-05 1.04E-05 0.7687 0.7688 1.09E-05

1 27 26 (itA, itB) (62,32) (62,32) (268,169) (270,246) (16,8)

CPU 0.39 0.1 0.009 0.01 0.001

RES 5.45E-05 5.45E-05 5.45E-05 5.45E-05 5.45E-05

28 27 (itA, itB) (107,64) (107,64) (423,440) (425,440) (16,8)

CPU 1.71 0.29 0.07 0.06 0.002

RES 1.11E-05 1.38E-05 1.08E-05 1.07E-05 1.08E-05

29 28 (itA, itB) (174,121) (174,121) (665,791) (667,792) (16,8)

CPU 8.45 1.12 0.38 0.31 0.006

RES 1.21E-06 1.21E-06 2.84E-06 2.81E-06 1.40E-06

210 29 (itA, itB) (279,221) (279,221) (-,-) (-,-) (16,8)

CPU 42.52 10.19 2.36 1.86 0.03

RES 4.44E-06 4.44E-06 0.0013 0.0013 3.65E-06

211 210 (itA, itB) (442,401) (442,401) (-,-) (-,-) (16,8)

CPU 234.14 78.23 9.7 8.3 0.12

RES 1.01E-05 1.04E-05 0.7653 0.7663 6.63E-06
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Table 3. Numerical results for the proposed methods (β1 = 1.7,β2 = 1.3).

ω Nx+1 Ny+1 GMRES-KPIK MINRES-KPIK HSS-KPIK MHSS-KPIK NPHSS-KPIK

0.1 27 26 (itA, itB) (62,32) (62,32) (440,169) (440,169) (4,6)

CPU 0.41 0.1 0.009 0.009 0.001

RES 1.45E-05 1.45E-05 1.45E-05 1.45E-05 1.45E-05

28 27 (itA, itB) (121,62) (121,62) (791,268) (791,268) (4,6)

CPU 2.13 0.31 0.04 0.04 0.002

RES 1.91E-05 1.91E-05 1.91E-05 1.89E-05 1.88E-05

29 28 (itA, itB) (221,107) (221,107) (-,423) (-,423) (4,6)

CPU 11.91 1.28 0.2 0.17 0.006

RES 2.65E-06 2.65E-06 6.21E-04 6.21E-04 2.65E-06

210 29 (itA, itB) (401,175) (401,175) (-,665) (-,666) (4,6)

CPU 71.62 14.87 1.39 1.08 0.03

RES 6.53E-06 6.53E-06 0.3818 0.3819 6.19E-06

211 210 (itA, itB) (725,279) (725,279) (-,-) (-,-) (4,6)

CPU 474.45 121.92 9.13 7.49 0.12

RES 1.09E-05 2.20E-05 18.4557 18.4563 1.07E-05

1 27 26 (itA, itB) (64,32) (64,32) (440,169) (440,171) (8,16)

CPU 0.41 0.1 0.009 0.008 0.001

RES 1.45E-05 1.45E-05 1.45E-05 1.45E-05 1.45E-05

28 27 (itA, itB) (121,62) (121,62) (791,268) (792,270) (8,16)

CPU 2.09 0.32 0.04 0.04 0.002

RES 1.91E-05 1.91E-05 1.89E-05 1.80E-05 1.89E-05

29 28 (itA, itB) (221,107) (221,107) (-,423) (-,425) (8,16)

CPU 11.8 1.3 0.21 0.15 0.007

RES 2.64E-06 2.65E-06 6.23E-04 6.26E-04 2.64E-06

210 29 (itA, itB) (401,174) (401,174) (-,665) (-,667) (8,16)

CPU 70.77 14.95 1.41 0.96 0.03

RES 6.53E-06 6.53E-06 0.3834 0.3839 6.53E-06

211 210 (itA, itB) (725,279) (725,279) (-,-) (-,-) (8,16)

CPU 472.11 122.63 9.2 6.57 0.13

RES 1.08E-05 2.34E-05 18.5259 18.5259 1.07E-05
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Table 4. Numerical results for the proposed methods (β1 = β2 = 1.9).

ω Nx+1 Ny+1 GMRES-KPIK MINRES-KPIK HSS-KPIK MHSS-KPIK NPHSS-KPIK

0.1 27 26 (itA, itB) (64,32) (64,32) (623,325) (623,325) (4,4)

CPU 0.42 0.1 0.01 0.01 0.001

RES 2.55E-04 2.55E-04 2.55E-04 2.55E-04 2.55E-04

28 27 (itA, itB) (128,64) (128,64) (-,623) (-,623) (4,4)

CPU 2.35 0.33 0.11 0.09 0.002

RES 3.60E-04 3.60E-04 3.59E-04 3.60E-04 3.60E-04

29 28 (itA, itB) (253,128) (253,128) (-,-) (-,-) (4,4)

CPU 16.58 1.51 0.54 0.45 0.006

RES 1.06E-04 8.67E-05 0.0536 0.0536 8.66E-05

210 29 (itA, itB) (491,253) (491,253) (-,-) (-,-) (4,4)

CPU 124.46 20.54 2.3 1.85 0.03

RES 6.21E-05 6.21E-05 5.0331 5.0333 4.68E-05

211 210 (itA, itB) (950,491) (949,491) (-,-) (-,-) (4,4)

CPU ¿1000 208.32 10.06 8.31 0.12

RES 1.38E-05 1.12E-04 83.8967 83.896 1.14E-05

1 27 26 (itA, itB) (62,32) (62,32) (623,325) (623,325) (7,7)

CPU 0.39 0.1 0.01 0.01 0.001

RES 2.55E-04 2.55E-04 2.55E-04 2.55E-04 2.55E-04

28 27 (itA, itB) (128,64) (128,64) (-,623) (-,623) (7,7)

CPU 2.38 0.34 0.11 0.09 0.002

RES 3.60E-04 3.60E-04 3.59E-04 3.60E-04 3.60E-04

29 28 (itA, itB) (253,128) (253,128) (-,-) (-,-) (7,7)

CPU 16.63 1.49 0.53 0.46 0.006

RES 8.68E-05 8.67E-05 0.0537 0.0538 8.66E-05

210 29 (itA, itB) (491,253) (491,253) (-,-) (-,-) (7,7)

CPU 124.43 21.74 2.29 1.86 0.03

RES 6.22E-05 6.22E-05 5.0218 5.0232 3.61E-05

211 210 (itA, itB) (950,491) (949,491) (-,-) (-,-) (7,7)

CPU ¿1000 202.66 9.78 8.54 0.13

RES 8.58E-06 1.13E-04 83.6608 83.6711 1.14E-05
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