Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тївітак
Research Article

Turk J Math
(2016) 40: $1340-1348$
(c) TÜBİTAK
doi:10.3906/mat-1504-57

Rings associated to coverings of finite p-groups

Gary WALLS ${ }^{1, *}$, Linhong WANG ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Southeastern Louisiana University, Hammond, LA, USA
${ }^{2}$ Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA

Received: 20.04 .2015	Accepted/Published Online: 19.02 .2016	\bullet	Final Version: 02.12 .2016

Abstract

In general the endomorphisms of a nonabelian group do not form a ring under the operations of addition and composition of functions. Several papers have dealt with the ring of functions defined on a group, which are endomorphisms when restricted to the elements of a cover of the group by abelian subgroups. We give an algorithm that allows us to determine the elements of the ring of functions of a finite p-group that arises in this manner when the elements of the cover are required to be either cyclic or elementary abelian of rank 2 . This enables us to determine the actual structure of such a ring as a subdirect product. A key part of the argument is the construction of a graph whose vertices are the subgroups of order p and whose edges are determined by the covering.

Key words: Finite p-groups, covers of groups, rings of functions

1. Introduction

Covers of groups by subgroups and rings of functions that act as endomorphisms on each subgroup were studied in many papers including $[1,2,4,5]$.

Definition 1.1 Suppose that G is a group and \mathcal{C} is a collection of subgroups of G. We say that \mathcal{C} is a cover of G provided $\bigcup_{C \in \mathcal{C}} C=G$.

If all the elements of \mathcal{C} have a certain property γ, we say that \mathcal{C} is a γ-covering of G. It is well known, e.g., [3], that the endomorphisms of a nonabelian group G do not necessarily form a ring under the operations of function addition and composition. Coverings by abelian subgroups are used to obtain rings of functions on G.

Definition 1.2 Let G be a group and \mathcal{C} be an abelian-covering of G. Define

$$
R_{\mathcal{C}}(G)=\left\{f: G \rightarrow G \mid \text { for each } C \in \mathcal{C},\left.f\right|_{C} \in \operatorname{End}(C)\right\}
$$

Note that $R_{\mathcal{C}}(G)$ does form a ring under the natural operations on functions, since functions in $R_{\mathcal{C}}(G)$ are endomorphisms when restricted to the subgroups of the cover \mathcal{C}. The rings $R_{\mathcal{C}}(G)$ are used in [5] to classify the maximal subrings of the nearring $M_{0}(G)$ of the zero-preserving functions defined on G.

[^0]Let p be a prime and G be a finite p-group. In this paper we consider the particular case (*) where all the subgroups in \mathcal{C} are either maximal cyclic p-groups of G or are elementary abelian of order p^{2}. Let \mathcal{C} be a $*$-covering of a finite p-group G. We prove the following structure theorem to describe the rings arising as $R_{\mathcal{C}}(G) \mathrm{s}$.

Theorem Let G be a finite p-group and \mathcal{C} be a*-covering of G. Then $R_{\mathcal{C}}(G)$ is isomorphic to a direct product of rings isomorphic to $M_{2}\left(\mathbb{Z}_{p}\right)$ or rings of the form of 2.3.

A key part of our approach is a graph defined in 3.1. The vertices of the graph are the subgroups of G of order p and the edges are determined by the particular covering used. Each function in $R_{\mathcal{C}}(G)$ is defined on the cyclic subgroups of G. This definition is determined using a specific matrix and associated vector of tuples, even though f may not be linear. In 3.8-3.10, a few examples are provided to illustrate the theorem. We use the structure theorem to determine conditions for rings arising as $R_{\mathcal{C}}(G)$ s to be of special types. In particular, when the rings are simple we see that the ring $R_{\mathcal{C}}(G)$ must be isomorphic to either \mathbb{Z}_{p} or $M_{2}\left(\mathbb{Z}_{p}\right)$. A similar result using a different technique appears in [1], where covers by subgroups of order p^{2} are used for finite p-groups of exponent p.

Throughout this paper, we always assume that G is a finite p-group and \mathcal{C} is a $*$-covering of G. We refer to the subgroups in \mathcal{C} as elements of \mathcal{C} or cells in \mathcal{C}.

2. Some particular rings

In this section we present some particular rings needed in order to state the conclusion of our main result. For any positive integer n, the endomorphism ring $\operatorname{End}\left(\mathbb{Z}_{p^{n}}\right)$ is ring-isomorphic to $\mathbb{Z}_{p^{n}}$, and it is a simple ring if and only if $n=1$. Further, $\operatorname{End}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$ is isomorphic to $M_{2}\left(\mathbb{Z}_{p}\right)$, the ring of 2×2 matrices over \mathbb{Z}_{p}, and so is always simple. In addition, we will need a subdirect product ring in 2.3 , which is developed by first constructing the matrix ring $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ in 2.1 and the ring $R_{\Lambda(K)}$ in 2.2.
2.1 Given integers $m>0$ and $n \geq 0$, we define a ring of $(m+n) \times(m+n)$ matrices as follows:

$$
N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}=\left\{\left.\left[\begin{array}{c|c}
\lambda I_{m} & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right] \right\rvert\, \lambda, \nu_{1}, \ldots, \nu_{n}, \mu_{1}, \ldots, \mu_{n} \in \mathbb{Z}_{p}\right\}
$$

where

$$
D\left(\mu_{1}, \cdots, \mu_{n}\right)=\left[\begin{array}{ccc}
\mu_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mu_{n}
\end{array}\right]
$$

and $J\left(\nu_{1}, \cdots, \nu_{n}\right)$ is an $m \times n$ matrix that has value ν_{j} at the $\left(i_{j}, j\right)$ entry for $1 \leq j \leq n$ and $1 \leq i_{1}, \ldots, i_{n} \leq m$ and zeroes elsewhere. Note that there is at most one nonzero entry in each column of $J\left(\nu_{1}, \cdots, \nu_{n}\right)$. It is easy to see that $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ is a ring and that

$$
I_{m}^{m+n}=\left\{\left.\left[\begin{array}{c|c}
\lambda I_{m} & 0 \\
\hline 0 & 0
\end{array}\right] \right\rvert\, \lambda \in \mathbb{Z}_{p}\right\}
$$

is an ideal of $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$, and so $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ is never a simple ring if $n>0$.

WALLS and WANG/Turk J Math

2.2 Let K be a subgroup of order p in G. There are maximal cyclic subgroups of G that contain K. Assuming there is more than one, let $\Lambda(K)$ be the directed downward lattice of these cyclic subgroups containing K. Define $S(K)$ to be the set of functions on $\Lambda(K)$ that are endomorphisms when restricted to the vertices of $\Lambda(K)$. On each maximal subgroup in $\Lambda(K)$ of order p^{n}, these functions are multiplications by elements of $\mathbb{Z}_{p^{n}}$. As we move down from one vertex to the one below, these functions are multiplied by p. Obviously, these functions will agree on the vertices of $\Lambda(K)$. Each function in $S(K)$ can be defined by beginning with an element $\lambda \in \mathbb{Z}_{p}$, which determines an endomorphism on K, and then pulling it back up the vertices in $\Lambda(K)$. Thus, for a fixed $\lambda \in \mathbb{Z}_{p}$, such a function can be represented as an appropriate tuple $\boldsymbol{x}=\left(\lambda_{1}, \cdots, \lambda_{\phi(K)}\right)$ where $\phi(K)$ is the number of the maximal cyclic subgroups in $\Lambda(K)$ and where each entry $\lambda_{i} \in \mathbb{Z}_{p^{n_{i}}}$ determines the endomorphism on a maximal cyclic subgroup of order $p^{n_{i}}$ in $\Lambda(K)$ such that the properties discussed above hold. The set of these functions, associated with K and λ, is denoted as $R_{\Lambda(K), \lambda}$. By this notation, we allow the trivial case when $\Lambda(K)$ is a singleton and $R_{\Lambda(K), \lambda}$ is the same as $\{(\lambda)\}$. For each subgroup K of G of order p contained in a maximal cyclic subgroup, the set $R_{\Lambda(K)}=\left\{R_{\Lambda(K), \lambda}\right.$ for $\left.\lambda \in \mathbb{Z}_{p}\right\}$ does form a ring.
2.3 A subdirect product of rings can be formed from rings discussed in 2.1 and 2.2. For any matrix in the ring $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ of 2.1 and certain selected subgroups K_{1}, \ldots, K_{m} of G of order p, we associate to the diagonal entries $\lambda, \ldots, \lambda, \mu_{1}, \ldots, \mu_{n}$ some tuples from $R_{\Lambda\left(K_{i}\right), \lambda}$ for $i=1, \ldots, m$ and tuples $\left(\mu_{1}\right), \ldots,\left(\mu_{n}\right)$, respectively. That is,

$$
\left(\begin{array}{c|cc}
& & \boldsymbol{x}_{1} \\
\vdots \\
{\left[\begin{array}{c|c}
\lambda I_{m} & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right],} & \boldsymbol{x}_{m} \\
\left(\mu_{1}\right) \\
& & \vdots \\
& & \left(\mu_{n}\right)
\end{array}\right)
$$

where each $\boldsymbol{x}_{i} \in R_{\Lambda\left(K_{i}\right), \lambda}$. The arrays constructed in this way form a subdirect product of rings $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ and $R_{\Lambda\left(K_{1}\right)}, \ldots, R_{\Lambda\left(K_{m}\right)}$. In particular, if $m=1$ and $n=0$, the subdirect product is isomorphic to a ring of the form of $R_{\Lambda(K)}$, which is isomorphic to a direct product of $\mathbb{Z}_{p^{n}}$ for various integers n.

3. Determining the elements of the ring $R_{\mathcal{C}}(G)$

One of the main concerns in determining functions of $R_{\mathcal{C}}(G)$ is to make sure that they are well defined. We introduce the following graph. The purpose of using such a graph is reflected in Corollary 3.3, which is a direct consequence of Lemma 3.2. This lemma appeared in [1]. For completeness, we include its proof.

Definition 3.1 Let $T_{p}(G)$ denote the set of subgroups of G of order p. Let \mathcal{G} be the graph whose set of vertices is $T_{p}(G)$. Two vertices A, B are joined in \mathcal{G} by an edge provided that there is a cell $C \in \mathcal{C}$ such that $A, B \subset C$ and there exist $C_{1}, C_{2}, C_{3} \in \mathcal{C}$ with intersections $C \cap C_{1}, C \cap C_{2}$, and $C \cap C_{3}$ all distinct subgroups of order p. We call this graph the 3 -intersecting graph of G. For $A \in T_{p}(G)$, we let $[A]$ denote the \mathcal{G}-connected component of \mathcal{G} that contains A, and we let

$$
\operatorname{Con}(\mathcal{G})=\left\{[A] \mid A \in T_{p}(G)\right\}
$$

denote the set of connected components of \mathcal{G}.

WALLS and WANG/Turk J Math

Lemma 3.2 (cf. [1, Lemma 6.2]) Suppose A and B are two distinct subgroups in $T_{p}(G)$ connected by an edge in the 3-intersecting graph \mathcal{G}. Then for any $f \in R_{\mathcal{C}}(G)$ there is $a \lambda \in \mathbb{Z}_{p}$ such that $f(x)=\lambda x$ for any x in the cell $C=A \times B$.
Proof Since A and B are connected by an edge in \mathcal{G}, there is a $C \in \mathcal{C}$ so that $C=A \times B \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and there exist $C_{1}, C_{2}, C_{3} \in \mathcal{C}$ so that $C \cap C_{1}=\left\langle e_{1}\right\rangle, C \cap C_{2}=\left\langle e_{2}\right\rangle$, and $C \cap C_{3}=\left\langle e_{3}\right\rangle$ are three distinct subgroups of order p. For any $f \in R_{\mathcal{C}}(G)$, it is clear that $\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle$ must be f-invariant. Hence, $f\left(e_{i}\right)=\lambda_{i} e_{i}$ for some λ_{1}, λ_{2}, and $\lambda_{3} \in \mathbb{Z}_{p}$. Note that $C=\left\langle e_{1}\right\rangle \times\left\langle e_{2}\right\rangle$ and so $e_{3}=\mu_{1} e_{1}+\mu_{2} e_{2}$ for some nonzero $\mu_{1}, \mu_{2} \in \mathbb{Z}_{p}$. It follows that $f\left(e_{3}\right)=f\left(\mu_{1} e_{1}+\mu_{2} e_{2}\right)=\mu_{1} f\left(e_{1}\right)+\mu_{2} f\left(e_{2}\right)=\mu_{1} \lambda_{1} e_{1}+\mu_{2} \lambda_{2} e_{2}$. This must equal $\lambda_{3} e_{3}=\lambda_{3}\left(\mu_{1} e_{1}+\mu_{2} e_{2}\right)=\lambda_{3} \mu_{1} e_{1}+\lambda_{3} \mu_{2} e_{2}$. Since $\left\{e_{1}, e_{2}\right\}$ is a basis of C, we get $\lambda_{3} \mu_{1}=\lambda_{1} \mu_{1}$ and $\lambda_{3} \mu_{2}=\lambda_{2} \mu_{2}$. It follows that $\lambda_{1}=\lambda_{2}$, and so $\left.f\right|_{C}$ is scalar multiplication for any $f \in R_{\mathcal{C}}(G)$.

Corollary 3.3 Suppose $A \in T_{p}(G)$ and $|[A]|>1$. Then $\left.f\right|_{\cup[A]}$ is multiplication by a scalar λ in \mathbb{Z}_{p}.

Partition 3.4 Note that some of the connected components in Con (\mathcal{G}) may be singletons, as cells may not have three distinct intersections. We partition the cells in \mathcal{C} based on their intersections with other cells in \mathcal{C}.
Set $\mathcal{C}=\bigsqcup_{i=0}^{3} \mathcal{C}_{i}$, where

$$
\begin{aligned}
& \mathcal{C}_{0}=\left\{C \in \mathcal{C} \mid C \cap C^{\prime}=\{0\} \text { for any } C^{\prime} \in \mathcal{C} \text { and } C^{\prime} \neq C\right\}, \\
& \mathcal{C}_{3}=\left\{C \in \mathcal{C} \mid C_{1} \cap C, C_{2} \cap C, \text { and } C_{3} \cap C \text { are all distinct subgroups of order p for some } C_{1}, C_{2}, C_{3} \in \mathcal{C}\right\}, \\
& \mathcal{C}_{2}=\left\{C \in \mathcal{C} \backslash \mathcal{C}_{3} \mid C_{1} \cap C \text { and } C_{2} \cap C \text { are distinct subgroups of order por some } C_{1}, C_{2} \in \mathcal{C}\right\}, \\
& \mathcal{C}_{1}=\mathcal{C} \backslash\left(\mathcal{C}_{0} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}\right) .
\end{aligned}
$$

Note that a cell $C \in \mathcal{C}_{2}$ may have more than two cells intersecting with it; for example, $C_{1} \cap C$ and $C_{2} \cap C=$ $C_{3} \cap C$ are distinct subgroups of order p for some $C_{1}, C_{2}, C_{3} \in \mathcal{C}$. The above partition reveals the structure of a cover \mathcal{C} that we will use to prove the main result.
3.5 We will show constructively how a function $f \in R_{\mathcal{C}}(G)$ can be defined on G w.r.t. a chosen cover \mathcal{C}. First denote a function from $\operatorname{Con}(\mathcal{G})$ to \mathbb{Z}_{p} by F. Let x be an element of order p in G. If x belongs to a cyclic cell, then $\langle x\rangle$ is f-invariant and we define $f(x)=F([\langle x\rangle]) x$. It is clear that any cyclic cell can only belong to either \mathcal{C}_{0} or \mathcal{C}_{1}. If x belongs to a noncyclic cell, there are several cases.

Case 1. If $x \in C$ for some $C \in \mathcal{C}_{3}$, following Corollary 3.3, we define $f(x)=F([\langle x\rangle]) x$.
Case 2. If $x \in C$ for some $C \in \mathcal{C}_{2}$, then there are $C_{1}, C_{2} \in \mathcal{C}$ such that $C \cap C_{1}=\left\langle e_{2}(C)\right\rangle$, $C \cap C_{2}=\left\langle e_{2}^{\prime}(C)\right\rangle$ for some element $e_{2}(C)$ and $e_{2}^{\prime}(C)$ of order p. Thus, $C=\left\langle e_{2}(C)\right\rangle \times\left\langle e_{2}^{\prime}(C)\right\rangle$ and $x=\alpha e_{2}(C)+\beta e_{2}^{\prime}(C)$ for some $\alpha, \beta \in \mathbb{Z}_{p}$. Note that both $\left\langle e_{2}(C)\right\rangle$ and $\left\langle e_{2}^{\prime}(C)\right\rangle$ are f-invariant. Hence, we have

$$
f:\left(e_{2}(C), e_{2}^{\prime}(C)\right) \mapsto\left(e_{2}(C), e_{2}^{\prime}(C)\right)\left(\begin{array}{cc}
F\left(\left[\left\langle e_{2}(C)\right\rangle\right]\right) & 0 \\
0 & F\left(\left[\left\langle e_{2}^{\prime}(C)\right\rangle\right]\right)
\end{array}\right)
$$

and $f(x)$ can be defined accordingly. Note that $e_{2}(C)$ and $e_{2}^{\prime}(C)$ are symmetric for each $C \in \mathcal{C}_{2}$.

WALLS and WANG/Turk J Math

Case 3. If $x \in C$ for some noncyclic cell C in \mathcal{C}_{1}, then $C \cap C_{1}=\left\langle e_{1}(C)\right\rangle$ for some element $e_{1}(C) \in C$ and $C_{1} \in \mathcal{C}$. Pick $b_{1}(C) \in C$ such that $C=\left\langle e_{1}(C)\right\rangle \times\left\langle b_{1}(C)\right\rangle$. The choice of $b_{1}(C)$ is not unique, but C is the unique cell in \mathcal{C} that contains $b_{1}(C)$. Suppose $x=\alpha e_{1}(C)+\beta b_{1}(C)$ for some $\alpha, \beta \in \mathbb{Z}_{p}$. Note that $f\left(b_{1}(C)\right) \in C$ and $\left\langle e_{1}(C)\right\rangle$ is f-invariant. Hence, we have

$$
f:\left(e_{1}(C), b_{1}(C)\right) \mapsto\left(e_{1}(C), b_{1}(C)\right)\left(\begin{array}{cc}
F\left(\left[\left\langle e_{1}(C)\right\rangle\right]\right) & H\left(b_{1}(C)\right) \\
0 & F\left(\left[\left\langle b_{1}(C)\right\rangle\right]\right)
\end{array}\right)
$$

where $H\left(b_{1}(C)\right)$ is a scalar in \mathbb{Z}_{p}. Then we define

$$
f(x)=\left(\alpha F\left(\left[\left\langle e_{1}(C)\right\rangle\right]\right)+\beta H\left(b_{1}(C)\right)\right) e_{1}(C)+F\left(\left[\left\langle b_{1}(C)\right\rangle\right]\right) b_{1}(C)
$$

We point out here that if a different choice had been made for $b_{1}(C)$, it would be possible to get the same value for $f(x)$ by choosing a different scalar $H\left(b_{1}(C)\right)$.

Case 4. If $x \in C$ for some noncyclic cell C in \mathcal{C}_{0}, then $C=\left\langle b_{0}(C)\right\rangle \times\left\langle b_{0}^{\prime}(C)\right\rangle$ for some $b_{0}(C), b_{0}^{\prime}(C) \in C$. The choice of the basis $\left\{b_{0}(C), b_{0}^{\prime}(C)\right\}$ is not unique. Suppose $x=\alpha b_{0}(C)+\beta b_{0}^{\prime}(C)$ for some $\alpha, \beta \in \mathbb{Z}_{p}$. Note that $f\left(b_{0}(C)\right)$ and $f\left(b_{0}^{\prime}(C)\right)$ must be in C. Hence,

$$
f:\left(b_{0}(C), b_{0}^{\prime}(C)\right) \mapsto\left(b_{0}(C), b_{0}^{\prime}(C)\right)\left(\begin{array}{cc}
F\left(\left[\left\langle b_{0}(C)\right\rangle\right]\right) & B\left(b_{0}^{\prime}(C)\right) \\
A\left(b_{0}(C)\right) & F\left(\left[\left\langle b_{0}^{\prime}(C)\right\rangle\right]\right)
\end{array}\right)
$$

where $A\left(b_{0}(C)\right)$ and $B\left(b_{0}^{\prime}(C)\right)$ are scalars in \mathbb{Z}_{p}. Then $f(x)$ can be defined accordingly.
After setting the image of f on any element of order p in G, now we extend f to the elements of order bigger than p, if there are any. Let $\langle y\rangle$ be a maximal cyclic subgroup of G and $|y|=p^{n}$ with $n>1$. Note that $\langle y\rangle$ must be a cell in \mathcal{C}. Then $\left.f\right|_{\langle y\rangle} \in \operatorname{End}(\langle y\rangle) \cong \operatorname{End}\left(\mathbb{Z}_{p^{n}}\right) \cong \mathbb{Z}_{p^{n}}$, and so $f(y)=\lambda y$ for some $\lambda \in \mathbb{Z}_{p^{n}}$. Recall that we have already defined $f\left(y^{p^{n-1}}\right)=F\left(\left[\left\langle y^{p^{n-1}}\right\rangle\right]\right) y^{p^{n-1}}$, as $x=y^{p^{n-1}}$ is an element of order p. Simply working our way up the lattice of the cyclic subgroup $\langle y\rangle$, we can choose a proper scalar λ such that $f(y)=\lambda y$ and $f\left(y^{p^{n-1}}\right)=F\left(\left[\left\langle y^{p^{n-1}}\right\rangle\right]\right) y^{p^{n-1}}$. Notice that as we work our way up the lattice we have choices, but each choice leads to a different function $f \in R_{\mathcal{C}}(G)$.

It is clear that every function f in $R_{\mathcal{C}}(G)$ arises in the above fashion, subject to the cover \mathcal{C} (mainly the intersections of the cells in \mathcal{C} such as $\left.e_{2}(C), e_{2}^{\prime}(C), e_{1}(C)\right)$, the elements of the form of $b_{0}(C), b_{0}^{\prime}(C), b_{1}(C)$ as described above, and the choices of the the function F and scalars $H\left(b_{1}(C)\right), A\left(b_{0}(C)\right), B\left(b_{0}^{\prime}(C)\right)$. In terms of notation, $e_{i}(C)$ for some integer i is always an intersection or contained in an intersection of at least two cells. Note that, by our notation, it may occur that $\left\langle e_{1}\left(C_{1}\right)\right\rangle=\left\langle e_{2}\left(C_{2}\right)\right\rangle=K$ when C_{1} is a cell in \mathcal{C}_{1}, C_{2} is a cell in \mathcal{C}_{2}, and $K=C_{1} \cap C_{2}$. Therefore, to determine f, we need a set of elements of order p (indeed subgroups of order p) that includes generators of any noncyclic cell in \mathcal{C} and the unique element of order p (indeed the p-socle) of any cyclic cell.

Setup 3.6 Given a cover \mathcal{C} of G, we set up the following sets of subgroups of order p. The union of these sets is denoted by $\mathcal{B}(\mathcal{C})$.

$$
\begin{aligned}
& \mathcal{B}_{3}(\mathcal{C})=\left\{\langle g\rangle \mid g \in C \text { for some } C \in \mathcal{C}_{3} \text { and }\langle g\rangle=C \cap C^{\prime} \text { for some } C^{\prime} \in \mathcal{C}\right\} \\
& \mathcal{B}_{2}(\mathcal{C})=\left\{\left\langle e_{2}(C)\right\rangle,\left\langle e_{2}^{\prime}(C)\right\rangle \mid C \in \mathcal{C}_{2}\right\} \\
& \mathcal{B}_{1}^{1}(\mathcal{C})=\left\{\left\langle e_{1}(C)\right\rangle \mid C \in \mathcal{C}_{1}\right\} \\
& \mathcal{B}_{1}^{2}(\mathcal{C})=\left\{\left\langle b_{1}(C)\right\rangle \mid C \in \mathcal{C}_{1} \text { and } C=\left\langle e_{1}(C)\right\rangle \times\left\langle b_{1}(C)\right\rangle \text { for } e_{1}(C) \in \mathcal{B}_{1}^{1}(\mathcal{C})\right\} \\
& \mathcal{B}_{0}(\mathcal{C})=\left\{\left\langle b_{0}(C)\right\rangle,\left\langle b_{0}^{\prime}(C)\right\rangle \mid C \in \mathcal{C}_{0}\right\}
\end{aligned}
$$

As illustrated in 3.5, we also need the following functions.

$$
\begin{aligned}
& F: \operatorname{Con}(\mathcal{G}) \rightarrow \mathbb{Z}_{p} \\
& H:\left\{b_{1}(C) \mid\left\langle b_{1}(C)\right\rangle \in \mathcal{B}_{1}^{2}(\mathcal{C})\right\} \rightarrow \mathbb{Z}_{p} \\
& A:\left\{b_{0}(C) \mid\left\langle b_{0}(C)\right\rangle \in \mathcal{B}_{0}(\mathcal{C})\right\} \rightarrow \mathbb{Z}_{p} \\
& B:\left\{b_{0}^{\prime}(C) \mid\left\langle b_{0}^{\prime}(C)\right\rangle \in \mathcal{B}_{0}(\mathcal{C})\right\} \rightarrow \mathbb{Z}_{p}
\end{aligned}
$$

Theorem 3.7 The ring $R_{\mathcal{C}}(G)$ with a chosen covering \mathcal{C} is isomorphic to a direct product of matrix rings isomorphic to $M_{2}\left(\mathbb{Z}_{p}\right)$ or rings of the form of 2.3.
Proof With the \mathbb{Z}_{p}-valued functions and sets of subgroups of order p described in 3.6, any function $f \in R_{\mathcal{C}}(G)$ can be defined as illustrated in 3.5. To prove the theorem, we represent the way f is defined on the elements of $\mathcal{B}(\mathcal{C})$ in terms of a matrix with blocks, which will be denoted by $[f]_{\mathcal{B}(\mathcal{C})}$. For this purpose, the subgroups in $\mathcal{B}(\mathcal{C})$ need to be put in a certain order. The resulting ordered set will be denoted by $\mathcal{A}(\mathcal{C})$.

We start with $\langle g\rangle \in \mathcal{B}_{3}(\mathcal{C})$ if $\mathcal{B}_{3}(\mathcal{C})$ is not empty. Let $D_{\langle g\rangle}$ be the set of the elements $\left\langle b_{1}(C)\right\rangle$ such that $\langle y\rangle \times\left\langle b_{1}(C)\right\rangle$ is a noncyclic cell $C \in \mathcal{\mathcal { C } _ { 1 }}$ for some $\langle y\rangle \in[\langle g\rangle] \cap \mathcal{B}_{3}(\mathcal{C})$. Suppose $\left\langle b_{i 1}\right\rangle, \ldots,\left\langle b_{i_{i}}\right\rangle$ are from $D_{\langle g\rangle}$ associated to $\left\langle y_{i}\right\rangle \in[\langle g\rangle] \cap \mathcal{B}_{3}(\mathcal{C})$ for integers l_{i} and $i=1, \ldots, m$. The rest of the subgroups $\left\langle y_{m+1}\right\rangle, \ldots\left\langle y_{k}\right\rangle \in[\langle g\rangle] \cap \mathcal{B}_{3}(\mathcal{C})$, if there are any (i.e. $k \geq m$), are either contained in a cyclic cell or in a noncyclic cell $C \in \mathcal{C}_{2}$. Let $\mathcal{A}_{g}=\left\{\left\langle y_{1}\right\rangle, \ldots,\left\langle y_{m}\right\rangle,\left\langle z_{11}\right\rangle, \ldots,\left\langle z_{1 l_{1}}\right\rangle, \ldots\left\langle z_{m 1}\right\rangle, \ldots,\left\langle z_{m l_{m}}\right\rangle,\left\langle y_{m+1}\right\rangle, \ldots\left\langle y_{k}\right\rangle\right\}$, an ordered set of subgroups from $\mathcal{B}(C)$.

The matrix block of $[f]_{\mathcal{B}(\mathcal{C})}$ corresponding to \mathcal{A}_{g} can be determined as shown in 3.5, case 1 and case 3 . Set $\lambda=F\left(\left[\left\langle y_{i}\right\rangle\right]\right)$ for $i=1, \ldots k, \mu_{t}=F\left(\left[\left\langle z_{i j}\right\rangle\right]\right)$ and $\nu_{t}=H\left(z_{i j}\right)$ for $i=1, \ldots m$ and $t=1, \ldots, n=\sum_{i=1}^{m} l_{i}$. Following the notation in 2.1, we see that the matrix block has the form of

$$
\left[\begin{array}{c|cc}
{\left[\begin{array}{c|c}
\lambda I_{m} & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right]} & \left.\begin{array}{c}
0 \\
\\
0
\end{array}\right] . . ~
\end{array}\right.
$$

It is clear that \mathcal{A}_{g} is the first part of the ordered set $\mathcal{A}(\mathcal{C})$. Of course, before we pursue further, the set $\mathcal{B}(C)$ should be updated by removing the subgroups from the set $\mathcal{A}(\mathcal{C})=\mathcal{A}_{g}$. That is, subsets $\mathcal{B}_{3}(\mathcal{C}), \mathcal{B}_{1}^{1}(\mathcal{C})$, $\mathcal{B}_{1}^{2}(\mathcal{C})$, and $\mathcal{B}_{0}(\mathcal{C})$ of $\mathcal{B}(\mathcal{C})$ are updated accordingly. Then we exhaust the set $\mathcal{B}_{3}(\mathcal{C})$ by repeating the same process with other subgroups $\left\langle g^{\prime}\right\rangle \in \mathcal{B}_{3}(\mathcal{C})$. Clearly, $\left[\left\langle g^{\prime}\right\rangle\right] \neq[\langle g\rangle]$. Each time, the ordered set $\mathcal{A}(\mathcal{C})$ is expanded by sets $A_{g^{\prime}}, \ldots$, while the subsets of $\mathcal{B}(\mathcal{C})$ are updated accordingly.

Next we move on to the set $\mathcal{B}_{2}(\mathcal{C})$. If a subgroup $\left\langle e_{2}(C)\right\rangle$ from $\mathcal{B}_{2}(\mathcal{C})$ also belongs to other noncyclic cells in \mathcal{C}_{1}, then we add $\left\langle e_{2}(C)\right\rangle$ and all $\left\langle b_{1}(C)\right\rangle$ such that $\left\langle e_{2}(C)\right\rangle \times\left\langle b_{1}(C)\right\rangle$ is a noncyclic cell in \mathcal{C}_{1}. If not,

WALLS and WANG/Turk J Math

we simply add $\left\langle e_{2}(C)\right\rangle$. Again, each time $\mathcal{B}_{2}(\mathcal{C})$ needs to be updated. In terms of $[f]_{\mathcal{B}(\mathcal{C})}$, as shown in 3.5 and 2.1, these two cases correspond to a matrix block, with n being zero or positive, having the form of

$$
\left[\begin{array}{c|c}
\lambda & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right] .
$$

Then we continue with subgroups in \mathcal{B}_{1}^{1} and \mathcal{B}_{1}^{2} in a similar way such that adding $\left\langle e_{1}(C)\right\rangle$ from $\mathcal{B}_{1}^{1}(\mathcal{C})$ and those $\left\langle b_{1}(C)\right\rangle$ from $\mathcal{B}_{1}^{2}(\mathcal{C})$ for a fixed noncyclic cell C results in a matrix block of the form

$$
\left[\begin{array}{c|c}
\lambda & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right]
$$

We finish the process by adding the subgroups $\left\langle b_{0}(C)\right\rangle$ and $\left\langle b_{0}^{\prime}(C)\right\rangle$ from \mathcal{B}_{0} in pairs or just $\left\langle b_{0}(C)\right\rangle$ if it is from a cyclic cell and not paired with any other subgroup of order p in \mathcal{B}_{0}. Each pair corresponds to a 2×2 block in $M_{2}\left(\mathbb{Z}_{p}\right)$ as shown in 3.5 , case 4 . Any single subgroup of order p corresponds to a 1×1 block $[\lambda]$ for some $\lambda \in \mathbb{Z}_{p}$.

To summarize, we have an ordered set $\mathcal{A}(\mathcal{C})$ of subgroups of G of order p, under which the definition of any function $f \in R_{\mathcal{C}}(G)$ on elements of G of order p is determined and represented in terms of a matrix $f_{\mathcal{B}(\mathcal{C})}$ with blocks as described above, i.e. blocks from $M_{2}\left(\mathbb{Z}_{p}\right)$ and blocks of the form described in 2.1 with choices of $\lambda \mathrm{s}, \mu_{i} \mathrm{~s}$, and $\nu_{i} \mathrm{~s}$ from \mathbb{Z}_{p}. It is not hard to see that the ordered set $\mathcal{A}(\mathcal{C})$ may not be unique, but the number and shape of the matrix blocks in $f_{\mathcal{B}(\mathcal{C})}$ must be fixed, corresponding to the chosen cover \mathcal{C}. Note that any such block matrix with nonzero scalar entries from \mathbb{Z}_{p} contains enough information to define a function in $R_{\mathcal{C}}(G)$ on elements of G of order p. The collection of these matrices, with respect to a chosen cover \mathcal{C}, does form a ring, which is a direct product of rings isomorphic to $M_{2}\left(\mathbb{Z}_{p}\right)$ or $N_{i_{1}, i_{2}, \ldots, i_{n}}^{m+n}$ as in 2.1.

To fully represent a function $f \in R_{\mathcal{C}}(G)$, additional information needs to be attached to the matrix $f_{\mathcal{B}(\mathcal{C})}$ so that f is defined for elements of order p^{n} with $n \geq 2$. We have discussed the definition of f on these elements in the last part of 3.5 . The p-socle of these cyclic cells must appear in the list $\mathcal{A}(\mathcal{C})$. Following the discussion and notation in 2.2 , we associate the diagonal elements of each matrix block of the form, allowing $n=0$,

$$
\left[\begin{array}{c|c}
\lambda I_{m} & J\left(\nu_{1}, \cdots, \nu_{n}\right) \\
\hline 0 & D\left(\mu_{1}, \cdots, \mu_{n}\right)
\end{array}\right]
$$

an $(m+n) \times 1$ vector $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}, \mathbf{x}_{m+1}, \ldots, \mathbf{x}_{m+n}\right)^{T}$, where \mathbf{x}_{i} are tuples from $R_{\Lambda\left(K_{i}\right), \lambda}$ for $i=1, \ldots m$ and for the corresponding subgroup K_{i} of order p in $\mathcal{A}(\mathcal{C})$. If a subgroup K_{i} does not belong to a cyclic cell of order greater than p, then $R_{\Lambda\left(K_{i}\right), \lambda}=\{(\lambda)\}$ as pointed out in 2.2. Note that each $x_{m+j}=\left(\mu_{j}\right)$, since the subgroups $\left\langle b_{1}\left(C_{i}\right)\right\rangle$ of order p corresponding to μ_{1}, \cdots, μ_{n} can only belong to the noncyclic cells C_{i} as shown in 3.5 , case 3 . There is no need to associate any vector of tuples to the diagonal of matrix blocks from $M_{2}\left(\mathbb{Z}_{p}\right)$ because these blocks are corresponding to noncyclic cells in \mathcal{C}_{0}.

Finally, each extended matrix contains enough information to define a function in $R_{\mathcal{C}}(G)$. Therefore, $R_{\mathcal{C}}(G)$ is isomorphic to a direct product of rings isomorphic to $M_{2}\left(\mathbb{Z}_{p}\right)$ or rings of the form of 2.3. The proof is complete.

WALLS and WANG/Turk J Math

Example 3.8 Let $G=Q_{8}=\left\langle x, y \mid x^{2}=y^{2}, x^{4}=1, y^{-1} x y=x^{-1}\right\rangle$, the quaternion group of order 8 . Then G has only one subgroup of order 2. The only $*$-covering of G is $\mathcal{C}=\{\langle x\rangle,\langle y\rangle,\langle x y\rangle\}$. Hence:

$$
R_{\mathcal{C}}(G) \cong\left\{(a, b, c) \mid a, b, c \in \mathbb{Z}_{4}, 2 a=2 b=2 c\right\}
$$

Note that $\left|R_{\mathcal{C}}(G)\right|=16$.

Example 3.9 Let G be $Q_{8} \times \mathbb{Z}_{2}=\langle x, y\rangle \times\langle w\rangle$. Now G has only one noncyclic subgroup of order 4 and exactly 6 cyclic subgroups of order 4. Consider two $*$-covers:

$$
\mathcal{C}=\left\{\langle x\rangle,\langle y\rangle,\langle x y\rangle,\langle x w\rangle,\langle y w\rangle,\langle x y w\rangle,\left\langle x^{2}, w\right\rangle\right\}
$$

and

$$
\mathcal{D}=\left\{\langle x\rangle,\langle y\rangle,\langle x y\rangle,\langle x w\rangle,\langle y w\rangle,\langle x y w\rangle,\langle w\rangle,\left\langle x^{2}, w\right\rangle\right\} .
$$

Then we have

$$
R_{\mathcal{C}}(G)=\left\{\left.\left(\left[\begin{array}{c|c}
\lambda_{1} & d \\
\hline 0 & \lambda_{2}
\end{array}\right], \begin{array}{c}
(a, b, c) \\
\left(\lambda_{2}\right)
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2}, d \in 2 \mathbb{Z}_{4}, a, b, c \in \mathbb{Z}_{4}, 2 a=2 b=2 c=\lambda_{1}\right\}
$$

and

$$
R_{\mathcal{D}}(G)=\left\{\left.\left(\left[\begin{array}{c|cc}
\lambda_{1} & 0 & 0 \\
\hline 0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \begin{array}{c}
(a, b, c) \\
\left(\lambda_{2}\right) \\
\left(\lambda_{3}\right)
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{4}, \lambda_{1}, \lambda_{2}, \lambda_{3} \in 2 \mathbb{Z}_{4}, 2 a=2 b=2 c=\lambda_{1}\right\} .
$$

Notice that $\left|R_{\mathcal{C}}(G)\right|=\left|R_{\mathcal{D}}(G)\right|=64$.

Example 3.10 Let $G=D_{8} \times \mathbb{Z}_{2}$, where $D_{8}=\left\langle x, y \mid x^{4}=1, y^{2}=1,(x y)^{2}=1\right\rangle$ is the dihedral group of order 8 and $\mathbb{Z}_{2}=\langle w\rangle$. Take the $*$-cover

$$
\mathcal{C}=\left\{\langle x\rangle,\langle x w\rangle,\langle x y, w\rangle,\langle w, y\rangle,\left\langle x^{2}, x y\right\rangle,\left\langle x^{2} y, w\right\rangle,\left\langle x^{2} w, x y\right\rangle\right\} .
$$

Then

$$
R_{\mathcal{C}}(G)=\left\{(\boldsymbol{M}, \boldsymbol{X}) \mid a, b \in \mathbb{Z}_{4}, \lambda_{1}, b_{1}, d_{1}, c_{1}, e_{1}, h_{1}, i_{1}, f_{1}, g_{1} \in 2 \mathbb{Z}_{4}, 2 a=2 b=\lambda_{1}\right\}
$$

where $\boldsymbol{M}=\left[\begin{array}{c|cc|ccc}\lambda_{1} & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & b_{1} & d_{1} & 0 & 0 & 0 \\ 0 & 0 & c_{1} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & e_{1} & h_{1} & i_{1} \\ 0 & 0 & 0 & 0 & f_{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & g_{1}\end{array}\right]$ and $\boldsymbol{X}=\begin{array}{r}(a, b) \\ \left(b_{1}\right) \\ \left(c_{1}\right) \\ \left(e_{1}\right) \\ \left(f_{1}\right) \\ \left(g_{1}\right)\end{array}$

Remark 3.11 If $R_{\mathcal{C}}(G)$ is a simple ring, it follows from Theorem 3.7 that $R_{\mathcal{C}}(G)$ must be isomorphic to either \mathbb{Z}_{p} or $M_{2}\left(\mathbb{Z}_{p}\right)$. A similar result appears in [1], where covers by subgroups of order p^{2} are used for finite p-groups G of exponent p. An intersection condition on the subgroups in the cover that is equivalent to both $R_{\mathcal{C}}(G)$ being simple and $R_{\mathcal{C}}(G) \cong Z_{p}$ is developed; see [1, Theorem 6.10].

WALLS and WANG/Turk J Math

It is clear that $R_{\mathcal{C}}(G) \cong M_{2}\left(\mathbb{Z}_{p}\right)$ only occurs when $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $\mathcal{C}=\{G\}$. Now we derive what it takes for $R_{\mathcal{C}}(G)$ to be isomorphic to \mathbb{Z}_{p}. Suppose that $R_{\mathcal{C}}(G) \cong \mathbb{Z}_{p}$. It then follows that G must have exponent p and that the 3 -intersecting graph \mathcal{G} of G must be connected, as having more than one connected components leads to nontrivial ideals. Take a nonzero element $a \in G$ and let C be the cell containing a. Since $|G|>p^{2}$, there is an element $b \in G \backslash C$ such that $\langle a\rangle$ and $\langle b\rangle$ are adjacent in \mathcal{G}. Hence, $\left|C_{G}(a)\right| \geq p^{3}$. This motivates the following theorem.

Theorem 3.12 Suppose that G is a finite p-group of exponent p and $\left|C_{G}(a)\right| \geq p^{3}$ for any element $a \in G$. Then there is a $*$-covering \mathcal{C} of G such that $R_{\mathcal{C}}(G) \cong \mathbb{Z}_{p}$. Conversely, if $|G| \geq p^{3}$ and there is $a \in G$ with $\left|C_{G}(a)\right|=p^{2}$ then $R_{\mathcal{C}}(G)$ is not simple for any *-covering \mathcal{C} of G.
Proof Suppose that $b \in Z(G)$ and a is an element of G with $a \notin\langle b\rangle$. Since $\left|C_{G}(a)\right| \geq p^{3}$, there is $c_{a} \in C_{G}(a) \backslash\langle a, b\rangle$. Consider the cover

$$
\mathcal{C}=\bigcup_{a \in G \backslash\langle b\rangle}\left\{\left\langle a, c_{a}\right\rangle,\langle a, b\rangle,\left\langle b, c_{a}\right\rangle,\left\langle a b, c_{a}\right\rangle\right\} .
$$

Now we have $\left\langle a, b, c_{a}\right\rangle \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. It follows that $\langle a, b\rangle \cap\left\langle a, c_{a}\right\rangle=\langle a\rangle,\langle a, b\rangle \cap\left\langle b, c_{a}\right\rangle=\langle b\rangle$, and $\langle a, b\rangle \cap$ $\left\langle a b, c_{a}\right\rangle=\langle a b\rangle$ are three distinct subgroups of order p. Hence, for all $a \in G \backslash\langle b\rangle$, the subgroups $\langle a\rangle$ and $\langle b\rangle$ are connected by an edge in \mathcal{G}. Therefore, $R_{\mathcal{C}}(G) \cong \mathbb{Z}_{p}$.

On the other hand, if $|G| \geq p^{3}$ and there is an element $a \in G$ with $\left|C_{G}(a)\right|=p^{2}$, then $\langle a\rangle$ and $C_{G}(a)$ are the only abelian subgroups of G that can contain a. It follows that any *-covering of G must contain one or the other. In either case, $R_{\mathcal{C}}(G)$ is not simple.

References

[1] Cannon G, Kabza L, Maxson C, Neuerberg K. Rings and covered groups II. Commun Algebra 2012; 40; 2808-2824.
[2] Cannon G, Maxson C, Neuerberg K. Rings and covered groups. J Algebra 2008; 320; 1586-1598.
[3] Jacobson N. Basic Algebra I. 2nd ed. San Francisco, CA, USA: W. H. Freeman, 1985.
[4] Kreuzer A, Maxson C. E-locally cyclic abelian groups and maximal nearrings of mappings. Forum Math 2006; 18; 107-114.
[5] Maxson C, Smith K. Maximal rings associated with covers of abelian groups. J Algebra 2007; 315; 541-554.

[^0]: *Correspondence: gary.walls@selu.edu, lwang@pitt.edu 2010 AMS Mathematics Subject Classification: 16S60.
 The research of the second author was supported by the Louisiana BoR [LEQSF(2012-15)-RD-A-20].

