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Abstract: In general the endomorphisms of a nonabelian group do not form a ring under the operations of addition

and composition of functions. Several papers have dealt with the ring of functions defined on a group, which are

endomorphisms when restricted to the elements of a cover of the group by abelian subgroups. We give an algorithm

that allows us to determine the elements of the ring of functions of a finite p -group that arises in this manner when the

elements of the cover are required to be either cyclic or elementary abelian of rank 2. This enables us to determine the

actual structure of such a ring as a subdirect product. A key part of the argument is the construction of a graph whose

vertices are the subgroups of order p and whose edges are determined by the covering.
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1. Introduction

Covers of groups by subgroups and rings of functions that act as endomorphisms on each subgroup were studied

in many papers including [1, 2, 4, 5].

Definition 1.1 Suppose that G is a group and C is a collection of subgroups of G . We say that C is a cover

of G provided
∪

C∈C C = G .

If all the elements of C have a certain property γ , we say that C is a γ -covering of G . It is well known,

e.g., [3], that the endomorphisms of a nonabelian group G do not necessarily form a ring under the operations

of function addition and composition. Coverings by abelian subgroups are used to obtain rings of functions on

G .

Definition 1.2 Let G be a group and C be an abelian-covering of G . Define

RC(G) = {f : G → G | for each C ∈ C, f |C ∈ End(C)}.

Note that RC(G) does form a ring under the natural operations on functions, since functions in RC(G) are

endomorphisms when restricted to the subgroups of the cover C . The rings RC(G) are used in [5] to classify

the maximal subrings of the nearring M0(G) of the zero-preserving functions defined on G .
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Let p be a prime and G be a finite p -group. In this paper we consider the particular case (∗) where all

the subgroups in C are either maximal cyclic p -groups of G or are elementary abelian of order p2 . Let C be

a ∗ -covering of a finite p -group G . We prove the following structure theorem to describe the rings arising as

RC(G)s.

Theorem Let G be a finite p-group and C be a ∗-covering of G . Then RC(G) is isomorphic to a direct

product of rings isomorphic to M2(Zp) or rings of the form of 2.3.

A key part of our approach is a graph defined in 3.1. The vertices of the graph are the subgroups of G

of order p and the edges are determined by the particular covering used. Each function in RC(G) is defined

on the cyclic subgroups of G . This definition is determined using a specific matrix and associated vector of

tuples, even though f may not be linear. In 3.8–3.10, a few examples are provided to illustrate the theorem.

We use the structure theorem to determine conditions for rings arising as RC(G)s to be of special types. In

particular, when the rings are simple we see that the ring RC(G) must be isomorphic to either Zp or M2(Zp).

A similar result using a different technique appears in [1], where covers by subgroups of order p2 are used for

finite p -groups of exponent p .

Throughout this paper, we always assume that G is a finite p -group and C is a ∗-covering of G . We

refer to the subgroups in C as elements of C or cells in C .

2. Some particular rings

In this section we present some particular rings needed in order to state the conclusion of our main result. For

any positive integer n , the endomorphism ring End(Zpn) is ring-isomorphic to Zpn , and it is a simple ring

if and only if n = 1. Further, End(Zp × Zp) is isomorphic to M2(Zp), the ring of 2 × 2 matrices over Zp ,

and so is always simple. In addition, we will need a subdirect product ring in 2.3, which is developed by first

constructing the matrix ring Nm+n
i1, i2, ..., in

in 2.1 and the ring RΛ(K) in 2.2.

2.1 Given integers m > 0 and n ≥ 0 , we define a ring of (m+ n)× (m+ n) matrices as follows:

Nm+n
i1, i2, ..., in

=

{[
λIm J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
| λ, ν1, . . . , νn, µ1, . . . , µn ∈ Zp

}
where

D(µ1, · · · , µn) =

 µ1 · · · 0
...

. . .
...

0 · · · µn


and J(ν1, · · · , νn) is an m×n matrix that has value νj at the (ij , j) entry for 1 ≤ j ≤ n and 1 ≤ i1, . . . , in ≤ m

and zeroes elsewhere. Note that there is at most one nonzero entry in each column of J(ν1, · · · , νn) . It is easy

to see that Nm+n
i1, i2, ..., in

is a ring and that

Im+n
m =

{[
λIm 0
0 0

]
| λ ∈ Zp

}

is an ideal of Nm+n
i1, i2,..., in

, and so Nm+n
i1, i2, ..., in

is never a simple ring if n > 0 .
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2.2 Let K be a subgroup of order p in G . There are maximal cyclic subgroups of G that contain K . Assuming

there is more than one, let Λ(K) be the directed downward lattice of these cyclic subgroups containing K . Define

S(K) to be the set of functions on Λ(K) that are endomorphisms when restricted to the vertices of Λ(K) . On

each maximal subgroup in Λ(K) of order pn , these functions are multiplications by elements of Zpn . As we

move down from one vertex to the one below, these functions are multiplied by p . Obviously, these functions

will agree on the vertices of Λ(K) . Each function in S(K) can be defined by beginning with an element λ ∈ Zp ,

which determines an endomorphism on K , and then pulling it back up the vertices in Λ(K) . Thus, for a fixed

λ ∈ Zp , such a function can be represented as an appropriate tuple x = (λ1, · · · , λϕ(K)) where ϕ(K) is the

number of the maximal cyclic subgroups in Λ(K) and where each entry λi ∈ Zpni determines the endomorphism

on a maximal cyclic subgroup of order pni in Λ(K) such that the properties discussed above hold. The set of

these functions, associated with K and λ , is denoted as RΛ(K), λ . By this notation, we allow the trivial case

when Λ(K) is a singleton and RΛ(K), λ is the same as {(λ)} . For each subgroup K of G of order p contained

in a maximal cyclic subgroup, the set RΛ(K) = {RΛ(K), λ for λ ∈ Zp} does form a ring.

2.3 A subdirect product of rings can be formed from rings discussed in 2.1 and 2.2. For any matrix in the ring

Nm+n
i1, i2, ..., in

of 2.1 and certain selected subgroups K1, . . . ,Km of G of order p , we associate to the diagonal

entries λ, . . . , λ, µ1, . . . , µn some tuples from RΛ(Ki), λ for i = 1, . . . ,m and tuples (µ1), . . . , (µn) , respectively.

That is, 
[

λIm J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
,

x1
...

xm
(µ1)
...

(µn)


,

where each xi ∈ RΛ(Ki),λ . The arrays constructed in this way form a subdirect product of rings Nm+n
i1, i2, ..., in

and RΛ(K1), . . . , RΛ(Km) . In particular, if m = 1 and n = 0 , the subdirect product is isomorphic to a ring of

the form of RΛ(K) , which is isomorphic to a direct product of Zpn for various integers n .

3. Determining the elements of the ring RC(G)

One of the main concerns in determining functions of RC(G) is to make sure that they are well defined. We

introduce the following graph. The purpose of using such a graph is reflected in Corollary 3.3, which is a direct

consequence of Lemma 3.2. This lemma appeared in [1]. For completeness, we include its proof.

Definition 3.1 Let Tp(G) denote the set of subgroups of G of order p . Let G be the graph whose set of vertices

is Tp(G) . Two vertices A,B are joined in G by an edge provided that there is a cell C ∈ C such that A, B ⊂ C

and there exist C1, C2, C3 ∈ C with intersections C ∩ C1, C ∩ C2 , and C ∩ C3 all distinct subgroups of order

p . We call this graph the 3-intersecting graph of G . For A ∈ Tp(G) , we let [A] denote the G -connected

component of G that contains A , and we let

Con(G) =
{
[A] |A ∈ Tp(G)

}
denote the set of connected components of G .
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Lemma 3.2 ( cf. [1, Lemma 6.2]) Suppose A and B are two distinct subgroups in Tp(G) connected by an edge

in the 3-intersecting graph G . Then for any f ∈ RC(G) there is a λ ∈ Zp such that f(x) = λx for any x in

the cell C = A×B .

Proof Since A and B are connected by an edge in G , there is a C ∈ C so that C = A × B ∼= Zp × Zp

and there exist C1, C2, C3 ∈ C so that C ∩ C1 = ⟨e1⟩, C ∩ C2 = ⟨e2⟩, and C ∩ C3 = ⟨e3⟩ are three dis-

tinct subgroups of order p . For any f ∈ RC(G), it is clear that ⟨e1⟩, ⟨e2⟩, ⟨e3⟩ must be f -invariant. Hence,

f(ei) = λiei for some λ1, λ2, and λ3 ∈ Zp . Note that C = ⟨e1⟩×⟨e2⟩ and so e3 = µ1e1+µ2e2 for some nonzero

µ1, µ2 ∈ Zp . It follows that f(e3) = f(µ1e1 + µ2e2) = µ1f(e1) + µ2f(e2) = µ1λ1e1 + µ2λ2e2 . This must equal

λ3e3 = λ3(µ1e1+µ2e2) = λ3µ1e1+λ3µ2e2 . Since {e1, e2} is a basis of C , we get λ3µ1 = λ1µ1 and λ3µ2 = λ2µ2 .

It follows that λ1 = λ2 , and so f |C is scalar multiplication for any f ∈ RC(G). 2

Corollary 3.3 Suppose A ∈ Tp(G) and |[A]| > 1 . Then f |∪[A] is multiplication by a scalar λ in Zp .

Partition 3.4 Note that some of the connected components in Con(G) may be singletons, as cells may not

have three distinct intersections. We partition the cells in C based on their intersections with other cells in C .

Set C =
3⊔

i=0

Ci , where

C0 = {C ∈ C | C ∩ C ′ = {0} for any C ′ ∈ C and C ′ ̸= C},

C3 = {C ∈ C | C1∩C,C2∩C , and C3∩C are all distinct subgroups of order p for some C1 , C2 , C3 ∈ C},

C2 = {C ∈ C \ C3 | C1 ∩ C and C2 ∩ C are distinct subgroups of order p for some C1, C2 ∈ C},

C1 = C \ (C0 ∪ C2 ∪ C3).

Note that a cell C ∈ C2 may have more than two cells intersecting with it; for example, C1 ∩ C and C2 ∩ C =

C3 ∩ C are distinct subgroups of order p for some C1, C2, C3 ∈ C . The above partition reveals the structure of

a cover C that we will use to prove the main result.

3.5 We will show constructively how a function f ∈ RC(G) can be defined on G w.r.t. a chosen cover C .
First denote a function from Con(G) to Zp by F . Let x be an element of order p in G . If x belongs to a

cyclic cell, then ⟨x⟩ is f -invariant and we define f(x) = F ([⟨x⟩])x . It is clear that any cyclic cell can only

belong to either C0 or C1 . If x belongs to a noncyclic cell, there are several cases.

Case 1. If x ∈ C for some C ∈ C3 , following Corollary 3.3, we define f(x) = F ([⟨x⟩])x .
Case 2. If x ∈ C for some C ∈ C2 , then there are C1, C2 ∈ C such that C ∩ C1 = ⟨e2(C)⟩ ,

C ∩ C2 = ⟨e′2(C)⟩ for some element e2(C) and e′2(C) of order p . Thus, C = ⟨e2(C)⟩ × ⟨e′2(C)⟩ and

x = αe2(C) + βe′2(C) for some α, β ∈ Zp . Note that both ⟨e2(C)⟩ and ⟨e′2(C)⟩ are f -invariant. Hence,

we have

f : (e2(C), e′2(C)) 7→ (e2(C), e′2(C))

(
F ([⟨e2(C)⟩]) 0

0 F ([⟨e′2(C)⟩])

)
and f(x) can be defined accordingly. Note that e2(C) and e′2(C) are symmetric for each C ∈ C2 .
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Case 3. If x ∈ C for some noncyclic cell C in C1 , then C ∩ C1 = ⟨e1(C)⟩ for some element e1(C) ∈ C

and C1 ∈ C . Pick b1(C) ∈ C such that C = ⟨e1(C)⟩ × ⟨b1(C)⟩ . The choice of b1(C) is not unique, but C

is the unique cell in C that contains b1(C) . Suppose x = αe1(C) + βb1(C) for some α, β ∈ Zp . Note that

f(b1(C)) ∈ C and ⟨e1(C)⟩ is f -invariant. Hence, we have

f : (e1(C), b1(C)) 7→ (e1(C), b1(C))

(
F ([⟨e1(C)⟩]) H(b1(C))

0 F ([⟨b1(C)⟩])

)

where H(b1(C)) is a scalar in Zp . Then we define

f(x) =
(
αF

(
[⟨e1(C)⟩]

)
+ βH(b1(C))

)
e1(C) + F ([⟨b1(C)⟩])b1(C).

We point out here that if a different choice had been made for b1(C) , it would be possible to get the same value

for f(x) by choosing a different scalar H(b1(C)) .

Case 4. If x ∈ C for some noncyclic cell C in C0 , then C = ⟨b0(C)⟩×⟨b′0(C)⟩ for some b0(C), b′0(C) ∈ C .

The choice of the basis {b0(C), b′0(C)} is not unique. Suppose x = αb0(C) + βb′0(C) for some α, β ∈ Zp . Note

that f(b0(C)) and f(b′0(C)) must be in C . Hence,

f : (b0(C), b′0(C)) 7→ (b0(C), b′0(C))

(
F ([⟨b0(C)⟩]) B(b′0(C))
A(b0(C)) F ([⟨b′0(C)⟩])

)

where A(b0(C)) and B(b′0(C)) are scalars in Zp . Then f(x) can be defined accordingly.

After setting the image of f on any element of order p in G , now we extend f to the elements of order

bigger than p , if there are any. Let ⟨y⟩ be a maximal cyclic subgroup of G and |y| = pn with n > 1 . Note that

⟨y⟩ must be a cell in C . Then f |⟨y⟩ ∈ End(⟨y⟩) ∼= End(Zpn) ∼= Zpn , and so f(y) = λy for some λ ∈ Zpn .

Recall that we have already defined f(yp
n−1

) = F ([⟨ypn−1⟩])ypn−1

, as x = yp
n−1

is an element of order p .

Simply working our way up the lattice of the cyclic subgroup ⟨y⟩ , we can choose a proper scalar λ such that

f(y) = λy and f(yp
n−1

) = F ([⟨ypn−1⟩])ypn−1

. Notice that as we work our way up the lattice we have choices,

but each choice leads to a different function f ∈ RC(G) .

It is clear that every function f in RC(G) arises in the above fashion, subject to the cover C (mainly the

intersections of the cells in C such as e2(C) , e′2(C) , e1(C)), the elements of the form of b0(C), b′0(C), b1(C)

as described above, and the choices of the the function F and scalars H(b1(C)) , A(b0(C)) , B(b′0(C)) . In terms

of notation, ei(C) for some integer i is always an intersection or contained in an intersection of at least two

cells. Note that, by our notation, it may occur that ⟨e1(C1)⟩ = ⟨e2(C2)⟩ = K when C1 is a cell in C1 , C2 is a

cell in C2 , and K = C1∩C2 . Therefore, to determine f , we need a set of elements of order p (indeed subgroups

of order p) that includes generators of any noncyclic cell in C and the unique element of order p (indeed the

p-socle) of any cyclic cell.

Setup 3.6 Given a cover C of G , we set up the following sets of subgroups of order p . The union of these sets

is denoted by B(C) .
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B3(C) = {⟨g⟩ | g ∈ C for some C ∈ C3 and ⟨g⟩ = C ∩ C ′ for some C ′ ∈ C}

B2(C) = {⟨e2(C)⟩, ⟨e′2(C)⟩ |C ∈ C2}

B1
1(C) = {⟨e1(C)⟩ |C ∈ C1}

B2
1(C) = {⟨b1(C)⟩ |C ∈ C1 and C = ⟨e1(C)⟩ × ⟨b1(C)⟩ for e1(C) ∈ B1

1(C)}

B0(C) = {⟨b0(C)⟩, ⟨b′0(C)⟩ |C ∈ C0}

As illustrated in 3.5, we also need the following functions.

F : Con(G) → Zp

H : {b1(C) | ⟨b1(C)⟩ ∈ B2
1(C)} → Zp

A : {b0(C) | ⟨b0(C)⟩ ∈ B0(C)} → Zp

B : {b′0(C) | ⟨b′0(C)⟩ ∈ B0(C)} → Zp

Theorem 3.7 The ring RC(G) with a chosen covering C is isomorphic to a direct product of matrix rings

isomorphic to M2(Zp) or rings of the form of 2.3.

Proof With the Zp -valued functions and sets of subgroups of order p described in 3.6, any function f ∈ RC(G)

can be defined as illustrated in 3.5. To prove the theorem, we represent the way f is defined on the elements

of B(C) in terms of a matrix with blocks, which will be denoted by [f ]B(C) . For this purpose, the subgroups in

B(C) need to be put in a certain order. The resulting ordered set will be denoted by A(C).
We start with ⟨g⟩ ∈ B3(C) if B3(C) is not empty. Let D⟨g⟩ be the set of the elements ⟨b1(C)⟩ such

that ⟨y⟩ × ⟨b1(C)⟩ is a noncyclic cell C ∈ C1 for some ⟨y⟩ ∈ [⟨g⟩] ∩ B3(C). Suppose ⟨bi1⟩, . . . , ⟨bili⟩ are

from D⟨g⟩ associated to ⟨yi⟩ ∈ [⟨g⟩] ∩ B3(C) for integers li and i = 1, . . . ,m . The rest of the subgroups

⟨ym+1⟩, . . . ⟨yk⟩ ∈ [⟨g⟩] ∩ B3(C), if there are any (i.e. k ≥ m), are either contained in a cyclic cell or in a

noncyclic cell C ∈ C2 . Let Ag = {⟨y1⟩, . . . , ⟨ym⟩, ⟨z11⟩, . . . , ⟨z1 l1⟩, . . . ⟨zm1⟩, . . . , ⟨zmlm⟩, ⟨ym+1⟩, . . . ⟨yk⟩}, an

ordered set of subgroups from B(C).

The matrix block of [f ]B(C) corresponding to Ag can be determined as shown in 3.5, case 1 and case 3.

Set λ = F ([⟨yi⟩]) for i = 1, . . . k , µt = F ([⟨zij⟩]) and νt = H(zij) for i = 1, . . .m and t = 1, . . . , n =
∑m

i=1 li .

Following the notation in 2.1, we see that the matrix block has the form of [
λIm J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
0

0 λIk−m

 .

It is clear that Ag is the first part of the ordered set A(C). Of course, before we pursue further, the set

B(C) should be updated by removing the subgroups from the set A(C) = Ag . That is, subsets B3(C), B1
1(C),

B2
1(C), and B0(C) of B(C) are updated accordingly. Then we exhaust the set B3(C) by repeating the same

process with other subgroups ⟨g′⟩ ∈ B3(C). Clearly, [⟨g′⟩] ̸= [⟨g⟩] . Each time, the ordered set A(C) is expanded

by sets Ag′ , . . . , while the subsets of B(C) are updated accordingly.

Next we move on to the set B2(C). If a subgroup ⟨e2(C)⟩ from B2(C) also belongs to other noncyclic

cells in C1 , then we add ⟨e2(C)⟩ and all ⟨b1(C)⟩ such that ⟨e2(C)⟩ × ⟨b1(C)⟩ is a noncyclic cell in C1 . If not,
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we simply add ⟨e2(C)⟩ . Again, each time B2(C) needs to be updated. In terms of [f ]B(C) , as shown in 3.5 and

2.1, these two cases correspond to a matrix block, with n being zero or positive, having the form of

[
λ J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
.

Then we continue with subgroups in B1
1 and B2

1 in a similar way such that adding ⟨e1(C)⟩ from B1
1(C)

and those ⟨b1(C)⟩ from B2
1(C) for a fixed noncyclic cell C results in a matrix block of the form

[
λ J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
.

We finish the process by adding the subgroups ⟨b0(C)⟩ and ⟨b′0(C)⟩ from B0 in pairs or just ⟨b0(C)⟩ if

it is from a cyclic cell and not paired with any other subgroup of order p in B0 . Each pair corresponds to a

2 × 2 block in M2(Zp) as shown in 3.5, case 4. Any single subgroup of order p corresponds to a 1 × 1 block

[λ] for some λ ∈ Zp .

To summarize, we have an ordered set A(C) of subgroups of G of order p , under which the definition of

any function f ∈ RC(G) on elements of G of order p is determined and represented in terms of a matrix fB(C)

with blocks as described above, i.e. blocks from M2(Zp) and blocks of the form described in 2.1 with choices of

λs, µi s, and νi s from Zp . It is not hard to see that the ordered set A(C) may not be unique, but the number

and shape of the matrix blocks in fB(C) must be fixed, corresponding to the chosen cover C . Note that any such

block matrix with nonzero scalar entries from Zp contains enough information to define a function in RC(G)

on elements of G of order p . The collection of these matrices, with respect to a chosen cover C , does form a

ring, which is a direct product of rings isomorphic to M2(Zp) or Nm+n
i1, i2, ..., in

as in 2.1.

To fully represent a function f ∈ RC(G), additional information needs to be attached to the matrix fB(C)

so that f is defined for elements of order pn with n ≥ 2. We have discussed the definition of f on these

elements in the last part of 3.5. The p-socle of these cyclic cells must appear in the list A(C). Following the

discussion and notation in 2.2, we associate the diagonal elements of each matrix block of the form, allowing

n = 0, [
λIm J(ν1, · · · , νn)
0 D(µ1, · · · , µn)

]
an (m+n)× 1 vector (x1, . . . ,xm,xm+1, . . . ,xm+n)

T , where xi are tuples from RΛ(Ki), λ for i = 1, . . .m and

for the corresponding subgroup Ki of order p in A(C). If a subgroup Ki does not belong to a cyclic cell of

order greater than p , then RΛ(Ki), λ = {(λ)} as pointed out in 2.2. Note that each xm+j = (µj), since the

subgroups ⟨b1(Ci)⟩ of order p corresponding to µ1, · · · , µn can only belong to the noncyclic cells Ci as shown

in 3.5, case 3. There is no need to associate any vector of tuples to the diagonal of matrix blocks from M2(Zp)

because these blocks are corresponding to noncyclic cells in C0 .
Finally, each extended matrix contains enough information to define a function in RC(G). Therefore,

RC(G) is isomorphic to a direct product of rings isomorphic to M2(Zp) or rings of the form of 2.3. The proof

is complete. 2
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Example 3.8 Let G = Q8 = ⟨x, y |x2 = y2, x4 = 1, y−1xy = x−1⟩ , the quaternion group of order 8. Then G

has only one subgroup of order 2. The only ∗-covering of G is C = {⟨x⟩, ⟨y⟩, ⟨xy⟩} . Hence:

RC(G) ∼=
{
(a, b, c)

∣∣∣ a, b, c ∈ Z4, 2a = 2b = 2c
}
.

Note that |RC(G)| = 16 .

Example 3.9 Let G be Q8×Z2 = ⟨x, y⟩×⟨w⟩ . Now G has only one noncyclic subgroup of order 4 and exactly

6 cyclic subgroups of order 4. Consider two ∗-covers:

C = {⟨x⟩, ⟨y⟩, ⟨xy⟩, ⟨xw⟩, ⟨yw⟩, ⟨xyw⟩, ⟨x2, w⟩}

and

D = {⟨x⟩, ⟨y⟩, ⟨xy⟩, ⟨xw⟩, ⟨yw⟩, ⟨xyw⟩, ⟨w⟩, ⟨x2, w⟩}.

Then we have

RC(G) =

{([
λ1 d

0 λ2

]
,

(a, b, c)
(λ2)

) ∣∣∣ λ1, λ2, d ∈ 2Z4, a, b, c ∈ Z4, 2a = 2b = 2c = λ1

}

and

RD(G) =


 λ1 0 0

0 λ2 0
0 0 λ3

 ,
(a, b, c)
(λ2)
(λ3)

∣∣∣ a, b, c ∈ Z4, λ1, λ2, λ3 ∈ 2Z4, 2a = 2b = 2c = λ1

 .

Notice that |RC(G)| = |RD(G)| = 64 .

Example 3.10 Let G = D8 ×Z2 , where D8 = ⟨x, y |x4 = 1, y2 = 1, (xy)2 = 1⟩ is the dihedral group of order

8 and Z2 = ⟨w⟩ . Take the ∗-cover

C = {⟨x⟩, ⟨xw⟩, ⟨xy,w⟩, ⟨w, y⟩, ⟨x2, xy⟩, ⟨x2y, w⟩, ⟨x2w, xy⟩}.

Then

RC(G) =
{
(M, X) | a, b ∈ Z4, λ1, b1, d1, c1, e1, h1, i1, f1, g1 ∈ 2Z4, 2a = 2b = λ1

}
,

where M =



λ1 0 0 0 0 0

0 b1 d1 0 0 0
0 0 c1 0 0 0

0 0 0 e1 h1 i1
0 0 0 0 f1 0
0 0 0 0 0 g1

 and X =

(a, b)
(b1)
(c1)
(e1)
(f1)
(g1)

Remark 3.11 If RC(G) is a simple ring, it follows from Theorem 3.7 that RC(G) must be isomorphic to

either Zp or M2(Zp) . A similar result appears in [1], where covers by subgroups of order p2 are used for finite

p-groups G of exponent p . An intersection condition on the subgroups in the cover that is equivalent to both

RC(G) being simple and RC(G) ∼= Zp is developed; see [1, Theorem 6.10].
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It is clear that RC(G) ∼= M2(Zp) only occurs when G ∼= Zp × Zp and C = {G} . Now we derive what

it takes for RC(G) to be isomorphic to Zp . Suppose that RC(G) ∼= Zp . It then follows that G must have

exponent p and that the 3-intersecting graph G of G must be connected, as having more than one connected

components leads to nontrivial ideals. Take a nonzero element a ∈ G and let C be the cell containing a . Since

|G| > p2 , there is an element b ∈ G \ C such that ⟨a⟩ and ⟨b⟩ are adjacent in G . Hence, |CG(a)| ≥ p3 . This

motivates the following theorem.

Theorem 3.12 Suppose that G is a finite p-group of exponent p and |CG(a)| ≥ p3 for any element a ∈ G .

Then there is a ∗-covering C of G such that RC(G) ∼= Zp . Conversely, if |G| ≥ p3 and there is a ∈ G with

|CG(a)| = p2 then RC(G) is not simple for any ∗-covering C of G .

Proof Suppose that b ∈ Z(G) and a is an element of G with a /∈ ⟨b⟩ . Since |CG(a)| ≥ p3 , there is

ca ∈ CG(a) \ ⟨a, b⟩ . Consider the cover

C =
∪

a∈G\⟨b⟩

{
⟨a, ca⟩, ⟨a, b⟩, ⟨b, ca⟩, ⟨ab, ca⟩

}
.

Now we have ⟨a, b, ca⟩ ∼= Zp × Zp × Zp . It follows that ⟨a, b⟩ ∩ ⟨a, ca⟩ = ⟨a⟩, ⟨a, b⟩ ∩ ⟨b, ca⟩ = ⟨b⟩, and ⟨a, b⟩ ∩
⟨ab, ca⟩ = ⟨ab⟩ are three distinct subgroups of order p . Hence, for all a ∈ G \ ⟨b⟩ , the subgroups ⟨a⟩ and ⟨b⟩
are connected by an edge in G . Therefore, RC(G) ∼= Zp .

On the other hand, if |G| ≥ p3 and there is an element a ∈ G with |CG(a)| = p2 , then ⟨a⟩ and CG(a)

are the only abelian subgroups of G that can contain a . It follows that any ∗-covering of G must contain one

or the other. In either case, RC(G) is not simple. 2
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