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Abstract: In this paper, we explore the effect of the asymptotic cone of the limit set of a sequence that is rough Wijsman

convergent.
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1. Introduction

As is well known, one of the fundamental concepts in mathematical analysis is the concept of the limit of a

sequence. In this context, we often study sufficiently small neighborhoods of a point in a topological space, and

investigate the behavior of a sequence approaching that point. In recent years, many authors have explored

sequences diverging to infinity, by using much larger neighborhoods of a point. This idea is a useful way in both

differential geometry and geometric group theory. In addition, it has led to the emergence of asymptotic cones.

The notion of an asymptotic cone was first introduced by Steinitz [10]. He also gave the asymptotic properties

of unbounded convex sets. Later, asymptotic cones were called ”horizon cones” by some authors. In 1940, the

theory of asymptotic cones was developed by Stoker [11]. In 1953, Fenchel [4] introduced the concept of the

convergence of a sequence of rays by using the distance between two rays. Moreover, he proved that such a

distance is a metric on the space of rays. In 1966, an alternative definition of the asymptotic cone was given by

Wijsman [13] via normalized sequences.

As for the notion of rough convergence of a sequence, it was first introduced by Phu [7] in a finite-

dimensional normed space as follows. Let r be a nonnegative real number. A sequence {xn} is said to be

r -convergent to x, denoted by xn
r→ x, provided that

∀ε > 0 ∃N(ε) ∈ N : n ≥ N(ε) ⇒ ∥xn − x∥ < r + ε.

With the help of this definition, Phu [7] showed that a sequence that is not convergent in the usual sense might

be convergent to a point, with a certain degree of roughness. Then he proved analogous results for a sequence

in an infinite-dimensional space [8]. In 2008, Aytar [2] investigated the relations between the core and the

r -limit set of a real sequence. In [5], Listan-Garcia and Rambla-Barreno gave some results analogous to those of

Phu, which are given by using strict convexity and uniform convexity, by means of uniform rotundity in every

direction (URED). The condition URED is strictly weaker than the uniform convexity property. In [6], the same
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authors stated two new geometric properties by using the rough convergence in Banach spaces. They showed

that the rough limit set is closely related to Chebyshev centers. They also gave some classical properties such

as Kalton’s M property. In [12], the authors gave an extension of rough convergence, by using the notion of an

ideal. They also stated some basic results related to the rough ideal limit set. Recently, Dündar and Çakan [3]

introduced the concept of rough convergence for a double sequence.

In this paper, we explore the effect of the asymptotic cone of the limit set of a sequence that is rough

Wijsman convergent. To this end, we introduce the concept of a rough asymptotic cone, and investigate the

properties of such a cone.

2. Preliminaries

First, we recall the notions of a ray and a cone in Rm . A ray is a closed half-line emanating from the origin. If

x ̸= 0, a ray from origin 0 through x is denoted by (x). A subset X of Rm is called a cone if 0 is in X and

x ∈ X implies λx ∈ X for every nonnegative real scalar λ . The particular cones consisting of a nonzero vector

x and all its multiples λx (λ ≥ 0) are rays. A cone that contains at least one nonzero vector is therefore just

the union of the rays that it contains. Throughout the paper, we will be interested in the cones on Rm except

for the cone X = {0} .
Since cones may be thought of as sets of rays, it is desirable to introduce a topology on these rays, by

using the topology on Rm. This might be done by defining the angle

θ(x, y) = arccos
⟨x, y⟩
∥x∥ ∥y∥

, 0 ≤ θ ≤ π

as a metric on Rm − {0} . This angle depends only on the rays (x) and (y) to which x and y belong. It may

be thought of as the angle between the two rays. The proof that this angle is indeed a metric for the rays, in

particular that it satisfies the triangle inequality, is not obvious. An equivalent metric is

[x, y] =

√
2− 2 ⟨x, y⟩

∥x∥ ∥y∥
.

This new metric is the chord distance between the two points x
∥x∥ and y

∥y∥ on the unit sphere. That is,

[x, y] = ρ
(

x
∥x∥ ,

y
∥y∥

)
, where ρ is the Euclidean metric on Rm and [x, y] depends only on the rays (x) and (y).

The geometric description shows that these two metrics are topologically equivalent to each other [4].

The concept of the convergence of a sequence of rays is given as follows: a sequence {(xn)} is said to be

convergent to a ray (x) if [xn, x] → 0 as n → ∞ , and we denote this case by (xn) → (x). We will also use the

notation ρ
(

xn

∥xn∥ ,
x

∥x∥

)
→ 0, as n → ∞ [4].

Now we give the definitions of open cone and closed cone in Rm . Let X be a cone in Rm . A ray (x)

is called a limit ray of a cone X if there is a sequence of rays of the cone that are different from (x) and that

converge to (x). A closed cone is a cone that contains all its limit rays. A cone is closed in this sense if and

only if it is closed in the usual topology of Rm . A cone is open if and only if the complementary set of rays is

a closed cone [4].

In the next section, we will explore the effect of the rough asymptotic cone of the limit set of a sequence

that is rough Wijsman convergent. Thus, we will briefly introduce the concept of rough Wijsman convergence.

1350
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Throughout this paper, we assume that X and Xn are any subsets of Rm for each n. As usual, the

distance from a point x to a nonempty set X is defined by

d(x,X) = inf{∥x− y∥ : y ∈ X},

where ∥.∥ represents the Euclidean norm.

Given r > 0, we say that a sequence {Xn} is rough Wijsman convergent to a set X if

d(x,Xn)
r→ d(x,X) for all x ∈ Rm.

In this case, we write Xn
r→ X as n → ∞ .

Now we consider the concept of an asymptotic cone. The asymptotic cone of the set X is defined by

A(X) = {(x) : (x) = lim(xn), xn ∈ X, ∥xn∥ → ∞} (2.1)

=

{
ax : a ≥ 0, x = lim

xn

∥xn∥
, xn ∈ X, ∥xn∥ → ∞

}
.

It is clear that if a set X is bounded, then its asymptotic cone is an empty set [13].

If the set X is closed and convex, then the asymptotic cone of this set is called a recession cone.

An alternative definition of the asymptotic cone is given by the following:

The asymptotic cone of the set X is defined by

A(X) =

{
{x ∈ Rm : ∃xn ∈ X, λn ↘ 0, λnxn → x} , X ̸= ∅
∅ , X = ∅ . (2.2)

The notation λn ↘ 0 shows that λn > 0 and λn → 0 [9].

Proposition 2.1 ([9]) A set X ⊂ Rm is bounded if and only if A(X) = ∅.

3. Rough asymptotic cones

In this section, we introduce the concept of the rough asymptotic cone of a set X in Rm . Then we investigate

the properties of these cones. Finally, we explore the effect of the asymptotic cone of the limit set of a sequence

that is rough Wijsman convergent.

Definition 3.1 Let r > 0 . The rough asymptotic cone of a set X is the set

Ar(X) =

{
ax : a ≥ 0,

xn

∥xn∥
r→ x, xn ∈ X, ∥xn∥ → ∞

}
. (3.1)

It clear that A(X) ⊆ Ar(X) for each r ≥ 0.

An alternative definition of the rough asymptotic cone can be given via the following

Proposition 3.1 The rough asymptotic cone of the set X is

Ãr(X) =

{ {
x ∈ Rm : ∃xn ∈ X, λn ↘ 0, λnxn

r→ x
}

, X ̸= ∅
∅ , X = ∅

. (3.2)
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Proof First we show that Ãr(X) ⊆ Ar(X). Let x ∈ Ãr(X). Then there exists a sequence {xn} in X

such that λn ↘ 0 and λnxn
r→ x . That is, ∥λnxn − x∥ < r + ε for almost all n (i.e all but finitely many).

Define λn := 1
∥xn∥ . Since λn > 0 for all n ∈ N and ∥xn∥ → ∞ as n → ∞ , we have λn → 0. We obtain

∥λnxn − x∥ =
∥∥∥ 1
∥xn∥xn − x

∥∥∥ < r+ ε for almost all n, because 1
∥xn∥xn

r→ x . From (3.1), we have ax ∈ Ar(X)

for all a ≥ 0. If we choose a = 1, then x ∈ Ar(X). Hence we get Ãr(X) ⊆ Ar(X).

Now let ax ∈ Ar(X). From (3.1), there exists a sequence {xn} in X such that
∥∥∥ xn

∥xn∥ − x
∥∥∥ < r + ε for

almost all n, xn ∈ X and ∥xn∥ → ∞ . We take λn := 1
∥xn∥ . Since λn > 0 for all n ∈ N and ∥xn∥ → ∞ as

n → ∞ , we have λn → 0. Since

∥∥∥∥ xn

∥xn∥
− x

∥∥∥∥ =

∥∥∥∥ 1

∥xn∥
xn − x

∥∥∥∥
= ∥λnxn − x∥
< r + ε,

for almost all n, we obtain x ∈ Ãr(X). We also have ax ∈ Ãr(X) for all a ≥ 0. Hence we get Ar(X) ⊆ Ãr(X),

which completes the proof. 2

Definition 3.2 The rough closure of a set X is

X
r
:=

{
x ∈ Rm : ∃{xn} ⊂ X such that xn

r→ x, as n → ∞
}
.

It is clear that X
r
= B(X, r), where B(X, r) :=

{
y ∈ Rm : d(y,X) ≤ r

}
.

Proposition 3.2 If a set X ⊂ Rm is convex, then its rough closure X
r
is convex.

Proof Assume that x0, x1 ∈ X
r
. Then there exist two sequences {x0

n} and {x1
n} in X such that x0

n
r→ x0

and x1
n

r→ x1, as n → ∞ . Since the set X is convex, we have

(1− t)x0
n + tx1

n ∈ X for all n and all t ∈ [0, 1].

Since x0
n

r→ x0 and x1
n

r→ x1, we have (1− t)x0
n + tx1

n
r→ (1− t)x0 + tx1 ∈ X

r
. 2

Theorem 3.1 Let X be a nonempty subset of Rm . Then Ar(X) = Ar(X) .

Proof Since X ⊆ X, it is clear that Ar(X) ⊆ Ar(X). Then we need to show that Ar(X) ⊆ Ar(X).

Let y = ax ∈ Ar(X). If xn ∈ X, then for every ε > 0 and for all n ∈ N there exists an x̃n ∈ X such

that ∥xn − x̃n∥ < ε
2 . Since ∥xn∥ → ∞, we have ∥x̃n∥ → ∞ . By definition of Ar(X), for every ε > 0 there

exists an N(ε) ∈ N such that
∥∥∥ xn

∥xn∥ − x
∥∥∥ < r + ε

2 for all n ≥ N(ε). It is clear that if ∥x̃n − xn∥ < ε
2 , we have
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∥∥∥ x̃n

∥x̃n∥ − xn

∥xn∥

∥∥∥ < ε
2 . Hence we obtain

∥∥∥∥ x̃n

∥x̃n∥
− x

∥∥∥∥ =

∥∥∥∥ x̃n

∥x̃n∥
− xn

∥xn∥
+

xn

∥xn∥
− x

∥∥∥∥
≤

∥∥∥∥ x̃n

∥x̃n∥
− xn

∥xn∥

∥∥∥∥+

∥∥∥∥ xn

∥xn∥
− x

∥∥∥∥
<

ε

2
+ r +

ε

2

= r + ε.

Therefore, we get y = ax ∈ Ar(X) for all a ≥ 0. This implies that Ar(X) ⊆ Ar(X). 2

On the other hand, we know that if the set X is a cone, then A(X) = X (see page 26 in [1]). As can be

seen in this example, this fact is not true for rough asymptotic cones. Indeed, Ar(X) ̸= X
r
.

Example 3.1 Let X = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}. Then the 1−rough asymptotic cone of the set X is

A1(X) = R2 −
{
(x, y) ∈ R2 : x ≤ 0, y ≤ 0

}
.

The 1−rough closure of the set X is

X
1
=

{
(x, y) ∈ R2 : x ≥ −1, y ≥ −1

}
.

Hence, we have A1(X) ̸= X
1
.

Proposition 3.3 A set X ⊂ Rm is bounded if and only if Ar(X) = ∅.

Proof (Necessity) Let X be a bounded set. Then, from Proposition 2.1, we have A(X) = ∅. By definition

of A(X), there does not exist any sequence {xn} in X such that ∥xn∥ → ∞ as n → ∞ . That is why we have

Ar(X) = ∅ for all r.

(Sufficiency) Assume that Ar(X) = ∅ . Since A(X) ⊆ Ar(X) = ∅, we have A(X) = ∅ . From Proposi-

tion 2.1, the set X is bounded. 2

We know by Theorem 3.6 in [9] that if the set X is convex then the set A(X) is also convex. However,

the set Ar(X) may not be convex as can be seen in the following example.

Example 3.2 Let X = {(x, y) ∈ R2 : x ∈ R, y ≥ 0}. Then the 1
2−rough asymptotic cone of the set X is

A
1
2 (X) = R2 −

{{
(x, y) ∈ R2 : y <

√
3

3
x

}
∩

{
(x, y) ∈ R2 : y < −

√
3

3
x

}}
.

This set is not convex.

Now we will give an example that will help to explain the concept of rough asymptotic cones.
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Example 3.3 Let X = {(x, y) : x ≤ 0, y ≤ 0} ⊂ R2 . Thus we have A(X) = X . The rough asymptotic cone

of the set X is

Ar(X) =


{
(x, y) : y ≤ r

√
1−r2

r2−1 x
}
∩
{
(x, y) : y ≤ r2−1

r
√
1−r2

x
}

, if 0 < r < 1

R2 − {(x, y) : x ≥ 0, y ≥ 0} , if r = 1
R2 , if r > 1

.

On the other hand, we know that the set A(X) is a closed cone (see page 26 in [1]). As can be seen in

this example, this fact is not true for rough asymptotic cones. Indeed, the cone A1(X) is not closed.

Now we will give a lemma that will be used in the proof of Theorem 3.2. The lemma and its proof are

similar to those in [13, Lemma 3.1].

Lemma 3.1 Let X be a set in Rm . If the cone C is open such that C ⊃ Ar(X), then there exists an R such

that X ⊂ C ∪B(0, R), where 0 < R < ∞ .

Proof On the contrary, assume that there exists a sequence {xn} in X such that xn /∈ C and ∥xn∥ → ∞ .

Since C is an open cone, Cc is a closed cone, where Cc is the complement of C . Since the sequence {(xn)} of

rays lies in the compact set Cc, there exists a subsequence {(xnk
)} of {(xn)} such that {(xnk

)} is convergent

to a ray (x) ∈ Cc . By definition of Ar(X), we have (x) ∈ Ar(X). This contradicts the fact that C ⊃ Ar(X);

thus the proof is complete. 2

Lemma 3.2 ([13]) Let C1 and C2 be open cones such that C1 ⊂ C2 . Then for all a ∈ Rm there exists a

positive real number R such that C1 + a ⊂ C2 ∪B(0, R) .

The next theorem shows that if a sequence {Xn} of convex sets is rough convergent to a set X , then all

of them are eventually contained in Ar(X) except for a bounded region. Its proof is similar to the proof of [13,

Theorem 3.2].

Theorem 3.2 Let Xn and X be nonempty convex subsets of Rm for each n . If Xn
r→ X then for every open

cone C such that C ⊃ Ar(X) there exist R and N such that Xn ⊂ C ∪B(0, R) for all n > N.

Proof Without loss of generality, we can select the origin 0. Assume that the theorem is false for 0 but true

for 0′ = 0 + a . Then there exists an open cone C2 such that C2 ⊃ Ar(X). In addition, there is a sequence

{xn} such that xn ∈ Xn, xn /∈ C2 and ∥xn∥ → ∞ as n → ∞ . We can select an open cone C1 such that

Ar(X) ⊂ C1 ⊂ C1 ⊂ C2 . The rough asymptotic cone of the set X for the origin 0′ is Ar(X)+a . Furthermore,

Ar(X) + a ⊂ C1 + a . If we apply the theorem for the origin 0′, we obtain xn ∈ C1 + a for all n > N . From

Lemma 3.2, we have xn ∈ C2 for all n > N . This case contradicts the fact that xn /∈ C2; hence the proof is

complete.

Let the origin 0 be an arbitrary point of X . On the contrary, assume that the theorem does not hold.

Then there is a sequence {xn} in Xn such that xn ∈ Xn, ∥xn∥ → ∞ and xn /∈ C . If we take yn := xn

∥xn∥ , we

have ∥yn∥ = 1. Then we can assume that there exists an x ̸= 0 such that ∥yn − x∥ < r + ε . Since Xn
r→ X
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and 0 ∈ X, there is a sequence {sn} such that sn ∈ Xn and sn
r→ 0. Let a > 0 be arbitrary. Since Xn is

convex, we have

tn =

(
1− a

∥xn∥

)
sn +

(
a

∥xn∥

)
xn.

Thus tn ∈ Xn for all n > N . Since Xn
r→ X, we obtain tn

r→ ax and ax ∈ X . The case holds for all a > 0.

Hence x ∈ Ar(X). On the other hand, since xn /∈ C and yn /∈ C, we have yn
r→ x ∈ Cc = Cc ∪ {0}. Since

x ̸= 0 we get x ∈ Cc , but x ∈ Ar(X). This contradiction completes the proof. 2

Acknowledgment

The authors are grateful to the editor and referees for their suggestions, which have greatly improved the

readability of the paper.

References

[1] Auslender A, Teboulle M. Asymptotic Cones and Functions in Optimization and Variational Inequalities. New York,

NY, USA: Springer-Verlag, 2003.

[2] Aytar S. The rough limit set and the core of a real sequence. Numer Funct Anal Opt 2008; 29: 283-290.
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