

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2016) 40: 1374 – 1385 © TÜBİTAK doi:10.3906/mat-1505-55

Research Article

Derivation-homomorphisms

Lingyue LI^{1,*}, Xiaowei XU²

¹Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China ²College of Mathematics, Jilin University, Changchun, P.R. China

Received: 22.05.2015 • Accepted/Published Online: 24.02.2016	•	Final Version: 02.12.2016
--	---	----------------------------------

Abstract: In this paper, we introduce notions of (n, m)-derivation-homomorphisms and Boolean *n*-derivations. Using Boolean *n*-derivations and *m*-homomorphisms, we describe structures of (n, m)-derivation-homomorphisms.

Key words: Derivation-homomorphism, Boolean n-derivation, (n, m)-derivation-homomorphism

1. Introduction

In this paper, by a ring we shall always mean an associative ring with an identity.

Homomorphisms and derivations are important in the course of researching rings. Multiderivations (e.g., biderivation, 3-derivation, or *n*-derivation in general) have been explored in (semi-) rings. In 1989, Vukman [8] researched Posner's theorems [7] for the trace map of symmetric biderivations on (semi-) prime rings. Brešar [1, 2] characterized biderivations on prime and semiprime rings, respectively, explaining the reason why Vukman's results hold. In 2007, Jung and Park [3] investigated Posner's theorems for the trace of permuting 3-derivations on prime and semiprime rings. In cases of permuting 4-derivations and symmetric *n*-derivations, similar results were obtained in [5] and [6]. It was proved in [10] that a skew *n*-derivation $(n \ge 3)$ on a semiprime ring *R* must map into the center of *R*. Wang et al. [9] also investigated *n*-derivations $(n \ge 3)$ on triangular algebras. In a recent paper, Li and Xu [4] described multihomomorphisms.

In this paper, we consider a kind of multimapping that is either a derivation or a homomorphism for each component when the other components are fixed by any given elements. Such a multimapping is called an (n, m)-derivation-homomorphism and will be described in this paper.

Let $m \ge 0$, $n \ge 0$, and m+n > 0 in \mathbb{Z} . Let R_k be rings, where $k \in \{1, \ldots, n+m\}$. Let S be a ring and a bimodule $R_k S_{R_k}$ for $1 \le k \le m$ such that $r_k(st) = (r_k s)t$, $(st)r_k = s(tr_k)$, and $(sr_k)t = s(r_k t)$ for $r_k \in R_k$, $s, t \in S$. Then we call $f : R_1 \times \cdots \times R_{n+m} \to S$ an (n, m)-derivation-homomorphism from $R_1 \times \cdots \times R_{n+m}$ to S, if the following conditions hold:

(i) For
$$i \in \{1, ..., n+m\}$$

 $f(a_1, ..., a_i + b, ..., a_{n+m}) = f(a_1, ..., a_i, ..., a_{n+m}) + f(a_1, ..., b, ..., a_{n+m});$
(ii) For $i \in \{1, ..., n\}$
 $f(a_1, ..., a_i b, ..., a_{n+m}) = a_i f(a_1, ..., b, ..., a_{n+m}) + f(a_1, ..., a_i, ..., a_{n+m})b;$

^{*}Correspondence: lily@qibebt.ac.cn

²⁰¹⁰ AMS Mathematics Subject Classification: 16W25.

(iii) For $i \in \{n+1, \dots, n+m\}$ $f(a_1, \dots, a_i b, \dots, a_{n+m}) = f(a_1, \dots, a_i, \dots, a_{n+m})f(a_1, \dots, b, \dots, a_{n+m}).$

It is easy to see that an (m, 0)-derivation-homomorphism is an *m*-derivation, and a (0, n)-derivation-homomorphism is an *n*-homomorphism. In this paper, our concern will focus on the case $mn \neq 0$, i.e. the case that both *m* and *n* are positive.

An *n*-derivation $\phi : R_1 \times \cdots \times R_n \to S$ is said to be a Boolean *n*-derivation, if $\phi(x_1, \ldots, x_n) = \phi(x_1, \ldots, x_n)^2$ holds for all $(x_1, \ldots, x_n) \in R_1 \times \cdots \times R_n$. In particular, a Boolean 1-derivation is also called a Boolean derivation.

Let $\phi_i : R_i \to S$ be mappings, i = 1, ..., n. Then we define $\phi_1 * \cdots * \phi_n : R_1 \times \cdots \times R_n \to S$ as follows:

$$(\phi_1 * \cdots * \phi_n)(a_1, \dots, a_n) = \phi_1(a_1) \cdots \phi_n(a_n),$$

where $(a_1,\ldots,a_n) \in R_1 \times \cdots \times R_n$.

We call $f: R_1 \times \cdots \times R_n \times R_{n+1} \times \cdots \times R_{n+m} \to S$ an (n, m)-derivation-homomorphism of S, if $R_i = S$ for all $i \in \{1, \ldots, n+m\}$.

2. Main result

Firstly, we consider the case of (1, 1)-derivation-homomorphisms.

Lemma 2.1 Let f be a (1,1)-derivation-homomorphism from $R_1 \times R_2$ to S. Then for $a, b, c \in R_1$ and $x, y \in R_2$,

 $\begin{array}{ll} (I) \ f(a,x) = -f(a,x)\,; \\ (II) \ f(a,x)f(b,y) = f(b,x)f(a,y)\,; \\ (III) \ af(b,x) = f(b,x)a\,; \\ (IV) \ [a,c]f(b,x) + [b,c]f(a,x) = 0\,. \ In \ particular, \ [a,b]f(b,x) = 0\,. \end{array}$

Proof (I) Observing the different expansions of f(a + b, xy), we get

$$\begin{cases} f(a+b,xy) = f(a,xy) + f(b,xy), \\ f(a+b,xy) = f(a+b,x)f(a+b,y) \\ &= (f(a,x) + f(b,x))(f(a,y) + f(b,y)) \\ &= f(a,xy) + f(a,x)f(b,y) + f(b,x)f(a,y) + f(b,xy). \end{cases}$$

Then

$$f(a,x)f(b,y) = -f(b,x)f(a,y).$$
(2.1)

Taking y = 1 and b = a in (2.1), we have f(a, x)f(a, 1) = -f(a, x)f(a, 1). Hence, f(a, x) = -f(a, x).

- (II) It is easy to see from (I) and (2.1).
- (III) We write (2.1) as

$$f(a,x)f(b,y) + f(b,x)f(a,y) = 0.$$
(2.2)

Replacing a by ab in (2.2), we obtain

$$f(ab, x)f(b, y) + f(b, x)f(ab, y) = 0,$$

that is,

$$af(b,x)f(b,y) + f(a,x)bf(b,y) + f(b,x)af(b,y) + f(b,x)f(a,y)b = 0.$$
(2.3)

Replacing b by b^2 in (2.2), we obtain

$$f(a, x)f(b^2, y) + f(b^2, x)f(a, y) = 0,$$

that is,

$$f(a,x)bf(b,y) + f(a,x)f(b,y)b + bf(b,x)f(a,y) + f(b,x)bf(a,y) = 0.$$
(2.4)

With (I) and (II), it follows from (2.3) and (2.4) that

$$af(b,x)f(b,y) + f(b,x)af(b,y) + bf(b,x)f(a,y) + f(b,x)bf(a,y) = 0.$$
(2.5)

Replacing a by ba in (2.2), we get

$$f(ba, x)f(b, y) + f(b, x)f(ba, y) = 0,$$

that is,

$$bf(a,x)f(b,y) + f(b,x)af(b,y) + f(b,x)bf(a,y) + f(b,x)f(b,y)a = 0.$$
(2.6)

With (I) and (II), it follows from (2.5) and (2.6) that

$$af(b,x)f(b,y) + f(b,x)f(b,y)a = 0.$$
(2.7)

Taking y = 1, we get

$$af(b,x) + f(b,x)a = 0.$$

Then by (I), af(b, x) = f(b, x)a.

(IV) Using different expansions of f(abc, x) and (III), we have

$$\begin{cases} f(abc,x) = af(bc,x) + bcf(a,x) = abf(c,x) + acf(b,x) + bcf(a,x), \\ f(abc,x) = abf(c,x) + cf(ab,x) = abf(c,x) + caf(b,x) + cbf(a,x). \end{cases}$$

Therefore,

$$[a, c]f(b, x) + [b, c]f(a, x) = 0.$$

Setting c = b, we obtain [a, b]f(b, x) = 0.

Theorem 2.2 Let f be a (1,1)-derivation-homomorphism from $R_1 \times R_2$ to S. Assume that there exists $a_0 \in R_1$ such that $f(a_0,1)f(b,1) = f(b,1)f(a_0,1) = f(b,1)$ holds for each $b \in R_1$. Then there exist a Boolean derivation $\phi : R_1 \to S$ and a homomorphism $\lambda : R_2 \to S$ such that $f = \phi * \lambda$ and $a\lambda(x) - \lambda(x)a = [\phi(a), \lambda(x)] = 0$ for $a \in R_1$ and $x \in R_2$. Furthermore, if the identity element of S has an inverse image, then f has a unique decomposition.

Proof Let $\phi(a) = f(a, 1)$ for $a \in R_1$ and $\lambda(x) = f(a_0, x)$ for $x \in R_2$. It is easy to see that ϕ is a Boolean derivation from R_1 to S. Obviously, λ is a homomorphism from R_2 to S. Then by (II) of Lemma 2.1 we have

$$\begin{aligned} (\phi * \lambda)(a, x) &= \phi(a)\lambda(x) = f(a, 1)f(a_0, x) = f(a_0, 1)f(a, x) \\ &= f(a_0, 1)f(a, 1)f(a, x) = f(a, 1)f(a, x) = f(a, x). \end{aligned}$$

For $a \in R_1$, $x \in R_2$, $a\lambda(x) - \lambda(x)a = 0$ follows from (III) of Lemma 2.1. Then

$$\begin{split} \lambda(x)\phi(a) &= f(a_0, x)f(a, 1) = f(a, x)f(a_0, 1) \\ &= f(a, x)f(a, 1)f(a_0, 1) = f(a, x)f(a, 1) \\ &= f(a, x) = \phi(a)\lambda(x). \end{split}$$

Thus the proof of the existence is finished.

Now we prove the uniqueness. Suppose that there exist a Boolean derivation $\phi': R_1 \to S$ and a homomorphism $\lambda': R_2 \to S$ such that $f = \phi * \lambda = \phi' * \lambda'$, $a\lambda'(x) - \lambda'(x)a = [\phi'(a), \lambda'(x)] = 0$ for $a \in R_1$, $x \in R_2$, and the identity element of S has an inverse image under f. Then there exists $(a_0, x_0) \in R_1 \times R_2$ such that $f(a_0, x_0) = 1$. Moreover, $1 = f(a_0, x_0) = f(a_0, 1)f(a_0, x_0) = f(a_0, 1)$. Hence

$$f(a_0, 1)(\phi'(a)\lambda'(1) - \phi'(a))$$

= $\phi'(a_0)\lambda'(1)(\phi'(a)\lambda'(1) - \phi'(a))$
= $\phi'(a_0)\phi'(a)\lambda'(1) - \phi'(a_0)\phi'(a)\lambda'(1)$
=0,

that is, $\phi'(a)\lambda'(1) = \phi'(a)$. Furthermore, we obtain

$$\phi(a) = f(a, 1) = (\phi' * \lambda')(a, 1) = \phi'(a)\lambda'(1) = \phi'(a).$$

Similarly, we get $f(a_0, 1)(\phi'(a_0)\lambda'(x) - \lambda'(x)) = 0$, which implies $\phi'(a_0)\lambda'(x) = \lambda'(x)$. Then

$$\lambda(x) = f(a_0, x) = (\phi' * \lambda')(a_0, x) = \phi'(a_0)\lambda'(x) = \lambda'(x).$$

The following example shows that it is possible that f has two different decompositions without the assumption that the identity element of S has an inverse image.

Example 2.3 Let $R = S = \mathbb{F}_2[a, b]/(a^2 - 1, b^2 - b)$, where $\mathbb{F}_2[a, b]$ is the polynomial ring in variables a, b over the field \mathbb{F}_2 and $I = (a^2 - 1, b^2 - b)$ is the ideal generated by $a^2 - 1$ and $b^2 - b$. Let ϕ be a derivation of $\mathbb{F}_2[a, b]$ by $\phi(a) = b$ and $\phi(b) = 0$. It is easy to see that $\phi(I) \subseteq I$. Therefore, ϕ induces a derivation ϕ of R. It is obvious that $\phi(R) = \{0, \overline{b}\}$, and so ϕ is a Boolean derivation. For all $x \in R$, we define $\lambda : R \to S$ and $\lambda' : R \to S$ by

$$\lambda(x) = x, \ \lambda'(x) = \overline{b}x.$$

It is easy to show that both λ and λ' are homomorphisms from R to S, and $\lambda \neq \lambda'$. Meanwhile, $\phi * \lambda = \phi * \lambda'$. Let $f = \phi * \lambda$. It is clear that f is a (1,1)-derivation-homomorphism from $R \times R$ to S, but f has no unique decomposition. For the derivation-homomorphism of a semiprime ring, we get the following result.

Theorem 2.4 Let R be a semiprime ring. Then any derivation-homomorphism of R must be zero.

Proof Let f be a derivation-homomorphism of R, that is, a (1,1)-derivation-homomorphism from $R \times R$ to R. By the definition of (1,1)-derivation-homomorphism, for any $a, b, c \in R$, we have f(ab, x) = f(ab, x)f(ab, 1). It follows from Lemma 2.1 that

$$\begin{split} ⁡(b,x) + f(a,x)b \\ = &(af(b,x) + f(a,x)b)(af(b,1) + f(a,1)b) \\ = ⁡(b,x)af(b,1) + af(b,x)f(a,1)b + f(a,x)baf(b,1) + f(a,x)bf(a,1)b \\ = &a^2f(b,x) + abf(a,1)f(b,x) + baf(a,1)f(b,x) + f(a,x)b^2 \\ = &a^2f(b,x) + [a,b]f(a,1)f(b,x) + f(a,x)b^2 \\ = &a^2f(b,x) + f(a,x)b^2. \end{split}$$

Then

$$af(b,x) + f(a,x)b = a^2 f(b,x) + f(a,x)b^2.$$
(2.8)

By (I) and (II) of Lemma 2.1, it is easy to show that $f(a^2, x) = 0$. Taking x = 1 and $b = a^2$ in (2.8), we get

$$a^{2}f(a,1) = a^{4}f(a,1).$$
(2.9)

For any $a, r \in \mathbb{R}$, it can be checked from (III), (IV) of Lemma 2.1 and (2.9) that

$$\begin{split} &(a^2-a)f(a,1)r(a^2-a)f(a,1)\\ =&(a^2f(a,1)-af(a,1))r(a^2f(a,1)-af(a,1))\\ =&a^2f(a,1)ra^2f(a,1)-a^2f(a,1)raf(a,1)-af(a,1)ra^2f(a,1)+af(a,1)raf(a,1)\\ =&a^2ra^2f(a,1)-a^2raf(a,1)-ara^2f(a,1)+araf(a,1)\\ =&-a(a^2ra)f(a,1)-a^2raf(a,1)+a(ara)f(a,1)-a(ar)f(a,1)\\ =&-a^3raf(a,1)-a^2rf(a,1)\\ =&a(a^3r)f(a,1)-a^2rf(a,1)\\ =&0. \end{split}$$

Since R is a semiprime ring, we have $(a^2 - a)f(a, 1) = 0$. Therefore

$$(af(a,1))^2 = a^2 f(a,1) = af(a,1),$$

that is, af(a, 1) is an idempotent element. By the definition of derivation-homomorphism, we get

$$\begin{split} f(a,x) &= f(a,x)f(a,1) \\ &= f(af(a,1),x) - af(f(a,1),1) \\ &= f((af(a,1))^2,x) - af((f(a,1))^2,1) \\ &= 0. \end{split}$$

In order to describe (n, m)-derivation-homomorphisms of a given ring, we first give two lemmas.

Lemma 2.5 Let $f : R_1 \times \cdots \times R_{n+1} \to S$ be an (n, 1)-derivation-homomorphism. Then for any $(a_1, x_1, \ldots, a_n, x_n, b, c) \in R_1^2 \times \cdots \times R_n^2 \times R_{n+1}^2$,

$$\sum_{u_1,...,u_n} f(u_1,...,u_n,b) f(v_1,...,v_n,c) = 0,$$

where u_i is one component of (a_i, x_i) and v_i is the other component, and so the left-hand side of the above equation is the sum of 2^n terms.

Proof We prove this by induction on n. For n = 1, we have obtained the conclusion from (2.2).

Assume the lemma holds for $1, \ldots, n-1$, that is to say, for all $k \leq n-1$, any (k, 1)-derivation-homomorphism $g: R_1 \times \cdots \times R_k \times R_{k+1} \to S$ and any $(a_1, x_1, \ldots, a_k, x_k, b, c) \in R_1^2 \times \cdots \times R_k^2 \times R_{k+1}^2$, we have

$$\sum_{u_1,\dots,u_k} g(u_1,\dots,u_k,b) f(v_1,\dots,v_k,c) = 0,$$
(2.10)

where u_i is one component of (a_i, x_i) and v_i is the other component, and so the left-hand side of the above equation is the sum of 2^k terms.

Let f be an (n, 1)-derivation-homomorphism. For any

$$(a_1, x_1, \dots, a_n, x_n, b, c) \in R_1^2 \times \dots \times R_n^2 \times R_{n+1}^2,$$

expanding the first n variables of $f(a_1 + x_1, \ldots, a_n + x_n, bc)$ by addition, and then expanding the (n + 1)-th variable by multiplication, we have

$$f(a_{1} + x_{1}, \dots, a_{n} + x_{n}, bc)$$

$$= \sum_{u_{1}, \dots, u_{n}} f(u_{1}, \dots, u_{n}, bc)$$

$$= \sum_{u_{1}, \dots, u_{n}} f(u_{1}, \dots, u_{n}, b) f(u_{1}, \dots, u_{n}, c),$$
(2.11)

where u_i is one component of (a_i, x_i) , and so the right-hand side of (2.11) is the sum of 2^n terms. On the other hand, expanding the (n + 1)-th variable of $f(a_1 + x_1, \ldots, a_n + x_n, bc)$ by multiplication, and then expanding the first *n* variables by addition, we obtain

$$f(a_{1} + x_{1}, \dots, a_{n} + x_{n}, bc)$$

$$= f(a_{1} + x_{1}, \dots, a_{n} + x_{n}, b) f(a_{1} + x_{1}, \dots, a_{n} + x_{n}, c)$$

$$= \sum_{y_{1}, \dots, y_{n}} \sum_{z_{1}, \dots, z_{n}} f(y_{1}, \dots, y_{n}, b) f(z_{1}, \dots, z_{n}, c),$$
(2.12)

where y_i is one component of (a_i, x_i) and z_i is one component of (a_i, x_i) , and so the right-hand side of (2.12) is the sum of 2^{2n} terms.

We shall now classify items on the right-hand side of (2.12). For any $s \in \{0, ..., n\}$, denote by A_s the sum of the item on the right-hand side of (2.12) that satisfies the following condition:

There exist $1 \leq j_1 < j_2 < \cdots < j_s \leq n$ such that y_{j_t} is one component of (a_k, x_k) , and z_{j_t} is the other component for $t = 1, \ldots, s$; however, y_k and z_k are the same component of (a_k, x_k) for $k \in \{1, \ldots, n\} \setminus \{j_1, \ldots, j_s\}$.

Then by (2.12) we get

$$f(a_1 + x_1, \dots, a_n + x_n, bc) = A_0 + \dots + A_n.$$
(2.13)

If $s \in \{1, \ldots, n-1\}$, let $i_1, \ldots, i_{n-s} \in \{1, \ldots, n\}$ with $i_1 < \cdots < i_{n-s}$. Denote by $\{j_1, \ldots, j_s\}$ the complementary set of $\{i_1, \ldots, i_{n-s}\}$ in $\{1, \ldots, n\}$. Fixed positions i_1, \ldots, i_{n-s} in f by $u_{i_1}, \ldots, u_{i_{n-s}}$, we obtain an (s, 1)-derivation-homomorphism

$$g_{u_{i_1},\dots,u_{i_{n-s}}}(y_{j_1},\dots,y_{j_s},b) = f(y_1,\dots,y_n,b),$$
(2.14)

where $(y_{i_1}, \ldots, y_{i_{n-s}}) = (u_{i_1}, \ldots, u_{i_{n-s}})$. It follows from (2.10), (2.13), and (2.14) that

$$A_{s} = \sum_{i_{1} < \dots < i_{n-s}} \sum_{u_{i_{1}}, \dots, u_{i_{n-s}}} \sum_{y_{j_{1}}, \dots, y_{j_{s}}} g_{u_{i_{1}}, \dots, u_{i_{n-s}}}(y_{j_{1}}, \dots, y_{j_{s}}, b)$$
$$\cdot g_{u_{i_{1}}, \dots, u_{i_{n-s}}}(z_{j_{1}}, \dots, z_{j_{s}}, c).$$

By the inductive assumption, we have

$$\sum_{y_{j_1},\dots,y_{j_s}} g_{u_{i_1},\dots,u_{i_{n-s}}}(y_{j_1},\dots,y_{j_s},b) \cdot g_{u_{i_1},\dots,u_{i_{n-s}}}(z_{j_1},\dots,z_{j_s},c) = 0$$

Moreover, $A_s = 0$ for all $1 \le s \le n-1$. Looking back at (2.11) and (2.13), and noting that the right-hand side of (2.11) is A_0 , we get $A_0 = A_0 + A_n$. Thus the proof is completed.

Lemma 2.6 Let f be an (n, 1)-derivation-homomorphism of a ring S, that is, an (n, 1)-derivation-homomorphism from $R_1 \times \cdots \times R_{n+1}$ to S, where $R_i = S$ for all $i \in \{1, \ldots, n+1\}$. Assume that the identity element of S has an inverse image, that is, there exists $(x_1, \cdots, x_n, x_{n+1}) \in R_1 \times \cdots \times R_{n+1}$ such that $f(x_1, \cdots, x_n, x_{n+1}) = 1$. Then there exist a unique Boolean n-derivation $\phi : R_1 \times \cdots \times R_n \to S$ and a unique homomorphism $\lambda : R_{n+1} \to Z(S)$ such that $f = \phi * \lambda$, where $\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1)$ and $\lambda(b) = f(x_1, \ldots, x_n, b)$.

Proof Firstly we prove the existence. From now on, in the course of proof of this Lemma, we will always assume that $R_1 = \cdots = R_{n+1} = S$. In order to make the implication of the symbols clear, we go on to use all the symbols R_1, \ldots, R_{n+1} except the symbol S. We shall prove that any (n, 1)-derivation-homomorphism $f: R_1 \times \cdots \times R_n \times R_{n+1} \to S$ satisfies

$$f(a_1, \ldots, a_n, b) = f(a_1, \ldots, a_n, 1)f(x_1, \ldots, x_n, b),$$

for a given $(x_1, \ldots, x_n) \in R_1 \times \cdots \times R_n$ and any $(a_1, \ldots, a_n, b) \in R_1 \times \cdots \times R_n \times R_{n+1}$.

If n = 1, it is a part of conclusions in Theorem 2.2. We now proceed by induction on n.

Assume the lemma holds for $1, \ldots, n-1$, that is, for all $1 \leq k \leq n-1$ and any (k, 1)-derivation-homomorphism $g: R_1 \times \cdots \times R_k \times R_{k+1} \to S$, we have

$$g(a_1, \dots, a_k, b) = g(a_1, \dots, a_k, 1)g(x_1, \dots, x_k, b),$$
(2.15)

for a given $(x_1, \ldots, x_k) \in R_1 \times \cdots \times R_k$ and any $(a_1, \ldots, a_k, b) \in R_1 \times \cdots \times R_k \times R_{k+1}$.

Let f be an (n, 1)-derivation-homomorphism. Since the identity element of S has an inverse image, there exists $(x_1, \ldots, x_n, 1) \in R_1 \times \cdots \times R_n \times R_{n+1}$ such that $f(x_1, \ldots, x_n, 1) = 1$, since

$$1 = f(x_1, \dots, x_n, x_{n+1}) = f(x_1, \dots, x_n, 1)f(x_1, \dots, x_n, x_{n+1}) = f(x_1, \dots, x_n, 1).$$

Fixing the first n-1 variables in $f(a_1, \ldots, a_n, b)$, then $f(a_1, \ldots, a_n, b)$ can be viewed as a (1, 1)-derivationhomomorphism from $R_n \times R_{n+1}$ to S. By Lemma 2.1, for any $(a_1, \ldots, a_n, b) \in R_1 \times \cdots \times R_n \times R_{n+1}$ and $r \in S$, we get

$$f(a_1, \dots, a_n, b) = -f(a_1, \dots, a_n, b),$$
(2.16)

and

$$f(a_1, \dots, a_n, b)r = rf(a_1, \dots, a_n, b).$$
 (2.17)

For any $(a_1, x_1, \ldots, a_n, x_n, b, c) \in R_1^2 \times \cdots \times R_n^2 \times R_{n+1}^2$, by Lemma 2.5, we obtain

$$\sum_{u_1,\dots,u_n} f(u_1,\dots,u_n,b)f(v_1,\dots,v_n,1) = 0,$$
(2.18)

where u_i is one component of (a_i, x_i) , v_i is the other component, and so the left-hand side of (2.18) is the sum of 2^n terms. If $k \in \{1, \ldots, n-1\}$, let $i_1, \ldots, i_k \in \{1, \ldots, n\}$ with $i_1 < \cdots < i_k$. We denote by $\{j_1, \ldots, j_s\}$ the complementary set of $\{i_1, \ldots, i_k\}$ in $\{1, \ldots, n\}$. Fixing variables i_1, \ldots, i_k in f through x_{i_1}, \ldots, x_{i_k} , we obtain an (n-k, 1)-derivation-homomorphism

$$h_{x_{i_1},\dots,x_{i_k}}(a_{j_1},\dots,a_{j_{n-k}},b) = f(u_1,\dots,u_n,b),$$
(2.19)

where $(u_{i_1}, \ldots, u_{i_k}) = (x_{i_1}, \ldots, x_{i_k})$ and $(u_{j_1}, \ldots, u_{j_{n-k}}) = (a_{j_1}, \ldots, a_{j_{n-k}})$. By (2.19), we write (2.18) as

$$f(a_1, \dots, a_n, b)f(x_1, \dots, x_n, 1) + f(x_1, \dots, x_n, b)f(a_1, \dots, a_n, 1) + \sum_{k=1}^{n-1} B_k = 0,$$
(2.20)

where $B_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} h_{x_{i_1},\dots,x_{i_k}}(a_{j_1},\dots,a_{j_{n-k}},b)h_{x_{j_1},\dots,x_{j_{n-k}}}(a_{i_1},\dots,a_{i_k},1)$. It follows from (2.15), (2.17), and (2.19) that

$$B_{k} = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} h_{x_{i_{1}},\dots,x_{i_{k}}}(a_{j_{1}},\dots,a_{j_{n-k}},b)h_{x_{j_{1}},\dots,x_{j_{n-k}}}(a_{i_{1}},\dots,a_{i_{k}},1)$$
$$= \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} h_{x_{i_{1}},\dots,x_{i_{k}}}(a_{j_{1}},\dots,a_{j_{n-k}},1)h_{x_{i_{1}},\dots,x_{i_{k}}}(x_{j_{1}},\dots,x_{j_{n-k}},b)$$
$$\cdot h_{x_{j_{1}},\dots,x_{j_{n-k}}}(a_{i_{1}},\dots,a_{i_{k}},1)$$

$$= \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} h_{x_{i_1}, \dots, x_{i_k}}(a_{j_1}, \dots, a_{j_{n-k}}, 1) h_{x_{j_1}, \dots, x_{j_{n-k}}}(a_{i_1}, \dots, a_{i_k}, 1) \\ \cdot h_{x_{i_1}, \dots, x_{i_k}}(x_{j_1}, \dots, x_{j_{n-k}}, b)$$

$$= \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} h_{x_{i_1}, \dots, x_{i_k}}(a_{j_1}, \dots, a_{j_{n-k}}, 1) h_{x_{j_1}, \dots, x_{j_{n-k}}}(a_{i_1}, \dots, a_{i_k}, 1) \\ \cdot h_{x_{j_1}, \dots, x_{j_{n-k}}}(x_{i_1}, \dots, x_{i_k}, b)$$

$$= \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} h_{x_{i_1}, \dots, x_{i_k}}(a_{j_1}, \dots, a_{j_{n-k}}, 1) h_{x_{j_1}, \dots, x_{j_{n-k}}}(a_{i_1}, \dots, a_{i_k}, b)$$

$$= \sum_{j_1, \dots, j_{n-k}} h_{x_{j_1}, \dots, x_{j_{n-k}}}(a_{i_1}, \dots, a_{i_k}, b) h_{x_{i_1}, \dots, x_{i_k}}(a_{j_1}, \dots, a_{j_{n-k}}, 1)$$

$$= B_{n-k}.$$

$$(2.21)$$

If n is odd, k and n-k are one-to-one and then we have $\sum_{k=1}^{n-1} B_k = 0$. If n is even, then $\sum_{k=1}^{n-1} B_k = B_m$, where m = n/2. From (2.15), (2.16), (2.19), and (2.21), the items in B_m satisfy

$$h_{x_{i_1},\dots,x_{i_m}}(a_{j_1},\dots,a_{j_m},b)h_{x_{j_1},\dots,x_{j_m}}(a_{i_1},\dots,a_{i_m},1) + h_{x_{j_1},\dots,x_{j_m}}(a_{i_1},\dots,a_{i_m},b)h_{x_{i_1},\dots,x_{i_m}}(a_{j_1},\dots,a_{j_m},1) = 0.$$
(2.22)

Thus $B_m = 0$. Hence, $\sum_{k=1}^{n-1} B_k = 0$. Then by (2.20) we obtain

$$f(a_1, \dots, a_n, b) = f(a_1, \dots, a_n, b) f(x_1, \dots, x_n, 1)$$

= $f(a_1, \dots, a_n, 1) f(x_1, \dots, x_n, b).$ (2.23)

Let $\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1)$ and $\lambda(b) = f(x_1, \ldots, x_n, b)$. It is obvious that ϕ is a Boolean *n*-derivation from $R_1 \times \cdots \times R_n$ to S and λ is a homomorphism from R_{n+1} to Z(S). By (2.23), we get

$$f(a_1,\ldots,a_n,b) = \phi(a_1,\ldots,a_n)\lambda(b) = (\phi * \lambda)(a_1,\ldots,a_n,b).$$

Now we prove the uniqueness. Suppose that there exist a Boolean *n*-derivation $\phi': R_1 \times \cdots \times R_n \to S$ and a homomorphism $\lambda': R_{n+1} \to Z(S)$ such that $f = \phi * \lambda = \phi' * \lambda'$. Assume the identity element of S has an inverse image under f. Then there exists $(x_1, \ldots, x_n, 1) \in R_1 \times \cdots \times R_{n+1}$ such that $f(x_1, \ldots, x_n, 1) = 1$. From the definition of ϕ' and λ' , it is easy to see that

$$f(x_1, \dots, x_n, 1)(\phi'(a_1, \dots, a_n)\lambda'(1) - \phi'(a_1, \dots, a_n))$$

= $\phi'(x_1, \dots, x_n)\lambda'(1)(\phi'(a_1, \dots, a_n)\lambda'(1) - \phi'(a_1, \dots, a_n))$
= $\phi'(x_1, \dots, x_n)\lambda'(1)\lambda'(1)\phi'(a_1, \dots, a_n) - \phi'(x_1, \dots, x_n)\lambda'(1)\phi'(a_1, \dots, a_n)$
=0,

that is, $\phi'(a_1, \ldots, a_n)\lambda'(1) = \phi'(a_1, \ldots, a_n)$. Furthermore, we have

$$\phi(a_1, \dots, a_n) = f(a_1, \dots, a_n, 1)$$
$$= (\phi' * \lambda')(a_1, \dots, a_n, 1)$$
$$= \phi'(a_1, \dots, a_n)\lambda'(1)$$
$$= \phi'(a_1, \dots, a_n).$$

In a similar way, we can prove that

$$f(x_1,\ldots,x_n,1)(\phi'(x_1,\ldots,x_n)\lambda'(b)-\lambda'(b))=0,$$

which implies $\phi'(x_1, \ldots, x_n)\lambda'(b) = \lambda'(b)$. Then

$$\lambda(b) = f(x_1, \dots, x_n, b)$$
$$= (\phi' * \lambda')(x_1, \dots, x_n, b)$$
$$= \phi'(x_1, \dots, x_n)\lambda'(b)$$
$$= \lambda'(b).$$

In order to prove Theorem 2.8, we also need the following lemma, which can be obtained from the proof of Corollary 2 in [4].

Lemma 2.7 Let f be a mapping from $R_1 \times \cdots \times R_n$ to S, where $R_1 = \cdots = R_n = S$ is a ring. Then f is an n-homomorphism if and only if there exist pairwise commutative Boolean homomorphisms $\phi_i : R_i \to S$ for $i \in \{1, \ldots, n\}$ such that $f = \phi_1 * \cdots * \phi_n$, where $\phi_i(a_i) = f(1, \ldots, 1, a_i, 1, \ldots, 1), i = 1, \ldots, n$.

Theorem 2.8 Let f be an (n,m)-derivation-homomorphism of a ring S, that is, an (n,m)-derivation-homomorphism from $R_1 \times \cdots \times R_{n+m}$ to S, where $R_i = S$ for all $i \in \{1, \ldots, n+m\}$. Assume that the identity element of S has an inverse image. Then there exist a unique Boolean n-derivation $\phi : R_1 \times \cdots \times R_n \to S$ and a unique m-homomorphism $\lambda : R_{n+1} \times \cdots \times R_{n+m} \to Z(S)$ such that $f = \phi * \lambda$.

Proof Firstly we prove the existence. Fixing the first *n* variables in an (n, m)-derivation-homomorphism $f: R_1 \times \cdots \times R_{n+m} \to S$, we can view *f* as an *m*-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to *S*.

As the identity element of S has an inverse image, by Lemma 2.7, there exists $(x_1, \ldots, x_n, 1, \ldots, 1) \in R_1 \times \cdots \times R_{n+m}$ such that

$$f(x_1,\ldots,x_n,1,\ldots,1)=1,$$

since

$$1 = f(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})$$

= $f(x_1, \dots, x_n, x_{n+1}, 1, \dots, 1) \cdots f(x_1, \dots, x_n, 1, \dots, 1, x_{n+m})$
= $f(x_1, \dots, x_n, 1, \dots, 1) f(x_1, \dots, x_n, x_{n+1}, 1, \dots, 1)$
 $\cdots f(x_1, \dots, x_n, 1, \dots, 1, x_{n+m})$
= $f(x_1, \dots, x_n, 1, \dots, 1) f(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})$
= $f(x_1, \dots, x_n, 1, \dots, 1).$

Fixing m-1 variables among the last m variables in $f(a_1, \ldots, a_n, b_1, \ldots, b_m)$, we can view f as an (n, 1)derivation-homomorphism. Then Lemma 2.6 implies that $f(x_1, \ldots, x_n, 1, \ldots, 1, b_i, 1, \ldots, 1) \in Z(S)$. Hence

$$f(a_{1}, \dots, a_{n}, b_{1}, \dots, b_{m})$$

$$=f(a_{1}, \dots, a_{n}, b_{1}, 1, \dots, 1) \cdots f(a_{1}, \dots, a_{n}, 1, \dots, 1, b_{m})$$

$$=f(a_{1}, \dots, a_{n}, 1, \dots, 1)f(x_{1}, \dots, x_{n}, b_{1}, 1, \dots, 1)$$

$$\cdots f(a_{1}, \dots, a_{n}, 1, \dots, 1)f(x_{1}, \dots, x_{n}, 1, \dots, 1, b_{m})$$

$$=(f(a_{1}, \dots, a_{n}, 1, \dots, 1))^{m}f(x_{1}, \dots, x_{n}, b_{1}, 1, \dots, 1) \cdots f(x_{1}, \dots, x_{n}, 1, \dots, 1, b_{m})$$

$$=f(a_{1}, \dots, a_{n}, 1, \dots, 1)f(x_{1}, \dots, x_{n}, b_{1}, \dots, b_{m}).$$
(2.24)

Let

$$\phi(a_1,\ldots,a_n)=f(a_1,\ldots,a_n,1,\ldots,1),$$

and

$$\lambda(b_1,\ldots,b_m) = f(x_1,\ldots,x_n,b_1,\ldots,b_m)$$

It is easy to show that ϕ is a Boolean *n*-derivation from $R_1 \times \cdots \times R_n$ to S and λ is an *m*-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to Z(S). Then by (2.24) we obtain

$$f(a_1, \dots, a_n, b_1, \dots, b_m) = \phi(a_1, \dots, a_n)\lambda(b_1, \dots, b_m)$$
$$= (\phi * \lambda)(a_1, \dots, a_n, b_1, \dots, b_m).$$

Now we prove the uniqueness. Suppose that there exist a Boolean *n*-derivation $\phi': R_1 \times \cdots \times R_n \to S$ and an *m*-homomorphism $\lambda': R_{n+1} \times \cdots \times R_{n+m} \to Z(S)$ such that $f = \phi * \lambda = \phi' * \lambda'$. Assume the identity element of *S* has an inverse image under *f*. Thus, there exists $(x_1, \ldots, x_n, 1, \ldots, 1) \in R_1 \times \cdots \times R_{n+m}$ such that

$$f(x_1,\ldots,x_n,1,\ldots,1)=1$$

From the definition of ϕ' and λ' , it is easy to see that

$$f(x_1, \dots, x_n, 1, \dots, 1)(\phi'(a_1, \dots, a_n)\lambda'(1, \dots, 1) - \phi'(a_1, \dots, a_n))$$

= $\phi'(x_1, \dots, x_n)\lambda'(1, \dots, 1)(\phi'(a_1, \dots, a_n)\lambda'(1, \dots, 1) - \phi'(a_1, \dots, a_n))$
= $\phi'(x_1, \dots, x_n)\lambda'(1, \dots, 1)\lambda'(1, \dots, 1)\phi'(a_1, \dots, a_n)$
 $-\phi'(x_1, \dots, x_n)\lambda'(1, \dots, 1)\phi'(a_1, \dots, a_n)$

=0.

Therefore, $\phi'(a_1, \ldots, a_n)\lambda'(1, \ldots, 1) = \phi'(a_1, \ldots, a_n)$. Hence, we have

$$\phi(a_1, \dots, a_n) = f(a_1, \dots, a_n, 1, \dots, 1)$$
$$= (\phi' * \lambda')(a_1, \dots, a_n, 1, \dots, 1)$$
$$= \phi'(a_1, \dots, a_n)\lambda'(1, \dots, 1)$$
$$= \phi'(a_1, \dots, a_n).$$

Similarly, it can be checked that

$$f(x_1,\ldots,x_n,1,\ldots,1)(\phi'(x_1,\ldots,x_n)\lambda'(b_1,\ldots,b_m)-\lambda'(b_1,\ldots,b_m))=0$$

that is $\phi'(x_1,\ldots,x_n)\lambda'(b_1,\ldots,b_m) = \lambda'(b_1,\ldots,b_m)$. Then we get

$$\lambda(b_1, \dots, b_m) = f(x_1, \dots, x_n, b_1, \dots, b_m)$$
$$= (\phi' * \lambda')(x_1, \dots, x_n, b_1, \dots, b_m)$$
$$= \phi'(x_1, \dots, x_n)\lambda'(b_1, \dots, b_m)$$
$$= \lambda'(b_1, \dots, b_m).$$

References

- [1] Brešar M, Martindale WS. Centralizing mapping and derivations in prime rings. J Algebra 1993; 156: 385-394.
- [2] Brešar M, Martindale WS, Miers CR. Centralizing maps in prime rings with involution. J Algebra 1993; 161: 342-357.
- [3] Jung YS, Park KH. On prime and semiprime rings with permuting 3-derivations. Bull Korean Math Soc 2007; 44: 789-794.
- [4] Li LY, Xu XW. Jordan multi-homomorphisms on Associative Rings. J Jilin Univ Sic 2014; 52: 1105-1111.
- [5] Park KH. On 4-permuting 4-derivations in prime and semiprime rings. J Korea Soc Math Educ Ser B Pure Appl Math 2007; 14: 271-278.
- [6] Park KH. On prime and semiprime rings with symmetric n-derivations. J Chungcheong Math Soc 2009; 22: 451-458.
- [7] Posner E. Derivations in prime rings. Proc Amer Math Soc 1957; 8: 1093-1100.
- [8] Vukman J. Symmetric bi-derivations on prime and semi-prime rings. Aequationes Math 1989; 38: 245-254.
- [9] Wang Y, Wang Y, Du YQ. n-derivations of triangular algebras. Linear Algebra Appl 2013; 439: 463-471.
- [10] Xu XW, Liu Y, Zhang W. Skew n-derivations on semiprime rings. Bull Korean Math Soc 2013; 50: 1863-1871.