Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
т $\mathbf{B} \boldsymbol{B i t a k}$
Research Article
Turk J Math
(2016) 40: 1374 - 1385
(C) TÜBİTAK
doi:10.3906/mat-1505-55

Derivation-homomorphisms

Lingyue $\mathbf{L I}^{1, *}$, Xiaowei $\mathbf{X U}^{2}$
${ }^{1}$ Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
${ }^{2}$ College of Mathematics, Jilin University, Changchun, P.R. China

Received: 22.05.2015 • Accepted/Published Online: 24.02.2016 • Final Version: 02.12.2016

Abstract: In this paper, we introduce notions of (n, m)-derivation-homomorphisms and Boolean n-derivations. Using Boolean n-derivations and m-homomorphisms, we describe structures of (n, m)-derivation-homomorphisms.

Key words: Derivation-homomorphism, Boolean n-derivation, (n, m)-derivation-homomorphism

1. Introduction

In this paper, by a ring we shall always mean an associative ring with an identity.
Homomorphisms and derivations are important in the course of researching rings. Multiderivations (e.g., biderivation, 3-derivation, or n-derivation in general) have been explored in (semi-) rings. In 1989, Vukman [8] researched Posner's theorems [7] for the trace map of symmetric biderivations on (semi-) prime rings. Brešar [1, 2] characterized biderivations on prime and semiprime rings, respectively, explaining the reason why Vukman's results hold. In 2007, Jung and Park [3] investigated Posner's theorems for the trace of permuting 3 -derivations on prime and semiprime rings. In cases of permuting 4 -derivations and symmetric n-derivations, similar results were obtained in [5] and [6]. It was proved in [10] that a skew n-derivation $(n \geq 3)$ on a semiprime ring R must map into the center of R. Wang et al. [9] also investigated n-derivations $(n \geq 3)$ on triangular algebras. In a recent paper, Li and Xu [4] described multihomomorphisms.

In this paper, we consider a kind of multimapping that is either a derivation or a homomorphism for each component when the other components are fixed by any given elements. Such a multimapping is called an (n, m)-derivation-homomorphism and will be described in this paper.

Let $m \geq 0, n \geq 0$, and $m+n>0$ in \mathbb{Z}. Let R_{k} be rings, where $k \in\{1, \ldots, n+m\}$. Let S be a ring and a bimodule ${ }_{R_{k}} S_{R_{k}}$ for $1 \leq k \leq m$ such that $r_{k}(s t)=\left(r_{k} s\right) t$, $(s t) r_{k}=s\left(t r_{k}\right)$, and $\left(s r_{k}\right) t=s\left(r_{k} t\right)$ for $r_{k} \in R_{k}$, $s, t \in S$. Then we call $f: R_{1} \times \cdots \times R_{n+m} \rightarrow S$ an (n, m)-derivation-homomorphism from $R_{1} \times \cdots \times R_{n+m}$ to S, if the following conditions hold:
(i) For $i \in\{1, \ldots, n+m\}$

$$
f\left(a_{1}, \ldots, a_{i}+b, \ldots, a_{n+m}\right)=f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n+m}\right)+f\left(a_{1}, \ldots, b, \ldots, a_{n+m}\right)
$$

(ii) For $i \in\{1, \ldots, n\}$

$$
f\left(a_{1}, \ldots, a_{i} b, \ldots, a_{n+m}\right)=a_{i} f\left(a_{1}, \ldots, b, \ldots, a_{n+m}\right)+f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n+m}\right) b
$$

*Correspondence: lily@qibebt.ac.cn
2010 AMS Mathematics Subject Classification: 16W25.
(iii) For $i \in\{n+1, \ldots, n+m\}$

$$
f\left(a_{1}, \ldots, a_{i} b, \ldots, a_{n+m}\right)=f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n+m}\right) f\left(a_{1}, \ldots, b, \ldots, a_{n+m}\right) .
$$

It is easy to see that an $(m, 0)$-derivation-homomorphism is an m-derivation, and a $(0, n)$-derivation-homomorphism is an n-homomorphism. In this paper, our concern will focus on the case $m n \neq 0$, i.e. the case that both m and n are positive.

An n-derivation $\phi: R_{1} \times \cdots \times R_{n} \rightarrow S$ is said to be a Boolean n-derivation, if $\phi\left(x_{1}, \ldots, x_{n}\right)=$ $\phi\left(x_{1}, \ldots, x_{n}\right)^{2}$ holds for all $\left(x_{1}, \ldots, x_{n}\right) \in R_{1} \times \cdots \times R_{n}$. In particular, a Boolean 1-derivation is also called a Boolean derivation.

Let $\phi_{i}: R_{i} \rightarrow S$ be mappings, $i=1, \ldots, n$. Then we define $\phi_{1} * \cdots * \phi_{n}: R_{1} \times \cdots \times R_{n} \rightarrow S$ as follows:

$$
\left(\phi_{1} * \cdots * \phi_{n}\right)\left(a_{1}, \ldots, a_{n}\right)=\phi_{1}\left(a_{1}\right) \cdots \phi_{n}\left(a_{n}\right),
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in R_{1} \times \cdots \times R_{n}$.
We call $f: R_{1} \times \cdots \times R_{n} \times R_{n+1} \times \cdots \times R_{n+m} \rightarrow S$ an (n, m)-derivation-homomorphism of S, if $R_{i}=S$ for all $i \in\{1, \ldots, n+m\}$.

2. Main result

Firstly, we consider the case of $(1,1)$-derivation-homomorphisms.
Lemma 2.1 Let f be a (1,1)-derivation-homomorphism from $R_{1} \times R_{2}$ to S. Then for $a, b, c \in R_{1}$ and $x, y \in R_{2}$,
(I) $f(a, x)=-f(a, x)$;
(II) $f(a, x) f(b, y)=f(b, x) f(a, y)$;
(III) $a f(b, x)=f(b, x) a$;
(IV) $[a, c] f(b, x)+[b, c] f(a, x)=0$. In particular, $[a, b] f(b, x)=0$.

Proof (I) Observing the different expansions of $f(a+b, x y)$, we get

$$
\left\{\begin{aligned}
f(a+b, x y) & =f(a, x y)+f(b, x y), \\
f(a+b, x y) & =f(a+b, x) f(a+b, y) \\
& =(f(a, x)+f(b, x))(f(a, y)+f(b, y)) \\
& =f(a, x y)+f(a, x) f(b, y)+f(b, x) f(a, y)+f(b, x y) .
\end{aligned}\right.
$$

Then

$$
\begin{equation*}
f(a, x) f(b, y)=-f(b, x) f(a, y) . \tag{2.1}
\end{equation*}
$$

Taking $y=1$ and $b=a$ in (2.1), we have $f(a, x) f(a, 1)=-f(a, x) f(a, 1)$. Hence, $f(a, x)=-f(a, x)$.
(II) It is easy to see from (I) and (2.1).
(III) We write (2.1) as

$$
\begin{equation*}
f(a, x) f(b, y)+f(b, x) f(a, y)=0 . \tag{2.2}
\end{equation*}
$$

Replacing a by $a b$ in (2.2), we obtain

$$
f(a b, x) f(b, y)+f(b, x) f(a b, y)=0,
$$

that is,

$$
\begin{equation*}
a f(b, x) f(b, y)+f(a, x) b f(b, y)+f(b, x) a f(b, y)+f(b, x) f(a, y) b=0 \tag{2.3}
\end{equation*}
$$

Replacing b by b^{2} in (2.2), we obtain

$$
f(a, x) f\left(b^{2}, y\right)+f\left(b^{2}, x\right) f(a, y)=0
$$

that is,

$$
\begin{equation*}
f(a, x) b f(b, y)+f(a, x) f(b, y) b+b f(b, x) f(a, y)+f(b, x) b f(a, y)=0 \tag{2.4}
\end{equation*}
$$

With (I) and (II), it follows from (2.3) and (2.4) that

$$
\begin{equation*}
a f(b, x) f(b, y)+f(b, x) a f(b, y)+b f(b, x) f(a, y)+f(b, x) b f(a, y)=0 \tag{2.5}
\end{equation*}
$$

Replacing a by $b a$ in (2.2), we get

$$
f(b a, x) f(b, y)+f(b, x) f(b a, y)=0
$$

that is,

$$
\begin{equation*}
b f(a, x) f(b, y)+f(b, x) a f(b, y)+f(b, x) b f(a, y)+f(b, x) f(b, y) a=0 \tag{2.6}
\end{equation*}
$$

With (I) and $(I I)$, it follows from (2.5) and (2.6) that

$$
\begin{equation*}
a f(b, x) f(b, y)+f(b, x) f(b, y) a=0 \tag{2.7}
\end{equation*}
$$

Taking $y=1$, we get

$$
a f(b, x)+f(b, x) a=0
$$

Then by $(I), a f(b, x)=f(b, x) a$.
(IV) Using different expansions of $f(a b c, x)$ and (III), we have

$$
\left\{\begin{array}{l}
f(a b c, x)=a f(b c, x)+b c f(a, x)=a b f(c, x)+a c f(b, x)+b c f(a, x) \\
f(a b c, x)=a b f(c, x)+c f(a b, x)=a b f(c, x)+c a f(b, x)+c b f(a, x)
\end{array}\right.
$$

Therefore,

$$
[a, c] f(b, x)+[b, c] f(a, x)=0
$$

Setting $c=b$, we obtain $[a, b] f(b, x)=0$.

Theorem 2.2 Let f be a (1,1)-derivation-homomorphism from $R_{1} \times R_{2}$ to S. Assume that there exists $a_{0} \in R_{1}$ such that $f\left(a_{0}, 1\right) f(b, 1)=f(b, 1) f\left(a_{0}, 1\right)=f(b, 1)$ holds for each $b \in R_{1}$. Then there exist a Boolean derivation $\phi: R_{1} \rightarrow S$ and a homomorphism $\lambda: R_{2} \rightarrow S$ such that $f=\phi * \lambda$ and $a \lambda(x)-\lambda(x) a=[\phi(a), \lambda(x)]=$ 0 for $a \in R_{1}$ and $x \in R_{2}$. Furthermore, if the identity element of S has an inverse image, then f has a unique decomposition.

Proof Let $\phi(a)=f(a, 1)$ for $a \in R_{1}$ and $\lambda(x)=f\left(a_{0}, x\right)$ for $x \in R_{2}$. It is easy to see that ϕ is a Boolean derivation from R_{1} to S. Obviously, λ is a homomorphism from R_{2} to S. Then by (II) of Lemma 2.1 we have

$$
\begin{aligned}
(\phi * \lambda)(a, x) & =\phi(a) \lambda(x)=f(a, 1) f\left(a_{0}, x\right)=f\left(a_{0}, 1\right) f(a, x) \\
& =f\left(a_{0}, 1\right) f(a, 1) f(a, x)=f(a, 1) f(a, x)=f(a, x)
\end{aligned}
$$

For $a \in R_{1}, x \in R_{2}, a \lambda(x)-\lambda(x) a=0$ follows from (III) of Lemma 2.1. Then

$$
\begin{aligned}
\lambda(x) \phi(a) & =f\left(a_{0}, x\right) f(a, 1)=f(a, x) f\left(a_{0}, 1\right) \\
& =f(a, x) f(a, 1) f\left(a_{0}, 1\right)=f(a, x) f(a, 1) \\
& =f(a, x)=\phi(a) \lambda(x)
\end{aligned}
$$

Thus the proof of the existence is finished.
Now we prove the uniqueness. Suppose that there exist a Boolean derivation $\phi^{\prime}: R_{1} \rightarrow S$ and a homomorphism $\lambda^{\prime}: R_{2} \rightarrow S$ such that $f=\phi * \lambda=\phi^{\prime} * \lambda^{\prime}, a \lambda^{\prime}(x)-\lambda^{\prime}(x) a=\left[\phi^{\prime}(a), \lambda^{\prime}(x)\right]=0$ for $a \in R_{1}$, $x \in R_{2}$, and the identity element of S has an inverse image under f. Then there exists $\left(a_{0}, x_{0}\right) \in R_{1} \times R_{2}$ such that $f\left(a_{0}, x_{0}\right)=1$. Moreover, $1=f\left(a_{0}, x_{0}\right)=f\left(a_{0}, 1\right) f\left(a_{0}, x_{0}\right)=f\left(a_{0}, 1\right)$. Hence

$$
\begin{aligned}
& f\left(a_{0}, 1\right)\left(\phi^{\prime}(a) \lambda^{\prime}(1)-\phi^{\prime}(a)\right) \\
= & \phi^{\prime}\left(a_{0}\right) \lambda^{\prime}(1)\left(\phi^{\prime}(a) \lambda^{\prime}(1)-\phi^{\prime}(a)\right) \\
= & \phi^{\prime}\left(a_{0}\right) \phi^{\prime}(a) \lambda^{\prime}(1)-\phi^{\prime}\left(a_{0}\right) \phi^{\prime}(a) \lambda^{\prime}(1) \\
= & 0,
\end{aligned}
$$

that is, $\phi^{\prime}(a) \lambda^{\prime}(1)=\phi^{\prime}(a)$. Furthermore, we obtain

$$
\phi(a)=f(a, 1)=\left(\phi^{\prime} * \lambda^{\prime}\right)(a, 1)=\phi^{\prime}(a) \lambda^{\prime}(1)=\phi^{\prime}(a)
$$

Similarly, we get $f\left(a_{0}, 1\right)\left(\phi^{\prime}\left(a_{0}\right) \lambda^{\prime}(x)-\lambda^{\prime}(x)\right)=0$, which implies $\phi^{\prime}\left(a_{0}\right) \lambda^{\prime}(x)=\lambda^{\prime}(x)$. Then

$$
\lambda(x)=f\left(a_{0}, x\right)=\left(\phi^{\prime} * \lambda^{\prime}\right)\left(a_{0}, x\right)=\phi^{\prime}\left(a_{0}\right) \lambda^{\prime}(x)=\lambda^{\prime}(x)
$$

The following example shows that it is possible that f has two different decompositions without the assumption that the identity element of S has an inverse image.

Example 2.3 Let $R=S=\mathbb{F}_{2}[a, b] /\left(a^{2}-1, b^{2}-b\right)$, where $\mathbb{F}_{2}[a, b]$ is the polynomial ring in variables a, b over the field \mathbb{F}_{2} and $I=\left(a^{2}-1, b^{2}-b\right)$ is the ideal generated by $a^{2}-1$ and $b^{2}-b$. Let ϕ be a derivation of $\mathbb{F}_{2}[a, b]$ by $\phi(a)=b$ and $\phi(b)=0$. It is easy to see that $\phi(I) \subseteq I$. Therefore, ϕ induces a derivation ϕ of R. It is obvious that $\phi(R)=\{0, \bar{b}\}$, and so ϕ is a Boolean derivation. For all $x \in R$, we define $\lambda: R \rightarrow S$ and $\lambda^{\prime}: R \rightarrow S$ by

$$
\lambda(x)=x, \lambda^{\prime}(x)=\bar{b} x
$$

It is easy to show that both λ and λ^{\prime} are homomorphisms from R to S, and $\lambda \neq \lambda^{\prime}$. Meanwhile, $\phi * \lambda=\phi * \lambda^{\prime}$. Let $f=\phi * \lambda$. It is clear that f is a $(1,1)$-derivation-homomorphism from $R \times R$ to S, but f has no unique decomposition.

For the derivation-homomorphism of a semiprime ring, we get the following result.
Theorem 2.4 Let R be a semiprime ring. Then any derivation-homomorphism of R must be zero.
Proof Let f be a derivation-homomorphism of R, that is, a (1,1)-derivation-homomorphism from $R \times R$ to R. By the definition of $(1,1)$-derivation-homomorphism, for any $a, b, c \in R$, we have $f(a b, x)=f(a b, x) f(a b, 1)$. It follows from Lemma 2.1 that

$$
\begin{aligned}
& a f(b, x)+f(a, x) b \\
= & (a f(b, x)+f(a, x) b)(a f(b, 1)+f(a, 1) b) \\
= & a f(b, x) a f(b, 1)+a f(b, x) f(a, 1) b+f(a, x) b a f(b, 1)+f(a, x) b f(a, 1) b \\
= & a^{2} f(b, x)+a b f(a, 1) f(b, x)+b a f(a, 1) f(b, x)+f(a, x) b^{2} \\
= & a^{2} f(b, x)+[a, b] f(a, 1) f(b, x)+f(a, x) b^{2} \\
= & a^{2} f(b, x)+f(a, x) b^{2}
\end{aligned}
$$

Then

$$
\begin{equation*}
a f(b, x)+f(a, x) b=a^{2} f(b, x)+f(a, x) b^{2} \tag{2.8}
\end{equation*}
$$

By (I) and $(I I)$ of Lemma 2.1, it is easy to show that $f\left(a^{2}, x\right)=0$. Taking $x=1$ and $b=a^{2}$ in (2.8), we get

$$
\begin{equation*}
a^{2} f(a, 1)=a^{4} f(a, 1) \tag{2.9}
\end{equation*}
$$

For any $a, r \in R$, it can be checked from (III), (IV) of Lemma 2.1 and (2.9) that

$$
\begin{aligned}
& \left(a^{2}-a\right) f(a, 1) r\left(a^{2}-a\right) f(a, 1) \\
= & \left(a^{2} f(a, 1)-a f(a, 1)\right) r\left(a^{2} f(a, 1)-a f(a, 1)\right) \\
= & a^{2} f(a, 1) r a^{2} f(a, 1)-a^{2} f(a, 1) r a f(a, 1)-a f(a, 1) r a^{2} f(a, 1)+a f(a, 1) r a f(a, 1) \\
= & a^{2} r a^{2} f(a, 1)-a^{2} r a f(a, 1)-a r a^{2} f(a, 1)+\operatorname{araf(a,1)} \\
= & -a\left(a^{2} r a\right) f(a, 1)-a^{2} r a f(a, 1)+a(\operatorname{ara}) f(a, 1)-a(a r) f(a, 1) \\
= & -a^{3} r a f(a, 1)-a^{2} r f(a, 1) \\
= & a\left(a^{3} r\right) f(a, 1)-a^{2} r f(a, 1) \\
= & 0
\end{aligned}
$$

Since R is a semiprime ring, we have $\left(a^{2}-a\right) f(a, 1)=0$. Therefore

$$
(a f(a, 1))^{2}=a^{2} f(a, 1)=a f(a, 1)
$$

that is, $a f(a, 1)$ is an idempotent element. By the definition of derivation-homomorphism, we get

$$
\begin{aligned}
f(a, x) & =f(a, x) f(a, 1) \\
& =f(a f(a, 1), x)-a f(f(a, 1), 1) \\
& =f\left((a f(a, 1))^{2}, x\right)-a f\left((f(a, 1))^{2}, 1\right) \\
& =0
\end{aligned}
$$

LI and XU/Turk J Math

In order to describe (n, m)-derivation-homomorphisms of a given ring, we first give two lemmas.

Lemma 2.5 Let $f: R_{1} \times \cdots \times R_{n+1} \rightarrow S$ be an ($n, 1$)-derivation-homomorphism. Then for any $\left(a_{1}, x_{1}, \ldots, a_{n}\right.$, $\left.x_{n}, b, c\right) \in R_{1}^{2} \times \cdots \times R_{n}^{2} \times R_{n+1}^{2}$,

$$
\sum_{u_{1}, \ldots, u_{n}} f\left(u_{1}, \ldots, u_{n}, b\right) f\left(v_{1}, \ldots, v_{n}, c\right)=0
$$

where u_{i} is one component of $\left(a_{i}, x_{i}\right)$ and v_{i} is the other component, and so the left-hand side of the above equation is the sum of 2^{n} terms.
Proof We prove this by induction on n. For $n=1$, we have obtained the conclusion from (2.2).
Assume the lemma holds for $1, \ldots, n-1$, that is to say, for all $k \leq n-1$, any $(k, 1)$-derivationhomomorphism $g: R_{1} \times \cdots \times R_{k} \times R_{k+1} \rightarrow S$ and any $\left(a_{1}, x_{1}, \ldots, a_{k}, x_{k}, b, c\right) \in R_{1}^{2} \times \cdots \times R_{k}^{2} \times R_{k+1}^{2}$, we have

$$
\begin{equation*}
\sum_{u_{1}, \ldots, u_{k}} g\left(u_{1}, \ldots, u_{k}, b\right) f\left(v_{1}, \ldots, v_{k}, c\right)=0 \tag{2.10}
\end{equation*}
$$

where u_{i} is one component of $\left(a_{i}, x_{i}\right)$ and v_{i} is the other component, and so the left-hand side of the above equation is the sum of 2^{k} terms.

Let f be an ($n, 1$)-derivation-homomorphism. For any

$$
\left(a_{1}, x_{1}, \ldots, a_{n}, x_{n}, b, c\right) \in R_{1}^{2} \times \cdots \times R_{n}^{2} \times R_{n+1}^{2}
$$

expanding the first n variables of $f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b c\right)$ by addition, and then expanding the $(n+1)$-th variable by multiplication, we have

$$
\begin{align*}
& f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b c\right) \\
= & \sum_{u_{1}, \ldots, u_{n}} f\left(u_{1}, \ldots, u_{n}, b c\right) \tag{2.11}\\
= & \sum_{u_{1}, \ldots, u_{n}} f\left(u_{1}, \ldots, u_{n}, b\right) f\left(u_{1}, \ldots, u_{n}, c\right),
\end{align*}
$$

where u_{i} is one component of $\left(a_{i}, x_{i}\right)$, and so the right-hand side of (2.11) is the sum of 2^{n} terms. On the other hand, expanding the $(n+1)$-th variable of $f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b c\right)$ by multiplication, and then expanding the first n variables by addition, we obtain

$$
\begin{align*}
& f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b c\right) \\
= & f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b\right) f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, c\right) \tag{2.12}\\
= & \sum_{y_{1}, \ldots, y_{n}} \sum_{z_{1}, \ldots, z_{n}} f\left(y_{1}, \ldots, y_{n}, b\right) f\left(z_{1}, \ldots, z_{n}, c\right),
\end{align*}
$$

where y_{i} is one component of $\left(a_{i}, x_{i}\right)$ and z_{i} is one component of $\left(a_{i}, x_{i}\right)$, and so the right-hand side of (2.12) is the sum of $2^{2 n}$ terms.

We shall now classify items on the right-hand side of (2.12). For any $s \in\{0, \ldots, n\}$, denote by A_{s} the sum of the item on the right-hand side of (2.12) that satisfies the following condition:

LI and XU/Turk J Math

There exist $1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq n$ such that $y_{j_{t}}$ is one component of (a_{k}, x_{k}), and $z_{j_{t}}$ is the other component for $t=1, \ldots, s$; however, y_{k} and z_{k} are the same component of $\left(a_{k}, x_{k}\right)$ for $k \in\{1, \ldots, n\} \backslash\left\{j_{1}, \ldots, j_{s}\right\}$.

Then by (2.12) we get

$$
\begin{equation*}
f\left(a_{1}+x_{1}, \ldots, a_{n}+x_{n}, b c\right)=A_{0}+\cdots+A_{n} \tag{2.13}
\end{equation*}
$$

If $s \in\{1, \ldots, n-1\}$, let $i_{1}, \ldots, i_{n-s} \in\{1, \ldots, n\}$ with $i_{1}<\cdots<i_{n-s}$. Denote by $\left\{j_{1}, \ldots, j_{s}\right\}$ the complementary set of $\left\{i_{1}, \ldots, i_{n-s}\right\}$ in $\{1, \ldots, n\}$. Fixed positions i_{1}, \ldots, i_{n-s} in f by $u_{i_{1}}, \ldots, u_{i_{n-s}}$, we obtain an ($s, 1$)-derivation-homomorphism

$$
\begin{equation*}
g_{u_{i_{1}}, \ldots, u_{i_{n-s}}}\left(y_{j_{1}}, \ldots, y_{j_{s}}, b\right)=f\left(y_{1}, \ldots, y_{n}, b\right) \tag{2.14}
\end{equation*}
$$

where $\left(y_{i_{1}}, \ldots, y_{i_{n-s}}\right)=\left(u_{i_{1}}, \ldots, u_{i_{n-s}}\right)$. It follows from (2.10), (2.13), and (2.14) that

$$
\begin{aligned}
& A_{s}=\sum_{i_{1}<\cdots<i_{n-s}} \sum_{u_{i_{1}}, \ldots, u_{i_{n-s}}} \sum_{y_{j_{1}}, \ldots, y_{j_{s}}} g_{u_{i_{1}}, \ldots, u_{i_{n-s}}}\left(y_{j_{1}}, \ldots, y_{j_{s}}, b\right) \\
& \cdot g_{u_{i_{1}}, \ldots, u_{i_{n-s}}}\left(z_{j_{1}}, \ldots, z_{j_{s}}, c\right)
\end{aligned}
$$

By the inductive assumption, we have

$$
\sum_{y_{j_{1}}, \ldots, y_{j_{s}}} g_{u_{i_{1}}, \ldots, u_{i_{n-s}}}\left(y_{j_{1}}, \ldots, y_{j_{s}}, b\right) \cdot g_{u_{i_{1}}, \ldots, u_{i_{n-s}}}\left(z_{j_{1}}, \ldots, z_{j_{s}}, c\right)=0
$$

Moreover, $A_{s}=0$ for all $1 \leq s \leq n-1$. Looking back at (2.11) and (2.13), and noting that the right-hand side of (2.11) is A_{0}, we get $A_{0}=A_{0}+A_{n}$. Thus the proof is completed.

Lemma 2.6 Let f be an ($n, 1$)-derivation-homomorphism of a ring S, that is, an ($n, 1$)-derivation-homomorphism from $R_{1} \times \cdots \times R_{n+1}$ to S, where $R_{i}=S$ for all $i \in\{1, \ldots, n+1\}$. Assume that the identity element of S has an inverse image, that is, there exists $\left(x_{1}, \cdots, x_{n}, x_{n+1}\right) \in R_{1} \times \cdots \times R_{n+1}$ such that $f\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=1$. Then there exist a unique Boolean n-derivation $\phi: R_{1} \times \cdots \times R_{n} \rightarrow S$ and a unique homomorphism $\lambda: R_{n+1} \rightarrow Z(S)$ such that $f=\phi * \lambda$, where $\phi\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{n}, 1\right)$ and $\lambda(b)=f\left(x_{1}, \ldots, x_{n}, b\right)$.
Proof Firstly we prove the existence. From now on, in the course of proof of this Lemma, we will always assume that $R_{1}=\cdots=R_{n+1}=S$. In order to make the implication of the symbols clear, we go on to use all the symbols R_{1}, \ldots, R_{n+1} except the symbol S. We shall prove that any $(n, 1)$-derivation-homomorphism $f: R_{1} \times \cdots \times R_{n} \times R_{n+1} \rightarrow S$ satisfies

$$
f\left(a_{1}, \ldots, a_{n}, b\right)=f\left(a_{1}, \ldots, a_{n}, 1\right) f\left(x_{1}, \ldots, x_{n}, b\right)
$$

for a given $\left(x_{1}, \ldots, x_{n}\right) \in R_{1} \times \cdots \times R_{n}$ and any $\left(a_{1}, \ldots, a_{n}, b\right) \in R_{1} \times \cdots \times R_{n} \times R_{n+1}$.
If $n=1$, it is a part of conclusions in Theorem 2.2. We now proceed by induction on n.
Assume the lemma holds for $1, \ldots, n-1$, that is, for all $1 \leq k \leq n-1$ and any $(k, 1)$-derivationhomomorphism $g: R_{1} \times \cdots \times R_{k} \times R_{k+1} \rightarrow S$, we have

$$
\begin{equation*}
g\left(a_{1}, \ldots, a_{k}, b\right)=g\left(a_{1}, \ldots, a_{k}, 1\right) g\left(x_{1}, \ldots, x_{k}, b\right) \tag{2.15}
\end{equation*}
$$

for a given $\left(x_{1}, \ldots, x_{k}\right) \in R_{1} \times \cdots \times R_{k}$ and any $\left(a_{1}, \ldots, a_{k}, b\right) \in R_{1} \times \cdots \times R_{k} \times R_{k+1}$.
Let f be an $(n, 1)$-derivation-homomorphism. Since the identity element of S has an inverse image, there exists $\left(x_{1}, \ldots, x_{n}, 1\right) \in R_{1} \times \cdots \times R_{n} \times R_{n+1}$ such that $f\left(x_{1}, \ldots, x_{n}, 1\right)=1$, since

$$
1=f\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(x_{1}, \ldots, x_{n}, 1\right) f\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(x_{1}, \ldots, x_{n}, 1\right)
$$

Fixing the first $n-1$ variables in $f\left(a_{1}, \ldots, a_{n}, b\right)$, then $f\left(a_{1}, \ldots, a_{n}, b\right)$ can be viewed as a (1,1)-derivationhomomorphism from $R_{n} \times R_{n+1}$ to S. By Lemma 2.1, for any $\left(a_{1}, \ldots, a_{n}, b\right) \in R_{1} \times \cdots \times R_{n} \times R_{n+1}$ and $r \in S$, we get

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{n}, b\right)=-f\left(a_{1}, \ldots, a_{n}, b\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{n}, b\right) r=r f\left(a_{1}, \ldots, a_{n}, b\right) \tag{2.17}
\end{equation*}
$$

For any $\left(a_{1}, x_{1}, \ldots, a_{n}, x_{n}, b, c\right) \in R_{1}^{2} \times \cdots \times R_{n}^{2} \times R_{n+1}^{2}$, by Lemma 2.5, we obtain

$$
\begin{equation*}
\sum_{u_{1}, \ldots, u_{n}} f\left(u_{1}, \ldots, u_{n}, b\right) f\left(v_{1}, \ldots, v_{n}, 1\right)=0 \tag{2.18}
\end{equation*}
$$

where u_{i} is one component of $\left(a_{i}, x_{i}\right), v_{i}$ is the other component, and so the left-hand side of (2.18) is the sum of 2^{n} terms. If $k \in\{1, \ldots, n-1\}$, let $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ with $i_{1}<\cdots<i_{k}$. We denote by $\left\{j_{1}, \ldots, j_{s}\right\}$ the complementary set of $\left\{i_{1}, \ldots, i_{k}\right\}$ in $\{1, \ldots, n\}$. Fixing variables i_{1}, \ldots, i_{k} in f through $x_{i_{1}}, \ldots, x_{i_{k}}$, we obtain an ($n-k, 1$)-derivation-homomorphism

$$
\begin{equation*}
h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, b\right)=f\left(u_{1}, \ldots, u_{n}, b\right), \tag{2.19}
\end{equation*}
$$

where $\left(u_{i_{1}}, \ldots, u_{i_{k}}\right)=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ and $\left(u_{j_{1}}, \ldots, u_{j_{n-k}}\right)=\left(a_{j_{1}}, \ldots, a_{j_{n-k}}\right)$. By (2.19), we write (2.18) as

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{n}, b\right) f\left(x_{1}, \ldots, x_{n}, 1\right)+f\left(x_{1}, \ldots, x_{n}, b\right) f\left(a_{1}, \ldots, a_{n}, 1\right)+\sum_{k=1}^{n-1} B_{k}=0 \tag{2.20}
\end{equation*}
$$

where $B_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, b\right) h_{x_{j_{1}, \ldots, x_{j_{n-k}}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, 1\right)$. It follows from (2.15), (2.17), and (2.19) that

$$
\begin{aligned}
& B_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, b\right) h_{x_{j_{1}}, \ldots, x_{j_{n-k}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, 1\right) \\
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, 1\right) h_{x_{i_{1}, \ldots, x_{i_{k}}}}\left(x_{j_{1}}, \ldots, x_{j_{n-k}}, b\right) \\
& \cdot h_{x_{j_{1}}, \ldots, x_{j_{n-k}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, 1\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}, \ldots, x_{i_{k}}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, 1\right) h_{x_{j_{1}, \ldots, x_{j_{n-k}}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, 1\right) \\
& \cdot h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(x_{j_{1}}, \ldots, x_{j_{n-k}}, b\right) \\
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, 1\right) h_{x_{j_{1}}, \ldots, x_{j_{n-k}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, 1\right) \\
& \cdot h_{x_{j_{1}}, \ldots, x_{j_{n-k}}}\left(x_{i_{1}}, \ldots, x_{i_{k}}, b\right) \tag{2.21}\\
& =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} h_{x_{i_{1}, \ldots, x_{i_{k}}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, 1\right) h_{x_{j_{1}, \ldots, x_{j_{n-k}}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, b\right) \\
& =\sum_{j_{1}, \ldots, j_{n-k}} h_{x_{j_{1}}, \ldots, x_{j_{n-k}}}\left(a_{i_{1}}, \ldots, a_{i_{k}}, b\right) h_{x_{i_{1}}, \ldots, x_{i_{k}}}\left(a_{j_{1}}, \ldots, a_{j_{n-k}}, 1\right) \\
& =B_{n-k} \text {. }
\end{align*}
$$

If n is odd, k and $n-k$ are one-to-one and then we have $\sum_{k=1}^{n-1} B_{k}=0$. If n is even, then $\sum_{k=1}^{n-1} B_{k}=B_{m}$, where $m=n / 2$. From (2.15), (2.16), (2.19), and (2.21), the items in B_{m} satisfy

$$
\begin{align*}
& h_{x_{i_{1}}, \ldots, x_{i_{m}}}\left(a_{j_{1}}, \ldots, a_{j_{m}}, b\right) h_{x_{j_{1}}, \ldots, x_{j_{m}}}\left(a_{i_{1}}, \ldots, a_{i_{m}}, 1\right) \tag{2.22}\\
& +h_{x_{j_{1}}, \ldots, x_{j_{m}}}\left(a_{i_{1}}, \ldots, a_{i_{m}}, b\right) h_{x_{i_{1}}, \ldots, x_{i_{m}}}\left(a_{j_{1}}, \ldots, a_{j_{m}}, 1\right)=0
\end{align*}
$$

Thus $B_{m}=0$. Hence, $\sum_{k=1}^{n-1} B_{k}=0$. Then by (2.20) we obtain

$$
\begin{align*}
f\left(a_{1}, \ldots, a_{n}, b\right) & =f\left(a_{1}, \ldots, a_{n}, b\right) f\left(x_{1}, \ldots, x_{n}, 1\right) \\
& =f\left(a_{1}, \ldots, a_{n}, 1\right) f\left(x_{1}, \ldots, x_{n}, b\right) \tag{2.23}
\end{align*}
$$

Let $\phi\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{n}, 1\right)$ and $\lambda(b)=f\left(x_{1}, \ldots, x_{n}, b\right)$. It is obvious that ϕ is a Boolean n-derivation from $R_{1} \times \cdots \times R_{n}$ to S and λ is a homomorphism from R_{n+1} to $Z(S)$. By (2.23), we get

$$
f\left(a_{1}, \ldots, a_{n}, b\right)=\phi\left(a_{1}, \ldots, a_{n}\right) \lambda(b)=(\phi * \lambda)\left(a_{1}, \ldots, a_{n}, b\right)
$$

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation $\phi^{\prime}: R_{1} \times \cdots \times R_{n} \rightarrow S$ and a homomorphism $\lambda^{\prime}: R_{n+1} \rightarrow Z(S)$ such that $f=\phi * \lambda=\phi^{\prime} * \lambda^{\prime}$. Assume the identity element of S has an inverse image under f. Then there exists $\left(x_{1}, \ldots, x_{n}, 1\right) \in R_{1} \times \cdots \times R_{n+1}$ such that $f\left(x_{1}, \ldots, x_{n}, 1\right)=1$. From the definition of ϕ^{\prime} and λ^{\prime}, it is easy to see that

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}, 1\right)\left(\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1)-\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)\right) \\
= & \phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1)\left(\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1)-\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)\right) \\
= & \phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1) \lambda^{\prime}(1) \phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)-\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1) \phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \\
= & 0
\end{aligned}
$$

that is, $\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1)=\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)$. Furthermore, we have

$$
\begin{aligned}
\phi\left(a_{1}, \ldots, a_{n}\right) & =f\left(a_{1}, \ldots, a_{n}, 1\right) \\
& =\left(\phi^{\prime} * \lambda^{\prime}\right)\left(a_{1}, \ldots, a_{n}, 1\right) \\
& =\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1) \\
& =\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

In a similar way, we can prove that

$$
f\left(x_{1}, \ldots, x_{n}, 1\right)\left(\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(b)-\lambda^{\prime}(b)\right)=0
$$

which implies $\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(b)=\lambda^{\prime}(b)$. Then

$$
\begin{aligned}
\lambda(b) & =f\left(x_{1}, \ldots, x_{n}, b\right) \\
& =\left(\phi^{\prime} * \lambda^{\prime}\right)\left(x_{1}, \ldots, x_{n}, b\right) \\
& =\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(b) \\
& =\lambda^{\prime}(b)
\end{aligned}
$$

In order to prove Theorem 2.8, we also need the following lemma, which can be obtained from the proof of Corollary 2 in [4].

Lemma 2.7 Let f be a mapping from $R_{1} \times \cdots \times R_{n}$ to S, where $R_{1}=\cdots=R_{n}=S$ is a ring. Then f is an n-homomorphism if and only if there exist pairwise commutative Boolean homomorphisms $\phi_{i}: R_{i} \rightarrow S$ for $i \in\{1, \ldots, n\}$ such that $f=\phi_{1} * \cdots * \phi_{n}$, where $\phi_{i}\left(a_{i}\right)=f\left(1, \ldots, 1, a_{i}, 1, \ldots, 1\right), i=1, \ldots, n$.

Theorem 2.8 Let f be an (n, m)-derivation-homomorphism of a ring S, that is, an (n, m)-derivationhomomorphism from $R_{1} \times \cdots \times R_{n+m}$ to S, where $R_{i}=S$ for all $i \in\{1, \ldots, n+m\}$. Assume that the identity element of S has an inverse image. Then there exist a unique Boolean n-derivation $\phi: R_{1} \times \cdots \times R_{n} \rightarrow S$ and a unique m-homomorphism $\lambda: R_{n+1} \times \cdots \times R_{n+m} \rightarrow Z(S)$ such that $f=\phi * \lambda$.
Proof Firstly we prove the existence. Fixing the first n variables in an (n, m)-derivation-homomorphism $f: R_{1} \times \cdots \times R_{n+m} \rightarrow S$, we can view f as an m-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to S.

As the identity element of S has an inverse image, by Lemma 2.7 , there exists $\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right) \in$ $R_{1} \times \cdots \times R_{n+m}$ such that

$$
f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)=1
$$

since

$$
\begin{aligned}
1= & f\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \\
= & f\left(x_{1}, \ldots, x_{n}, x_{n+1}, 1, \ldots, 1\right) \cdots f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1, x_{n+m}\right) \\
= & f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right) f\left(x_{1}, \ldots, x_{n}, x_{n+1}, 1, \ldots, 1\right) \\
& \cdots f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1, x_{n+m}\right) \\
= & f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right) f\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \\
= & f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)
\end{aligned}
$$

Fixing $m-1$ variables among the last m variables in $f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$, we can view f as an $(n, 1)$ -derivation-homomorphism. Then Lemma 2.6 implies that $f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1, b_{i}, 1 \ldots, 1\right) \in Z(S)$. Hence

$$
\begin{align*}
& f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \\
= & f\left(a_{1}, \ldots, a_{n}, b_{1}, 1, \ldots, 1\right) \cdots f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1, b_{m}\right) \\
= & f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right) f\left(x_{1}, \ldots, x_{n}, b_{1}, 1, \ldots, 1\right) \tag{2.24}\\
& \cdots f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right) f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1, b_{m}\right) \\
= & \left(f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)\right)^{m} f\left(x_{1}, \ldots, x_{n}, b_{1}, 1, \ldots, 1\right) \cdots f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1, b_{m}\right) \\
= & f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right) f\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right) .
\end{align*}
$$

Let

$$
\phi\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)
$$

and

$$
\lambda\left(b_{1}, \ldots, b_{m}\right)=f\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right)
$$

It is easy to show that ϕ is a Boolean n-derivation from $R_{1} \times \cdots \times R_{n}$ to S and λ is an m-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to $Z(S)$. Then by (2.24) we obtain

$$
\begin{aligned}
f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) & =\phi\left(a_{1}, \ldots, a_{n}\right) \lambda\left(b_{1}, \ldots, b_{m}\right) \\
& =(\phi * \lambda)\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) .
\end{aligned}
$$

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation $\phi^{\prime}: R_{1} \times \cdots \times R_{n} \rightarrow S$ and an m-homomorphism $\lambda^{\prime}: R_{n+1} \times \cdots \times R_{n+m} \rightarrow Z(S)$ such that $f=\phi * \lambda=\phi^{\prime} * \lambda^{\prime}$. Assume the identity element of S has an inverse image under f. Thus, there exists $\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right) \in R_{1} \times \cdots \times R_{n+m}$ such that

$$
f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)=1
$$

From the definition of ϕ^{\prime} and λ^{\prime}, it is easy to see that

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)\left(\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1, \ldots, 1)-\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)\right) \\
= & \phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1, \ldots, 1)\left(\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1, \ldots, 1)-\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)\right) \\
= & \phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1, \ldots, 1) \lambda^{\prime}(1, \ldots, 1) \phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \\
& \quad-\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}(1, \ldots, 1) \phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

$$
=0
$$

Therefore, $\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1, \ldots, 1)=\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)$. Hence, we have

$$
\begin{aligned}
\phi\left(a_{1}, \ldots, a_{n}\right) & =f\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right) \\
& =\left(\phi^{\prime} * \lambda^{\prime}\right)\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right) \\
& =\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right) \lambda^{\prime}(1, \ldots, 1) \\
& =\phi^{\prime}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Similarly, it can be checked that

$$
f\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)\left(\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right)-\lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right)\right)=0
$$

that is $\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right)=\lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right)$. Then we get

$$
\begin{aligned}
\lambda\left(b_{1}, \ldots, b_{m}\right) & =f\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right) \\
& =\left(\phi^{\prime} * \lambda^{\prime}\right)\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right) \\
& =\phi^{\prime}\left(x_{1}, \ldots, x_{n}\right) \lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right) \\
& =\lambda^{\prime}\left(b_{1}, \ldots, b_{m}\right) .
\end{aligned}
$$

References

[1] Brešar M, Martindale WS. Centralizing mapping and derivations in prime rings. J Algebra 1993; 156: 385-394.
[2] Brešar M, Martindale WS, Miers CR. Centralizing maps in prime rings with involution. J Algebra 1993; 161: 342-357.
[3] Jung YS, Park KH. On prime and semiprime rings with permuting 3-derivations. Bull Korean Math Soc 2007; 44: 789-794.
[4] Li LY, Xu XW. Jordan multi-homomorphisms on Associative Rings. J Jilin Univ Sic 2014; 52: 1105-1111.
[5] Park KH. On 4-permuting 4-derivations in prime and semiprime rings. J Korea Soc Math Educ Ser B Pure Appl Math 2007; 14: 271-278.
[6] Park KH. On prime and semiprime rings with symmetric n-derivations. J Chungcheong Math Soc 2009; 22: 451-458.
[7] Posner E. Derivations in prime rings. Proc Amer Math Soc 1957; 8: 1093-1100.
[8] Vukman J. Symmetric bi-derivations on prime and semi-prime rings. Aequationes Math 1989; 38: 245-254.
[9] Wang Y, Wang Y, Du YQ. n-derivations of triangular algebras. Linear Algebra Appl 2013; 439: 463-471.
[10] Xu XW, Liu Y, Zhang W. Skew n-derivations on semiprime rings. Bull Korean Math Soc 2013; 50: 1863-1871.

