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Abstract: In this paper, we introduce notions of (n,m)-derivation-homomorphisms and Boolean n-derivations. Using

Boolean n-derivations and m-homomorphisms, we describe structures of (n,m)-derivation-homomorphisms.
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1. Introduction
In this paper, by a ring we shall always mean an associative ring with an identity.

Homomorphisms and derivations are important in the course of researching rings. Multiderivations
(e.g., biderivation, 3-derivation, or n-derivation in general) have been explored in (semi-) rings. In 1989,
Vukman [8] researched Posner’s theorems [7] for the trace map of symmetric biderivations on (semi-) prime
rings. BreSar [1, 2] characterized biderivations on prime and semiprime rings, respectively, explaining the
reason why Vukman’s results hold. In 2007, Jung and Park [3] investigated Posner’s theorems for the trace
of permuting 3-derivations on prime and semiprime rings. In cases of permuting 4-derivations and symmetric
n-derivations, similar results were obtained in [5] and [6]. It was proved in [10] that a skew n-derivation (n > 3)
on a semiprime ring R must map into the center of R. Wang et al. [9] also investigated n-derivations (n > 3)
on triangular algebras. In a recent paper, Li and Xu [4] described multihomomorphisms.

In this paper, we consider a kind of multimapping that is either a derivation or a homomorphism for
each component when the other components are fixed by any given elements. Such a multimapping is called an
(n, m)-derivation-homomorphism and will be described in this paper.

Let m >0, n>0,and m+n >0 in Z. Let Ry berings, where k € {1,...,n+m}. Let S be a ring and
a bimodule g, Sg, for 1 <k <m such that ri(st) = (rgs)t, (st)rp = s(try), and (sri)t = s(rit) for ry € Ry,
s,t € S. Then we call f: Ry X -+ X Ryym — S an (n, m)-derivation-homomorphism from Ry X -+ X Ryim
to S, if the following conditions hold:

(i) For i € {1,...,n+m}

flar,...;a;+ b, .o ansm) = flar, . iy ooy @ugm) + flar, ..., b, Qpam);
(ii) For ¢ € {1,...,n}

f(alv--waiba“-aan-‘rm):aif(ala~~-7ba-“7an+m)+f(ala---aaia---aan+m)b;
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(iii) For i e {n+1,...,n+m}

flar,...;ab, . anym) = flar, ..., qi ... anym) (a1, .. by o Anim).

It is easy to see that an (m, 0)-derivation-homomorphism is an m-derivation, and a (0, n)-derivation-homomorphism
is an m-homomorphism. In this paper, our concern will focus on the case mn # 0, i.e. the case that both m

and n are positive.
An n-derivation ¢ : Ry X -+ Xx R, — S is said to be a Boolean n-derivation, if ¢(z1,...,2,) =
é(x1,...,2,)% holds for all (z1,...,7,) € Ry X -+ x R, . In particular, a Boolean 1-derivation is also called a

Boolean derivation.
Let ¢; : R; — S be mappings, i = 1,...,n. Then we define ¢1 *---*x ¢, : Ry X --- X R, — S as follows:

((bl koo *¢n)(a17"~>an) = ¢1(a1)"'¢n<an)7

where (a1,...,a,) € Ry X -+ X Ry,
Wecall f: Ry X -+ XRpXRpy1 XX Ryt — S an (n, m)-derivation-homomorphism of S, if R; = S
forall i € {1,...,n+m}.

2. Main result

Firstly, we consider the case of (1,1)-derivation-homomorphisms.

Lemma 2.1 Let f be a (1,1)-derivation-homomorphism from Ry x Rs to S. Then for a,b,c € Ry and
z,y € Ry,

(1) fla,2) = —f(a,2);

(11) fla,)f(b,y) = F(b,) fla,y):

(I1I) af(b,z) = f(b,x)a;

(IV) [a,c]f(b,x) + [b,c]f(a,z) = 0. In particular, [a,b]f(b,z) =0.

Proof (I) Observing the different expansions of f(a + b, zy), we get
f(a + b, xy) = f(aa xy) + f(b’ xy),
fla+b,zy) = fla+b,x)f(a+by)
= (fa,z) + f(b,2))(f(a,y) + f(by))
= f(a, xy) + f((l,l‘)f(b, y) + f(b7 x)f(% y) + f(b, xy)

Then
fla, ) f(b,y) = =f(b,2)f(a,y). (2.1)
Taking y =1 and b=a in (2.1), we have f(a,z)f(a,1) = —f(a,z)f(a,1). Hence, f(a,z) = —f(a,x).
(IT) Tt is easy to see from (I) and (2.1).
(III) We write (2.1) as
fla,z)f(b,y) + f(b,x) f(a,y) = 0. (2.2)

Replacing a by ab in (2.2), we obtain

f(a’ba .T)f(b, y) + f(ba x)f(ab, y) =0,
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that is,

af (b, ) f(b,y)+f(a, 2)bf (b,y) + (b, x)af(b,y) + f(b,x) f(a,y)b = 0.
Replacing b by b2 in (2.2), we obtain

fla,2)f(6%,y) + F(b%,2) f(a,y) =0,
that s,
fla,2)bf (b,y) + f(a,2) f(b,y)b+ bf (b,x)f(a,y) + f(b,x)bf(a,y) = 0.
With (I) and (1), it follows from (2.3) and (2.4) that
af(b,x)f(b,y)+f(b,x)af(by) +bf(b,x)f(a,y) + f(b,x)bf(a,y) = 0.
Replacing a by ba in (2.2), we get

f(ba,:c)f(b, y) + f(ba x)f(baay) =0,
that is,
bf(a,z)f(b,y)+f(b,z)af(b,y) + f(b,2)bf (a,y) + f(b,2)f(b,y)a = 0.

With (I) and (II), it follows from (2.5) and (2.6) that

af(b,x)f(b,y) + f(b,x)f(b,y)a = 0.

Taking y = 1, we get
af(b,x)+ f(b,x)a=0.

Then by (I), af(b,z) = f(b,z)a.
(IV) Using different expansions of f(abe,z) and (III), we have
flabe,x) = af(be,x) +bef(a, ) = abf(c, x) + acf (b, x) + bef(a, ),
{ flabe,z) = abf(c,z) + cf(ab,x) = abf(c,z) + caf(b,z) + cbf(a, x).
Therefore,
[a,c]f(b,x) + [b,c]f(a,z) =0.

Setting ¢ = b, we obtain [a,b]f(b,z) = 0.

(2.6)

(2.7)

Theorem 2.2 Let f be a (1,1)-derivation-homomorphism from Ry x Rs to S. Assume that there exists
ap € Ry such that f(ag,1)f(b,1) = f(b,1)f(ao,1) = f(b,1) holds for each b € Ry. Then there exist a Boolean
derivation ¢ : Ry — S and a homomorphism A : Ry — S such that f = ¢x X\ and al(z)—A(x)a = [¢(a), A(z)] =

0 for a € Ry and x € Ry. Furthermore, if the identity element of S has an inverse image, then f has a unique

decomposition.
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Proof Let ¢(a) = f(a,1) for a € Ry and A(z) = f(ag,x) for € Ry. It is easy to see that ¢ is a Boolean
derivation from R; to S. Obviously, A is a homomorphism from Ry to S. Then by (II) of Lemma 2.1 we

have
(¢* A)(a,2) = d(a)A(z) = f(a,1)f(a0,2) = f(ao,1)f(a, )
= f(ao,1)f(a,1)f(a,z) = f(a,1)f(a,x) = f(a, ).
For a € Ry, © € Ry, a\(z) — A(z)a = 0 follows from (II]) of Lemma 2.1. Then
A()o(a) = f(ao,x)f(a,1) = f(a,x)f(ao, 1)

= f(a,z)f(a,1)f(a0,1) = f(a,z)f(a,1)

= fla,z) = ¢(a)A(z).
Thus the proof of the existence is finished.

Now we prove the uniqueness. Suppose that there exist a Boolean derivation ¢/ : Ry — S and a

homomorphism \ : Ry — S such that f = ¢+ A = ¢/« X', aN(z) — N(z)a = [¢'(a), N'(z)] = 0 for a € Ry,

x € Ry, and the identity element of S has an inverse image under f. Then there exists (ag,z¢) € R1 X Ra
such that f(ag,x0) = 1. Moreover, 1 = f(ag,z0) = f(ao,1)f(ao, zo) = f(ao,1). Hence

flag, 1)(¢ ()N (1) — ¢/ (a))
=4 (ao)A'(1)(¢' (@)X (1) — ¢/ (a))
=0/ (a0)¢' (a)N'(1) = ¢'(ao)¢'(a)N'(1)
=0,

that is, ¢'(a)N (1) = ¢'(a). Furthermore, we obtain

¢(a) = f(a,1) = (¢' * X)(a,1) = ¢'(a) N (1) = ¢/ (a).

Similarly, we get f(ag,1)(¢'(ao)N (z) — N (x)) = 0, which implies ¢'(ag)\ (z) = N (x). Then

Ax) = flao,z) = (¢" * N)(ao, ) = ¢/ (ao) N (z) = X' (x).
O

The following example shows that it is possible that f has two different decompositions without the
assumption that the identity element of S has an inverse image.

Example 2.3 Let R =S = Fyla,b]/(a® —1,b> —b), where F3la,b] is the polynomial ring in variables a,b over
the field Fy and I = (a® — 1,b% — b) is the ideal generated by a? — 1 and b*> —b. Let ¢ be a derivation of
Fola,b] by ¢(a) =b and ¢(b) =0. It is easy to see that ¢p(I) C I. Therefore, ¢ induces a derivation ¢ of R.
It is obvious that ¢(R) = {0,b}, and so ¢ is a Boolean derivation. For all x € R, we define A\ : R — S and
N:R— S by
AMzx) =z, N(x)=bz.

It is easy to show that both X\ and N are homomorphisms from R to S, and X # X . Meanwhile, ¢ x X = ¢p* N\ .
Let f=¢*\. Il is clear that f is a (1,1)-derivation-homomorphism from R x R to S, but f has no unique

decomposition.

1377



LI and XU/Turk J Math

For the derivation-homomorphism of a semiprime ring, we get the following result.

Theorem 2.4 Let R be a semiprime ring. Then any derivation-homomorphism of R must be zero.

Proof Let f be a derivation-homomorphism of R, that is, a (1,1)-derivation-homomorphism from R x R to
R. By the definition of (1, 1)-derivation-homomorphism, for any a,b,c € R, we have f(ab,x) = f(ab,z)f(ab,1).
It follows from Lemma 2.1 that

af(b,z) + f(a,z)b
=(af(b,x) + f(a,2)b)(af(b,1) + f(a,1)b)
=af(b,x)af(b,1) + af(b,x)f(a, )b+ f(a,z)baf(b,1) + f(a,z)bf(a,1)b
=af(b,x) + abf(a, 1) f(b,x) + baf(a, 1) f(b,z) + f(a,z)b?
=a’f(b,z) + [a,b] f(a, 1) f(b,2) + f(a,x)b?
=a’f(b,x) + f(a,z)b*.

Then
af(b,x) + fa,x)b=a®f(b,x) + f(a,x)b*. (2.8)

By (I) and (II) of Lemma 2.1, it is easy to show that f(a?,z) = 0. Taking =1 and b = a? in (2.8), we get
a’f(a,1) = a*f(a,1). (2.9)
For any a,r € R, it can be checked from (I1I), (IV) of Lemma 2.1 and (2.9) that
(a* = a)f(a,1)r(a® — a)f(a,1)

=(a*f(a,1) — af(a,1))r(a*f(a,1) — af(a,1))

=a®f(a,)ra®f(a,1) — a®f(a,V)raf(a,1) — af(a, )ra®f(a,1) + af(a,1)raf(a,1)

=a?ra®f(a,1) — a®raf(a,1) — ara®f(a,1) + araf(a,1)

= —a(a®ra) f(a,1) — a®raf(a,1) + a(ara) f(a, 1) — a(ar) f(a, 1)

=—a*raf(a,1) — a*rf(a,1)

=a(a®r)f(a,1) — a®rf(a,1)

=0.

Since R is a semiprime ring, we have (a? — a)f(a,1) = 0. Therefore

(af(a,1))* = a®f(a,1) = af(a, 1),
that is, af(a,1) is an idempotent element. By the definition of derivation-homomorphism, we get
fla,z) = f(a,2)f(a,1)
= faf(a,1),2) = af(f(a,1),1)

= f((af(a,1))*,2) — af((f(a,1))? 1)
=0.
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In order to describe (n,m)-derivation-homomorphisms of a given ring, we first give two lemmas.

Lemma 2.5 Let f: Ry x-+-XR,11 — S be an (n,1)-derivation-homomorphism. Then for any (a1,x1,...,an,
Tn,b,c) € R X -+ X R2 X R2 |,

Z fuh“ 5 Un,y )f(vla"'vvnac):ov

s Un
where w; is one component of (a;,x;) and wv; is the other component, and so the left-hand side of the above
equation is the sum of 2™ terms.

Proof We prove this by induction on n. For n = 1, we have obtained the conclusion from (2.2).
Assume the lemma holds for 1,...,n — 1, that is to say, for all ¥ < n — 1, any (k,1)-derivation-

homomorphism ¢ : Ry X -+ X R, X Rgy1 — S and any (a1, 21, ..., a4k, Tk, b,¢c) € RT X -+ X R X Ry |, we have
Z g(ut, ..., uk,b)f(v,...,vk,¢) =0, (2.10)

where u; is one component of (a;,z;) and v; is the other component, and so the left-hand side of the above
equation is the sum of 2% terms.

Let f be an (n,1)-derivation-homomorphism. For any
(a1,21,. -, Qn, Tn,byc) € RE X -+ x R? x Riﬂ,

expanding the first n variables of f(ay + z1,...,an, + Zn,bc) by addition, and then expanding the (n + 1)-th

variable by multiplication, we have

flar +z1,...,an + zp, be)

= sy nab
u;unf(ul o0 (2.11)

Z Flug, o g, b) f(ur, ... up, c),

where wu; is one component of (a;,x;), and so the right-hand side of (2.11) is the sum of 2" terms. On the other
hand, expanding the (n + 1)-th variable of f(a; + 21,...,a, + @, be) by multiplication, and then expanding

the first n variables by addition, we obtain

flar +z1,...,an + zp, be)

flar +x1, . an +20,0) f(a1 + x1,..., 00 + Tp, )

Z Z fylv---yynv )f(Zl,...,Zn,C),

cYn Rl 2n

(2.12)

where y; is one component of (a;, ;) and z; is one component of (a;,z;), and so the right-hand side of (2.12)

is the sum of 22" terms.
We shall now classify items on the right-hand side of (2.12). For any s € {0,...,n}, denote by A, the

sum of the item on the right-hand side of (2.12) that satisfies the following condition:
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There exist 1 < ji < jo2 < -+ < js < n such that y;, is one component of (ax,zy), and z;, is

the other component for ¢ = 1,...,s; however, y; and z; are the same component of (ag,zy) for

ked{l,...,nf\{j1,--,ds}-
Then by (2.12) we get
f(a1+$1,.-~7an+xn7bc):AO+"'+A”" (213)
If s € {1,...,n — 1}, let i1,...,in_s € {1,...,n} with iy < --- < in_s. Denote by {ji,...,js} the

complementary set of {i1,...,i,—s} in {1,...,n}. Fixed positions i1,...,in—s in f by w;,...,u;,_., we

obtain an (s, 1)-derivation-homomorphism
guil e Ui, o (yj1? v ayjs7b) = f(yla ceesYn, b)7 (214)

where (Yiy, . Yin_.) = (Ui, ... u4,_ ). It follows from (2.10), (2.13), and (2.14) that

As = Z Z Z Guiy oeoyus, (yj17"'7yjs’b)

1< <lp—s Wiy seensWipy o YjpserYjs
CGuiy iy, (Zj17 IR stvc)'

By the inductive assumption, we have

Z Juiy seyuiy, (yj1 AR yjsvb) “Guiy iy, (ij AR stvc) =0.
Yirss Yis
Moreover, A =0 for all 1 < s <n—1. Looking back at (2.11) and (2.13), and noting that the right-hand side
of (2.11) is Ag, we get Ag = Ag + A,,. Thus the proof is completed. O

Lemma 2.6 Let f be an (n,1)-derivation-homomorphism of a ring S, that is, an (n, 1) -derivation-homomorphism
from Ryx-+-XRp41 to S, where R; =S foralli€ {1,...,n+1}. Assume that the identity element of S has an
inverse image, that is, there exists (x1,- -+ ,Tp, Tnt1) € R1 XX Rpy1 such that f(zq,-+ ,@p,Zne1) = 1. Then
there exist a unique Boolean n-derivation ¢ : Ry X---xX R,, — S and a unique homomorphism A : Ry,+1 — Z(S)
such that f = ¢ x X, where ¢(a1,...,a,) = f(a1,...,an,1) and A(b) = f(z1,...,2,,b).

Proof Firstly we prove the existence. From now on, in the course of proof of this Lemma, we will always
assume that Ry = --- = R,11 = 5. In order to make the implication of the symbols clear, we go on to use

all the symbols Ry, ..., R,y1 except the symbol S. We shall prove that any (n,1)-derivation-homomorphism
fiRy X+ X Ry X Ryy1 — S satisfies

f(al,...,an,b):f(al,...,an,l)f(ml,...,xn,b),

for a given (z1,...,2,) € Ry X -+ x R, and any (ay,...,an,0) € Ry X -+ X Ry X Rpy1.

If n=1, it is a part of conclusions in Theorem 2.2. We now proceed by induction on n.

Assume the lemma holds for 1,...,n — 1, that is, for all 1 < k < n — 1 and any (k,1)-derivation-
homomorphism g : Ry X -+ X R X Rpy1 — 5, we have

g(al,"';akab) :g((ll,..~,ak,1)g($1,...,mk,b), (215)
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for a given (z1,...,25) € Ry X -+ X R and any (a1,...,a5,0) € Ry X -+ X Ri X Rgy1.

Let f be an (n,1)-derivation-homomorphism. Since the identity element of S has an inverse image,

there exists (z1,...,Zn,1) € Ry X -+ X Ry, X Ry41 such that f(x1,...,2,,1) =1, since
1= f(xlv"'vxn,mn+1) :f(xla"'7xn71)f(mla"'axn7xn+1) :f($1,~~~,$n,1)~

Fixing the first n — 1 variables in f(ai,...,a,,b), then f(ay,...,a,,b) can be viewed as a (1, 1)-derivation-
homomorphism from R, X R,4; to S. By Lemma 2.1, for any (a1,...,a,,b) € Ry X +-+ X R, X Rp41 and
r €S, we get

f(alv"'vanvb):_f(ala"'aanab)v (216)
and

flar,...,an, 0)r =7rf(a1,...,an,b). (2.17)
For any (a1,21,...,an, %y, b,c) € R x --- X RZ x R?_ |, by Lemma 2.5, we obtain

> flur, o un b f(vr,. v, 1) =0, (2.18)
UL yeeny Un

where u; is one component of (a;,x;), v; is the other component, and so the left-hand side of (2.18) is the sum
of 2™ terms. If k € {1,...,n— 1}, let 41,...,ix € {1,...,n} with ¢; < --- < ix. We denote by {j1,...,7s}
the complementary set of {i1,...,ix} in {1,...,n}. Fixing variables i1,...,4% in f through z;,,...,z;, , we

obtain an (n — k, 1)-derivation-homomorphism

hmil seer Ty, (ajl, ey ajnfk,b) = f(ul, ey Up, b), (219)
where (w;,..., %) = (Tiy,-- -, Ti) and (Ujy, ..., w5, ) = (@jy,--.,a4,_,). By (2.19), we write (2.18) as
n—1
f(a/la s aa‘nvb)f(xlv <oy Ty 1)+f(x1a s 7xn7b)f(a17 <oy O, 1) + Z Bk = 0) (220)
k=1
where B = > Py, (ajy,--- 7a’jn—k7b)h$j17---733j . (@iyy---yai,,1). It follows from (2.15),
1<iy <ig<-<ip<n "
(2.17), and (2.19) that
Bk = Z hzil """" Ty, (ajl,...,ajnfk,b)hzh ,,,,, T . (ail,...,aik,l)
1<i1<io< - <ip<n
= Z hl‘ilwnyzik (ajla'-wajn—k’]-)hrilym,fik (leﬂ"'vxjnfk?b)

1<i1<i2< <1 <n

. hwjl""’ajjn—k (ail yoe ey Ay 1)
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= E hﬂﬂz‘l,.‘.,l’ik (aj1>"'=ajn—k71)hwj1,m,xjn_k (@iys- -y @iy, 1)
1<i <io < <ip<n
’ h$1117---,%k (le LA 7xjn—k7b)
= E hsz‘l,myl’ik (ajw""a’jn—k?1)h2j1’-~,93jn_k (ai17""a’ik7]‘)
1< <in <<, <n
hag s (Tigs e T, b) (2.21)
- E hmil,.“,zik (a/jlv"'aajn7k71)h$j1,...,zjn7k (a/ilw"aaikvb)

1<i1<i9< <1 <n
= § : hﬂijlw-wjn,k (aiw""aik)b)hwil,~~7wik (a’j17"'7a’jnfk’1)
jla“wj'nfk'

= By k-

n—1 n—1
If n is odd, k and n — k are one-to-one and then we have > By =0. If n is even, then > By = B,,, where
k=1 k=1

m =n/2. From (2.15), (2.16), (2.19), and (2.21), the items in B,, satisfy

h$i1,~~7$im ((le, e 7a'jm7b)hwj17...,Ijm (ail, ey aim, 1)
(2.22)
+ hmjl ..... T, (ailv s 7aim,b)hzi1 ..... Ti,, (aju sy Qs 1) =0.
n—1
Thus By, =0. Hence, Y By =0. Then by (2.20) we obtain
k=1
flat,. ... an,b) =f(ar,...,an,b)f(x1,...,2n,1)
(2.23)

=f(a1,...,an, 1) f(z1,...,2n,b).

Let ¢(a1,...,an) = f(ai,...,an,1) and A(b) = f(z1,...,2,,b). It is obvious that ¢ is a Boolean n-derivation
from Ry x -+ X R, to S and A is a homomorphism from R, to Z(S). By (2.23), we get

f(ala'”aanab) = Qb(alv""an)A(b) = (QS*A)(al""vanvb)'

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation ¢’ : Ry X --- x R, = S
and a homomorphism X : R,11 — Z(S) such that f = ¢+ X = ¢ x \'. Assume the identity element of S has
an inverse image under f. Then there exists (z1,...,2,,1) € Ry X -+- X R,41 such that f(z1,...,2,,1)=1.

From the definition of ¢’ and )\, it is easy to see that

fx1, .oz, 1)(d (ar, ..., an)N (1) — ¢ (a1, ..., an))
=¢' (x1,. ., 2)N (1)@ (a1,...,a)N (1) — ¢ (a1,...,ay))
=¢'(z1, ...,z )N (DN (1)@ (a1,...,an) — ¢ (x1,.. ., 2)N ()P (a1, ..., an)
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that is, ¢'(a1,...,an)N (1) = ¢'(aq,...,a,). Furthermore, we have
ola,...,an) = flay,...,an,1)
= (¢« N)(ay,...,an,1)
= ¢ (ar,...,a,)N (1)
=¢' (ar,...,a,).

In a similar way, we can prove that

F@1, o w1 (21, 2N (B) = N (b)) = 0,
which implies ¢/ (z1, ..., 2,)N (b) = N'(b). Then
ADb) = f(21,..., 20, b)
= (¢/ x N)(@1,. .., 70, )
= ¢ (21,...,2)N (D)
=N (b).
O

In order to prove Theorem 2.8, we also need the following lemma, which can be obtained from the proof
of Corollary 2 in [4].

Lemma 2.7 Let f be a mapping from Ry X --- X R, to S, where Ry =--- =R, =S is a ring. Then f is
an n-homomorphism if and only if there exist pairwise commutative Boolean homomorphisms ¢; : R; — S for
i€{1,...,n} such that f = @1 %% ¢y, where ¢;(a;) = f(1,...,1,a;,1,...,1),i=1,...,n.

Theorem 2.8 Let f be an (n,m)-derivation-homomorphism of a ring S, that is, an (n,m)-derivation-
homomorphism from Ry X -+-X Ry to S, where R; =S forall i € {1,...,n+m}. Assume that the identity
element of S has an inverse image. Then there exist a unique Boolean n-derivation ¢ : Ry X -+ X R, — S

and a unique m-homomorphism X : Rp41 X + -+ X Rpym — Z(S) such that f=¢ = \.

Proof Firstly we prove the existence. Fixing the first n variables in an (n,m)-derivation-homomorphism
fiRy X+ X Rpym — S, we can view f as an m-homomorphism from R, 41 X -+ X Ryym to S.

As the identity element of S has an inverse image, by Lemma 2.7, there exists (z1,...,2,,1,...,1) €
Ry X -+ X Ry such that

flze,...,zn,1,...,1) =1,
since
=f(1y. Ty Tt 1y e oy Tm)
=f(z1,.. . &n,Tpy1,1,..., 1) flz1, oy xn, 1, oo L )
=f(z1,..yxn, 1, ., D) f(@1,. o Ty Tig1, 1y .00y 1)
o f(xry ez, Loy L Tngem)
=f(x1, . sz, 1, ., ) f(T1, - T, Tty - - 5 Trkm)

=f(z1,...,zn,1,...,1).
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Fixing m — 1 variables among the last m variables in f(a1,...,an,b1,...,by), we can view f as an (n,1)-

derivation-homomorphism. Then Lemma 2.6 implies that f(z1,...,2n,1,...,1,b;,1...,1) € Z(S). Hence

f(al,...,an,bl,...,bm)
:f(al,“-aanabla]-w"a]-)"'f(ala"'aanala"'alabm)

=f(a1,...,an,1,...; ) f(x1,...,2n,01,1,...,1)

(2.24)
"'f(al,...,Cl,n71,...,1)f($1,...,$n,1,...,1,bm)
=(f(a1,.- - an, 1,...;1)"f(x1,. .. @pn, b1, 1, 1) f(r, o2, 1, 1 b))
=f(a1,...,an,1,...; 1) f(@1,. .., Tn,b1, .. bm).
Let
olar,...,an) = flar,...,an,1,...,1),
and
)\(bl,...,bm):f(fﬂl,...,l'n,bl,...,bm).
It is easy to show that ¢ is a Boolean n-derivation from Ry X --+- X R, to S and A is an m-homomorphism

from Ry41 X -+ X Rptm to Z(S). Then by (2.24) we obtain

f(al, ceey Oy, bl7 ey bm) = qzﬁ(al, ey an)>\(b1, ey b’m)
= (¢*)\)(a1,...7an7b17...,bm).
Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation ¢’ : Ry X -+ X R, — S
and an m-homomorphism X : R,11 X --+ X Ry — Z(S) such that f = ¢* A = ¢ *x \. Assume the identity

element of S has an inverse image under f. Thus, there exists (z1,...,2pn,1,...,1) € Ry X -+ X R4, such

that
flzy,. .. zn,1,...,1) =1

From the definition of ¢’ and )\, it is easy to see that
flxe,. oo xn, 1, o 1) (@ (ar, -y an)N (L, ..., 1) — @ (ag, ..., an))
=¢' (x1,. ., xo)N (1, .., D) (P (ar,...,an)N(1,...,1) — @' (a1,...,a,))
=¢'(z1,.. .,z )N (1,...,DN(1,...,1)¢ (a1,...,a,)
— ¢ (x1,. .z )N (L, D (ar, ... an)
=0.
Therefore, ¢'(ay,...,a,)N(1,...,1) = ¢'(a1,...,a,). Hence, we have
dlar,...,an) = flar,...,an,1,...,1)
= (¢« N)(a1,...,an,1,...,1)
=q¢'(ar,...,a))N(1,...,1)
= ¢ (ar,...,a,).
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Similarly, it can be checked that

fl@r, .oy, 1o 1)@ (21, )N (bry oo b)) — N (b1, oo, b)) = 0,

that is ¢'(z1,...,25)N (b1,...,bm) = N (b1,...,bm). Then we get

(1]
2]

e

A1y ybm) = fz1, .y @n, b1, D)
= (¢ * N)(w1,. ., Tpy b1, b))
=¢' (w1, ., )N (b1, ., b))
= N (b1, ..., bm).
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