Turk J Math
(2016) 40: 1398-1400
(C) TÜBİTAK
doi:10.3906/mat-1510-55

Every norm is a restriction of an order-unit norm

Mert ÇAĞGAR ${ }^{1}$, Zafer ERCAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics and Computer Science, İstanbul Kültür University, Bakırköy, İstanbul, Turkey
${ }^{2}$ Department of Mathematics, Abant İzzet Baysal University, Bolu, Turkey

| Received: 15.10 .2015 | Accepted/Published Online: 26.02 .2016 | Final Version: 02.12 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We point out the equivalence of the fact that every norm on a vector space is a restriction of an order-unit norm to that of Paulsen's construction concerning generalization of operator systems.

Key words: Norm, ordered vector space, order-unit

1. Introduction

The purpose of this very short expository note is to bring a widely unnoticed fact concerning normed spaces to the readers' attention by pointing out that it is equivalent to Paulsen's construction in quantum analysis given in [4]. We refer to [1] for the general theory of ordered vector spaces.

A subset K of a vector space E is called a cone if

$$
K+K \subseteq K, \mathbb{R}^{+} K \subseteq K, \text { and } K \cap(-K)=\{0\}
$$

in which case the pair (E, K) is called an ordered vector space. We write $x \leqslant y$, or $y \geqslant x$ in E, whenever $y-x \in K$. An element $e \in K \backslash\{0\}$ is called an order-unit if for each $x \in E$ there exists a $\lambda>0$ such that $x \leqslant \lambda e$. The notion of order-unit is due to Kadison [3]. An ordered vector space E is called almost Archimedean if $-\varepsilon x \leqslant y \leqslant \varepsilon x$ for all $\varepsilon>0$; then $y=0$. Similarly, E is called Archimedean if $\mathbb{N} x \leqslant y$ implies $x \leqslant 0$. It is obvious that Archimedeanness implies almost Archimedeanness, but not vice versa. If (E, K) is an almost Archimedean vector space with an order-unit $e>0$, then

$$
\|x\|_{e}=\inf \{\varepsilon>0:-\varepsilon e \leqslant x \leqslant \varepsilon e\}
$$

defines a norm on the ordered vector space (E, K). Let us call this norm as the norm generated by the order unit e.

Theorem 1 Let $(E,\|\cdot\|)$ be a normed space. Then there exists an Archimedean ordered vector space F with an order-unit $e>0$ such that E is isomorphic to a vector subspace of F, and in this case the equality

$$
\|x\|=\|x\|_{e}
$$

holds for all $x \in E$.

[^0]
ÇAĞLAR and ERCAN/Turk J Math

Proof Let $F:=E \times \mathbb{R}$, and consider F as a vector space under the pointwise algebraic operations. One can easily show that F is an Archimedean ordered vector space with respect to the cone

$$
K=\{(x, r): x \in B(0, r)\}
$$

where $B(0, r)$ is the closed ball with center zero and radius r in the normed space $\left(E,\|\cdot\|_{H}\right)$. Moreover, the element $e=(0,1)$ is an order unit of F. It is also obvious that F can be embedded into F as a vector subspace via the map $x \mapsto(x, 0)$. Therefore, we may write x instead of $(x, 0)$. From the following equality

$$
-\|x\| e \leqslant(x, 0) \leqslant\|x\| e
$$

it follows that

$$
\|x\|_{e}=\|(x, 0)\|_{e} \leqslant\|x\|
$$

Now suppose that $\|(x, 0)\|_{e}<\|x\|_{H}$. Choose $\alpha>0$ so that

$$
\|(x, 0)\|_{e}<\alpha<\|x\|, \text { and }(x, 0) \leqslant \alpha e
$$

Then $0 \leqslant(-x, \alpha)$ in F, whence

$$
\|x\|=\|-x\| \leqslant \alpha<\|x\|
$$

a contradiction. This completes the proof.
Let us point out that Theorem 1 follows directly from the following construction of Paulsen [4, pp. 178, 182]: Let V be a (real or complex) vector space equipped with a norm $\|\cdot\|$. Define
$\mathcal{S}=\left\{\left[\begin{array}{cc}\lambda & v \\ w^{*} & \mu\end{array}\right]: \lambda, \mu \in \mathbb{C}, v, w \in V\right\} \subseteq \mathbb{C} \oplus \mathbb{C} \oplus V \oplus \bar{V}$, where \bar{V} is the conjugate space to V. Note that \mathcal{S} is a *-vector space with the involution $\left[\begin{array}{cc}\lambda & v \\ w^{*} & \mu\end{array}\right]^{*}=\left[\begin{array}{cc}\bar{\lambda} & w \\ v^{*} & \bar{\mu}\end{array}\right]$, and $\mathcal{S}_{h}=\left\{x \in \mathcal{S}: x^{*}=x\right\}$ is a real vector subspace in \mathcal{S}. Define

$$
\mathcal{C}:=\left\{\left[\begin{array}{cc}
\lambda & v \\
v^{*} & \mu
\end{array}\right]: \lambda, \mu \geqslant 0,\|v\|^{2} \leqslant \lambda \mu\right\} \subseteq \mathcal{S} \text { and } \varepsilon:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and note that \mathcal{C} is a cone in \mathcal{S}_{h}, that e is an order-unit, and that \mathcal{S}_{h} is an ordered vector space that is almost Archimedean. In particular, $\|x\|_{e}=\inf \{\varepsilon>0:-\varepsilon e \leqslant x \leqslant \varepsilon e\}$ is the norm on \mathcal{S}_{h} generated by the order-unit e. Moreover, the (real part) vector space V can be embedded into \mathcal{S}_{h} via the real linear mapping $v \mapsto\left[\begin{array}{cc}0 & v \\ v^{*} & 0\end{array}\right]$. Lastly, the equality

$$
\|v\|=\inf \left\{\varepsilon>0:\left[\begin{array}{cc}
\varepsilon & v \\
v^{*} & \varepsilon
\end{array}\right] \in \mathcal{C}\right\}=\left\|\left[\begin{array}{cc}
0 & v \\
v^{*} & 0
\end{array}\right]\right\|_{e}
$$

holds, whence the proof of Theorem is complete 1.
We also note, for the sake of completeness, that similar arguments underlying the proof of Theorem 1 in the setting of normed spaces are also used in [2].

References

[1] Aliprantis CD, Tourky R. Cones and Duality. Providence, RI: American Mathematical Society Graduate Studies in Mathematics, Vol. 84, 2007.
[2] Fakhar M, Koushesh MR, Raoofi M. Embedding normed linear spaces into $C(X)$. arXiv:1502.06008.
[3] Kadison RV. A representation theory for commutative topological algebra. Mem Amer Math Soc 1971; 21: 39 pp.
[4] Paulsen V. Completely Bounded Maps and Operator Algebras. Cambridge, UK: Cambridge University Press, 2003.

[^0]: *Correspondence: zercan@ibu.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 54E35.

