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Abstract: A bounded linear operator T on a Hilbert space H is concave if, for each = € H, ||T?%z||*> —2||Tz||*+]||z||* < 0.
In this paper, it is shown that if 7' is a concave operator then so is every power of T'. Moreover, we investigate the
concavity of shift operators. Furthermore, we obtain necessary and sufficient conditions for N-supercyclicity of co-concave
operators. Finally, we establish necessary and sufficient conditions for the left and right multiplications to be concave
on the Hilbert—Schmidt class.
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1. Introduction and preliminaries

Recall that a real valued function f on an interval I is concave if
F(U=Dat 1) = (1 - 6)f(a) + t£(0)

whenever a,b € I and 0 <t < 1. Clearly, f is convez if and only if —f is concave. Moreover, a sequence (a, )
in R is said to be concave if
Gpy2 —2ap41+a, <0 (n=0,1,2,---).

If I is an open interval it is known that every concave function on I is continuous. Besides, every continuous
function f satisfying
a+b

e

)> Slf(@)+ fB)] abel,

is concave [14]. Some more facts on concave functions run as follows:

(i) A sequence (ay, ), is concave if and only if the function f(¢) defined on [0, 00), which is linear on each
interval [n,n + 1] and such that f(n)=a, (n=20,1,2,---), is concave.

(i) If f(¢) is a concave function on [0,00), then so is the function f(kt) for every k=1,2,--- .

(iii) A nonnegative concave function f(t) on [0,00) is nondecreasing and
limy o0 f(£)V/t = 1.

(iv) A nonnegative concave function f(¢) on (—oo,00) is constant.
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Let H be a separable infinite dimensional Hilbert space, and let B(?H) be the space of all bounded linear
operators on H. An operator T € B(H) is said to be concave if, for all x € H,

IT2]* = 2| Tx|* + ||=]|* < 0.

We remark that an operator T is concave if and only if the sequence (||T"z(|?)%, forms a concave sequence
for every x € H. Thus, (i) and (iii) imply that for every nonzero = in H, lim, o | T"z|Y/" = 1.

The class of concave operators is closely related to the study of Brownian operators with respect to which
the stochastic integral of a process with values in a separable Hilbert space has been defined. Indeed, Theorem
B of [11] states that T is a concave operator with [|T||> < 2 if and only if it extends to a Brownian operator.

It is obvious that every isometry is a concave operator. As another class of concave operators, we may
consider a class of composition operators defined on a discrete measure space. Suppose that X = {(n, m) :
n, m € Z such that n < m} and (a,)5_, is a sequence of positive real numbers. Let p be the measure on
the power set of X given by p((n, n)) =1 forn € Z and u((n, m)) = a, for n < m. Consider the measurable
function ¢ : X — X given by ¢((n, n)) =(n—1, n—1) for n € Z and ¢((n, m)) = (n, m — 1) for n < m.
Define the composition operator C, in L2(X, u) by Cof = fop. Then C, is a bounded linear operator on
L*(X, ) if and only if (a,)52_ . is a bounded sequence. Moreover, C,, is concave if and only if a,+1 < ay,
for all integers n. Furthermore, C, is not unitarily equivalent to any orthogonal sum of weighted shifts or
isometries; see [10, Example 4.4 and Remark 4.5]. Another class of concave operators consists of the Cauchy

dual of the Bergman type operators. Note that an operator S in B(H) is said to be of Bergman type if
152 +ylI? < 2(ll]* +|Syl]*) (v.y € H)

and the operator T'= S(S*S)~! is called the Cauchy dual of S (see the proof of Theorem 3.6 of [13]).

In this paper, we show that if T is a concave operator then so is all of its nonnegative powers. Moreover,
we give necessary and sufficient conditions under which a forward unilateral weighted shift is concave. We also
show that the only concave bilateral weighted shifts are isometries.

The linear dynamics of operators is a branch of operator theory that appeared during the study of the
famous invariant subset (subspace) problem. The interest in studying supercyclicity dates back to 1974 [9].
N -supercyclicity first originated in the work of Feldman [6]. Recall that for a subset E of a Hilbert space H
and for T € B(H), the orbit of E under T, denoted by orb(T, E), is the set {IT"z : n > 0,2 € E}. For
any integer n > 1, the operator T is N-supercyclic if 4 has an N-dimensional subspace whose orbit under
T is dense in H. A one-supercyclic operator is called a supercyclic operator. Also, if the set E has only
one element and orb(T, E) is dense in H then T is called a hypercyclic operator. Clearly every hypercyclic
operator is supercyclic and every supercyclic operator is an N-supercyclic operator, but the converses are not
true [6]. Some good sources on the dynamics of operators include [1] and [8]. In this paper, we show that every
concave operator is not N-supercyclic. Moreover, we obtain necessary and sufficient conditions for left and right
multiplications to be concave on the Hilbert—Schmidt class of operators.

Throughout this paper, T is assumed to be a bounded linear operator on a Hilbert space H. We begin
with some easy observations. In the following result, D denotes the open unit disc. Also, o(T) and o4,(T)

are, respectively, the spectrum and the approximate point spectrum of T'.
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Proposition 1 The approzimate point spectrum of a concave operator T lies on the unit circle. Thus, o(T) C
oD or o(T) =D.
Proof Take A € 0,,(T) and suppose that (z,), is a sequence in H with ||z,|| =1 for each n € N and
(T — M) (zn) = 0 as n— oco.
Therefore,
T2zl = X[ < (1 T%20 — N2l
T[T = Nan || + AT = A)znll = 0

IN

as n — 0o, which implies that

(A =1)? = lim [|T22,[|* — 2/|T2n]* + 2a %] < 0.
n—oo

Hence, |A| = 1. Since 9o (T) C 04,(T), we conclude that o(T) C dD or o(T) = D. O

Corollary 1 The spectral radius of a concave operator is one.

Corollary 2 Concave operators are not compact.

Proof Suppose that T is a concave operator. Since it is compact, 0 € o(T) and so D C (7). However, this

contradicts the fact that the spectrum of a compact operator is at most countable. O

2. Basic properties

Taking A =T*T — I, it is easily seen that T is a concave operator if and only if
T*ArT < Ar. (1)

To prove that each power of every concave operator is concave, we need the following lemma. For simplicity we
use A,, instead of Ap» for every n > 1.

Lemma 1 If T is a concave operator then the following inequalities hold:
(TH) AT < (TR A TE (k=0,1,--), (2)

and for n=2,3,---

(TR AT < A, (k=0,1,---). (3)
Proof Note that (2) follows immediately from (1). Suppose that (3) holds for some n. Since A, 41 =
T*A,T + Ay we can see from (3) and (2) that

(Tn+1+k)*An+1Tn+1+k _ T*{(Tn+k+1)*AnTn+k+1}T + (Tn+k+l)*A1Tn+k+l

<T*AT + Ay = Apy,

completing induction. O
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Theorem 1 If T is concave then Arp > 0; that is, | Tz| > ||z|| for every x € H. Furthermore, T™ is concave
for all n > 2.

Proof Tt follows from (2) that

n
nAgp > Z(Tk)*ATTk _ (Tn+1)*Tn+1 —T*T > -T*T (TL =1,2,--- )
k=1

Hence,

~1
Ap > lim —T*T =0.

n—o00 nN

Finally, (3) with & = 0 means that 7™ is concave. O

Theorem 2 A concave operator T with ker(T*) = {0} is unitary.

Proof The assumption ker(T*) = {0} means that ran(7") is dense in 7. This coupled with the property
ITx|| > ||z|| (x € H) implies that T is invertible. Then, since

Ap-ir — (T Apa T = (T2 {Ar — T*A7T}T2 > 0, (4)

we can conclude that T—! is concave, and hence [T~ z|| > |z| (z € H). Combined with the property that
|Tx| > ||| (x € H) we conclude that T is unitary.

O
Corollary 3 Every concave operator on a finite-dimensional Hilbert space is unitary.
Proof By finite dimensionality and Theorem 1, kerT™* = kerT = {0}. O
Recall that an operator T is called co-concave if T is concave.
Corollary 4 A concave operator T is unitary if T is co-concave or T is normal.
Proof If T* is concave, kerT* = {0}. If T is normal, kerT™* = kerT = {0}. O

Theorem 3 Suppose that T is a concave operator and M is a closed T -invariant subspace. Then the

restriction T|ap is concave. Furthermore, if dim(M) < oo, then M reduces T .

Proof The first assertion is trivial. Write
T Tio
(W )
according to the decomposition H = M @© M=. Then, by concavity of T,

0<Ap = ( T T = Im 11, Thz >

175111 TiTio + T55T00 — g
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When dimM < oo, by Corollary 3, T3 is unitary and consequently

o< ( 0 T T |
- T1*2T11 T1*2T12 + T2*2T22 — IML

Positivity of this block matrix implies that
(T1yTh2 + 15,122 — Ip1)g,9) = —2Re(T15T11h, g)

for all h,g € H. Thus, 17,712 = 0 and hence T13 = 0. This means that M reduces T .
To prove the next result, we use the Berberian construction [2] [15].

Proposition 2 (Lemma 2.7 of [15]) Let H be a complex Hilbert space. Then there exists a Hilbert space R O H
and a unital linear map 11 : B(H) — B(R) such that: (a) II(ST) = I(S)II(T), II(T*) = (II(T))*, ||IIL(T)|| =
175

(b) S<T =1I(S) <IT);

(¢) o(I(T)) = o(T), 0ap(I(T)) = 04p(T) = op(TL(T)).

Corollary 5 For a concave operator T the following statements hold.

(a) Every eigenvalue of T is a normal eigenvalue; that is, Ta = Ca implies T*a = (a.

(b) If ¢ € 04p(T) then € 04p(T™).

Proof (a) Since M = Ca is a one-dimensional invariant subspace of T, by Theorem 3 it reduces T', which
implies that T*a = Ca.

(b) Suppose that ¢ € 04,(T) = 0,(II(T)). Since II(T) is a concave operator, by applying (a), we see that
¢ € op((I(T))*) = 0p(II((T))) = 0ap(T*). o

3. The concavity of shifts operators

An operator T € B(H) is called a forward unilateral (bilateral) weighted shift if there is an orthonormal basis
{en :n>0}({e, : n € Z}) and a sequence of bounded complex numbers {w, : n > 0}({w, : n € Z}) such that
Te, = wpeptq for all n >0 (n € Z). It is known that a weighted shift operator T is unitarily equivalent to
a weighted shift operator with a nonnegative weight sequence. We can assume that w, > 0 for all n (see [5],
page 53). In addition, T is injective if and only if w,, > 0 for every n. Recall that the adjoint of T is called a

backward unilateral (bilateral) shift. It is also known that T is an isometry if and only if w, =1 for all n.

Let w, = 22# and Te, = wpeny1 for every n > 0. Then T is a concave forward weighted shift

operator, due to
1-2"
<0.

2 2 2 _
IT%en||” —2[|Ten||” + 1 = W =

As another example of such operators, take w, = v/2 and w,, =1 for n > 1.
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In spite of the above examples, the only concave bilateral weighted shifts are unitaries. Thanks to the
fact that the kernel of such an operator is {0}, all weights are positive, which in turn implies that the kernel of
its adjoint is {0}.

In the next result, we give a necessary and sufficient condition for a unilateral forward weighted shift to

be concave.

Proposition 3 A unilateral forward weighted shift with weight sequence (wy), is a concave operator if and
only if

1 <wy and 1§wn+1§\/2—w;2 (n=0,1,2,---). (5)
Moreover, in this case (wy,)y is decreasing and converges to 1.

Proof Let T be a unilateral forward weighted shift with weight sequence (w,),. If T is concave then

wy, = || Tey|| > 1 for all n > 0. Now the proof follows from the equality

IT%enll* = 2| Tenll + llenl® whwy 1y — 2wy + 1

= wp(wpy — (2-w,?)).

On the other hand, since /2 — wn? < w,, the sequence w, is decreasing; thus, (5) implies that lim,, e w, =
1. O

Note that since every concave operator is injective, there is not any concave backward unilateral weighted shift
operator.

4. N-Supercyclicity of concave operators
Proposition 4 No concave operator is N-supercyclic.
Proof Take a concave operator T € B(H). Assume, on the contrary, that there exists a subspace E of H,

of dimension N, such that orb(T, E) = H. The subspace E has an empty interior because E # #H. Moreover,
H=orb(T,E)=FEU (U, T"E),

which implies that H = US2 T E. Hence, T' must have a dense range. Then the operator T' is invertible.

Thus, applying (4), we see that T~! is also a concave operator. Therefore, |7~ xz|| > ||z| for all # € H. Thus,
T2l > o] = |7~ Tl > || Tzl.

Hence, T is a unitary operator that cannot be N-supercyclic (see Theorem 4.9 of [6], and see also [3]). O

Theorem 4 Suppose that T € B(H) is a co-concave, N-supercyclic operator. Then ﬂnon*n’H = (0).

Proof Put M = ﬁnZOT*"’H. Clearly M is an invariant subspace of T and also of T'. Indeed, since T is
bounded below, TT* is invertible. Let S = (T'T*)~'T. Thus, for every = € H,

|T*Sz||? = (S*TT*Sz,z) = (S*Tx,x) = (x, T*Sx) < ||z||||T*Sz]|,
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which implies that | T*Sz| < ||z||. However, since ||Sz| < ||T*Sz||, we conclude that ||[Sz| < ||z| for all
x € H. Moreover, for every nonnegative integer n, each 2 € M can be written as z = T*" z,, for some z,, € H

n—1

and so Sx =T* "z, € M. Hence, SM C M.
On the other hand, if z € M, then x = T*zy for some y € H. Thus,

1S%2]|* = 2| S| + [l2]* = [lyl* - 20T ylI* + 1T yII* <0,

which states that the operator S : M — M 1is a concave operator. Thus, if z € M then [|Sz| > |z|;

hence, ||Sz|| = ||z||. Moreover, since ST* = I, the operator S : M — M is onto, and it is also injective, so
ST*x = T*Sx = x. Furthermore,
]l = ST || = | T,

which implies that TT*x = x. Consequently, Tx = T(T*Sxz) = Sx € M; i.e. TM C M. Moreover, we deduce
that T': M — M is in fact a unitary operator.

In continuation, we argue by contradiction and we assume that the subspace M is nonzero. We also
suppose that there exists an N -dimensional subspace E of H such that orb(T, E) is dense in H. Let (hq, ..., An)
be a basis of E and suppose that h; = ¢; ®k; , 1 <i < N where g; € M and k; € M*. If g; =0 for all 4

then H = M, which is impossible, so g; # 0 for some i. Take f € M, and let € > 0 be arbitrary. Then there
are n > 0 and aq,...,ay in C such that

N N
| Z%’Tngi —fl < Z%‘T"(gi ©hi)—fD0f <e

=1 =1

Thus, taking F = span{gi, ..., gn}, we see that ord(T|y, F') = M. Therefore, T'|)s is an N-supercyclic unitary
operator and this is absurd. O
As can be derived from the proof of Theorem 4, for a co-concave operator T, if M := ﬁnon*"H, then
T: M — M is an isometry. Considering the fact that isometries have nontrivial invariant subspaces [7], we

obtain the following corollary.

Corollary 6 Suppose that T € B(H) is a co-concave operator such that ﬂnZOT*"’H # (0). Then T has a

nontrivial invariant subspace.

To prove the next theorem, we need the supercyclicity criterion due to Salas [12].

Theorem 5 (Supercyclicity criterion.) Suppose that X is a separable Banach space and T is a bounded
operator on X . If there is an increasing sequence of positive integers (ng)ren and two dense sets Dy, Dy C X
such that

(1) there exists a function S : Dy — Dy satisfying TSx = x for all x € Dy,
(2) | T™ z||.||S™y|| = 0 for every x € D1 and y € Dy,

then T is supercyclic.

Theorem 6 Suppose that T is a co-concave operator such that ﬂnZOT*nH = (0), then T satisfies the super-

cyclicity criterion.

1217



KARIMI et al./Turk J Math

Proof Since T* is bounded below it is left invertible and so T is right invertible. Therefore, it admits a
complete set of eigenvectors. Thus, if for every positive real number r, we denote D, = {z € C : |z| < r},
then H =\/ cp ker(T'— p) (see [4], part (A) of the lemma). Let S =T~ (TT*)~! and choose r > 0 so that

1
T <5 and take
Dy = Dy = span{ker(T — u) : p € D, }.

Now, if x € D1 = D5, then
[Tz ||| 5™l < [ul™[|SI™ |zl < (r[IS1)"™[lz]l — 0

as n — oo. Finally, T"S"x = «x for every x € H and every n > 0. Hence, the operator T satisfies the
supercyclicity criterion. O

Two direct consequences of the above theorem run as follows:
Corollary 7 If T is a co-concave operator in B(H) then T is supercyclic if and only if ﬂnZOT*nH =(0).

Corollary 8 A co-concave operator is supercyclic if and only if it is N-supercyclic.

Now, as an application of the above result, we present an example. Recall that the Dirichlet space D is the set

of all functions analytic on the open unit disc D for which

/uvwmﬂa<m
D

where dA(z) denotes the normalized Lebesgue area measure on . The inner product on D, which makes it

into a Hilbert space, is defined by

<ﬁ@=f@ﬂ®+4f@@@ﬁﬂd

Thus, the associated norm of a function f in D is given by

|m%:uwﬁ+/vvwww>
D

Example 1 Let M, be the multiplication operator by the independent variable z on Dirichlet space D defined
by (MLf)(C)=Cf(C), CeD. If fo({) =C¢™, n=0,1,2,... then it is easily seen that

which implies that M, is a concave operator on D. Moreover, Ny>oM}D = (0). Hence, T = M} is supercyclic
on D.
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5. Concave operators on the Hilbert—Schmidt class

The Hilbert—Schmidt class, C2(H), is the class of all bounded operators S defined on a Hilbert space H,
satisfying

o0
1515 =D lISenl® < oo,

n=1

where ||.|| is the norm on H induced by its inner product. We recall that Cy(#) is a Hilbert space equipped
with the inner product defined by (S,T) = tr(T*S) in which ¢r(T*S) denotes the trace of T*S. Furthermore,
Co(H) is an ideal of the algebra of all bounded operators on #H. Besides, the Hilbert—Schmidt class contains
the finite rank operators as a dense linear manifold [5].

For any bounded operator T" on a Hilbert space H, the left multiplication operator Ly and the right
multiplication operator Rp on Co(H) are defined by Lr(S) = TS and Rp(S) = ST for every S € Co(H).
Moreover, L} = Ly« and R} = Rp-. In the next theorem, we see the relation between concavity of the

operators T, L7, and Rr.

Theorem 7 Suppose that H is a Hilbert space and T € B(H). Then the following statements are equivalent:

(a) T is concave.
(b) Ly is concave.

(¢) Ry is co-concave.

Proof Observe that (a) and (b) are equivalent, thanks to the fact that T +—— Lp is a C*-(into) isomorphism
and T > 0 iff Ly > 0. Indeed,

A, —LyAp, Ly = Laq—7eapT-

Now, suppose that Ly is concave. Taking into account that (Ry)* = R+, we will show that the operator Ry~
is concave. Let S € Cy(#H). Then

IR+ (S)l2 = 728" (|2 = [ L7.5" -
Similarly, ||Rr~(S)||2 = ||L7S*||2. Hence:
1RZ- (S)II — 2l Re- (S)13 + 1S3 = IIL7(S™)II3 — 2/ L (S™)II + 15713 < 0.

Thus, Rp+ is concave.

At last, suppose that Ry is co-concave. Taking S € Cy(H), we observe that

(IT28%enll? = 2ITS enl® + 1S enll”) = IT2S*|I5 — 2| TS |13 + [I15*]13

n=1
= [|[R7-(S)I5 = 2| Rr-(S)[3 + [IS]I3 < 0.
Now, for h € H, let Si be the rank one operator defined by

Skf = (f, h)e.
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Then
IT2RII? = 2 Th|* + |l|* = Y _[IT*Sienll® — 21T Sienl* + | Sienl®] < 0,
n=1
which implies that T is a concave operator. O

It follows from Theorem 7 and Proposition 4 that the left multiplication operator of a concave operator

is not N-supercyclic. However, as we are going to see in the next example, its right multiplication operator may

be supercyclic.

Example 2 Let T be a concave unilateral weighted shift operator defined by Te, = wpepy1, n > 1. If
S € Nuso(RE)™(Co(H)) then there is a sequence (Sy,)n>1 of operators in Co(H) such that S = S, T*" for each

neN, but T*"e, =0 for alln>1 and so S =0. Now Corollary 7 implies that Ry is supercyclic.

We remark that if 7' is a concave bilateral weighted shift then Te, = e,y1 for each n € Z; thus, if

S € Cy(H), then

IBS|3 =D I1STenl® =) [ISeall® = IIS13.

neZ nez

Similarly, ||R%S||2 = ||S|l2. Hence, Ry is a unitary operator that is not N-supercyclic.
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