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Abstract:A bounded linear operator T on a Hilbert space H is concave if, for each x ∈ H , ∥T 2x∥2−2∥Tx∥2+∥x∥2 ≤ 0.

In this paper, it is shown that if T is a concave operator then so is every power of T . Moreover, we investigate the

concavity of shift operators. Furthermore, we obtain necessary and sufficient conditions for N-supercyclicity of co-concave

operators. Finally, we establish necessary and sufficient conditions for the left and right multiplications to be concave

on the Hilbert–Schmidt class.
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1. Introduction and preliminaries

Recall that a real valued function f on an interval I is concave if

f((1− t)a+ tb) ≥ (1− t)f(a) + tf(b)

whenever a, b ∈ I and 0 ≤ t ≤ 1. Clearly, f is convex if and only if −f is concave. Moreover, a sequence (an)n

in R is said to be concave if

an+2 − 2an+1 + an ≤ 0 (n = 0, 1, 2, · · · ).

If I is an open interval it is known that every concave function on I is continuous. Besides, every continuous

function f satisfying

f(
a+ b

2
) ≥ 1

2
[f(a) + f(b)] a, b ∈ I,

is concave [14]. Some more facts on concave functions run as follows:

(i) A sequence (an)n is concave if and only if the function f(t) defined on [0,∞), which is linear on each

interval [n, n+ 1] and such that f(n) = an (n = 0, 1, 2, · · · ), is concave.
(ii) If f(t) is a concave function on [0,∞), then so is the function f(kt) for every k = 1, 2, · · · .

(iii) A nonnegative concave function f(t) on [0,∞) is nondecreasing and

limt→∞ f(t)1/t = 1.

(iv) A nonnegative concave function f(t) on (−∞,∞) is constant.
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Let H be a separable infinite dimensional Hilbert space, and let B(H) be the space of all bounded linear

operators on H . An operator T ∈ B(H) is said to be concave if, for all x ∈ H ,

∥T 2x∥2 − 2∥Tx∥2 + ∥x∥2 ≤ 0.

We remark that an operator T is concave if and only if the sequence (∥Tnx∥2)∞n=0 forms a concave sequence

for every x ∈ H . Thus, (i) and (iii) imply that for every nonzero x in H , limn→∞ ∥Tnx∥1/n = 1.

The class of concave operators is closely related to the study of Brownian operators with respect to which

the stochastic integral of a process with values in a separable Hilbert space has been defined. Indeed, Theorem

B of [11] states that T is a concave operator with ||T ||2 ≤ 2 if and only if it extends to a Brownian operator.

It is obvious that every isometry is a concave operator. As another class of concave operators, we may

consider a class of composition operators defined on a discrete measure space. Suppose that X = {(n, m) :

n, m ∈ Z such that n ≤ m} and (an)
∞
n=−∞ is a sequence of positive real numbers. Let µ be the measure on

the power set of X given by µ((n, n)) = 1 for n ∈ Z and µ((n, m)) = an for n < m . Consider the measurable

function φ : X → X given by φ((n, n)) = (n − 1, n − 1) for n ∈ Z and φ((n, m)) = (n, m − 1) for n < m .

Define the composition operator Cφ in L2(X, µ) by Cφf = f ◦ φ . Then Cφ is a bounded linear operator on

L2(X, µ) if and only if (an)
∞
n=−∞ is a bounded sequence. Moreover, Cφ is concave if and only if an+1 ≤ an

for all integers n . Furthermore, Cφ is not unitarily equivalent to any orthogonal sum of weighted shifts or

isometries; see [10, Example 4.4 and Remark 4.5]. Another class of concave operators consists of the Cauchy

dual of the Bergman type operators. Note that an operator S in B(H) is said to be of Bergman type if

||Sx+ y||2 ≤ 2(||x||2 + ||Sy||2) (x, y ∈ H)

and the operator T = S(S∗S)−1 is called the Cauchy dual of S (see the proof of Theorem 3.6 of [13]).

In this paper, we show that if T is a concave operator then so is all of its nonnegative powers. Moreover,

we give necessary and sufficient conditions under which a forward unilateral weighted shift is concave. We also

show that the only concave bilateral weighted shifts are isometries.

The linear dynamics of operators is a branch of operator theory that appeared during the study of the

famous invariant subset (subspace) problem. The interest in studying supercyclicity dates back to 1974 [9].

N -supercyclicity first originated in the work of Feldman [6]. Recall that for a subset E of a Hilbert space H
and for T ∈ B(H), the orbit of E under T , denoted by orb(T,E), is the set {Tnx : n ≥ 0, x ∈ E} . For

any integer n ≥ 1, the operator T is N-supercyclic if H has an N-dimensional subspace whose orbit under

T is dense in H . A one-supercyclic operator is called a supercyclic operator. Also, if the set E has only

one element and orb(T,E) is dense in H then T is called a hypercyclic operator. Clearly every hypercyclic

operator is supercyclic and every supercyclic operator is an N-supercyclic operator, but the converses are not

true [6]. Some good sources on the dynamics of operators include [1] and [8]. In this paper, we show that every

concave operator is not N-supercyclic. Moreover, we obtain necessary and sufficient conditions for left and right

multiplications to be concave on the Hilbert–Schmidt class of operators.

Throughout this paper, T is assumed to be a bounded linear operator on a Hilbert space H . We begin

with some easy observations. In the following result, D denotes the open unit disc. Also, σ(T ) and σap(T )

are, respectively, the spectrum and the approximate point spectrum of T .
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Proposition 1 The approximate point spectrum of a concave operator T lies on the unit circle. Thus, σ(T ) ⊂
∂D or σ(T ) = D .

Proof Take λ ∈ σap(T ) and suppose that (xn)n is a sequence in H with ∥xn∥ = 1 for each n ∈ N and

(T − λI)(xn) → 0 as n → ∞.

Therefore,

| ∥T 2xn∥ − |λ2| | ≤ ∥T 2xn − λ2xn∥

≤ ∥T∥∥(T − λ)xn∥+ |λ|∥(T − λ)xn∥ → 0

as n → ∞ , which implies that

(|λ|2 − 1)2 = lim
n→∞

[∥T 2xn∥2 − 2∥Txn∥2 + ∥xn∥2] ≤ 0.

Hence, |λ| = 1. Since ∂σ(T ) ⊆ σap(T ), we conclude that σ(T ) ⊆ ∂D or σ(T ) = D . 2

Corollary 1 The spectral radius of a concave operator is one.

Corollary 2 Concave operators are not compact.

Proof Suppose that T is a concave operator. Since it is compact, 0 ∈ σ(T ) and so D ⊆ σ(T ). However, this

contradicts the fact that the spectrum of a compact operator is at most countable. 2

2. Basic properties

Taking ∆T = T ∗T − I , it is easily seen that T is a concave operator if and only if

T ∗∆TT ≤ ∆T . (1)

To prove that each power of every concave operator is concave, we need the following lemma. For simplicity we

use ∆n instead of ∆Tn for every n ≥ 1.

Lemma 1 If T is a concave operator then the following inequalities hold:

(T k+1)∗∆1T
k+1 ≤ (T k)∗∆1T

k (k = 0, 1, · · · ), (2)

and for n = 2, 3, · · ·
(Tn+k)∗∆nT

n+k ≤ ∆n (k = 0, 1, · · · ). (3)

Proof Note that (2) follows immediately from (1). Suppose that (3) holds for some n . Since ∆n+1 =

T ∗∆nT +∆1 we can see from (3) and (2) that

(Tn+1+k)∗∆n+1T
n+1+k = T ∗{(Tn+k+1)∗∆nT

n+k+1
}
T + (Tn+k+1)∗∆1T

n+k+1

≤ T ∗∆nT +∆1 = ∆n+1,

completing induction. 2
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Theorem 1 If T is concave then ∆T ≥ 0 ; that is, ∥Tx∥ ≥ ∥x∥ for every x ∈ H . Furthermore, Tn is concave

for all n ≥ 2 .

Proof It follows from (2) that

n∆T ≥
n∑

k=1

(T k)∗∆TT
k = (Tn+1)∗Tn+1 − T ∗T ≥ −T ∗T (n = 1, 2, · · · ).

Hence,

∆T ≥ lim
n→∞

−1

n
T ∗T = 0.

Finally, (3) with k = 0 means that Tn is concave. 2

Theorem 2 A concave operator T with ker(T ∗) = {0} is unitary.

Proof The assumption ker(T ∗) = {0} means that ran(T ) is dense in H . This coupled with the property

∥Tx∥ ≥ ∥x∥ (x ∈ H) implies that T is invertible. Then, since

∆T−1 − (T−1)∗∆T−1T−1 = (T−2)∗
{
∆T − T ∗∆TT

}
T−2 ≥ 0, (4)

we can conclude that T−1 is concave, and hence ∥T−1x∥ ≥ ∥x∥ (x ∈ H). Combined with the property that

∥Tx∥ ≥ ∥x∥ (x ∈ H) we conclude that T is unitary.

2

Corollary 3 Every concave operator on a finite-dimensional Hilbert space is unitary.

Proof By finite dimensionality and Theorem 1, kerT ∗ = kerT = {0}. 2

Recall that an operator T is called co-concave if T ∗ is concave.

Corollary 4 A concave operator T is unitary if T is co-concave or T is normal.

Proof If T ∗ is concave, kerT ∗ = {0} . If T is normal, kerT ∗ = kerT = {0} . 2

Theorem 3 Suppose that T is a concave operator and M is a closed T -invariant subspace. Then the

restriction T |M is concave. Furthermore, if dim(M) < ∞ , then M reduces T .

Proof The first assertion is trivial. Write

T =

(
T11 T12

0 T22

)

according to the decomposition H = M⊕M⊥ . Then, by concavity of T ,

0 ≤ ∆T =

(
T ∗
11T11 − IM T ∗

11T12

T ∗
12T11 T ∗

12T12 + T ∗
22T22 − IM⊥

)
.
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When dimM < ∞ , by Corollary 3, T11 is unitary and consequently

0 ≤
(

0 T ∗
11T12

T ∗
12T11 T ∗

12T12 + T ∗
22T22 − IM⊥

)
.

Positivity of this block matrix implies that

⟨(T ∗
12T12 + T ∗

22T22 − IM⊥)g, g⟩ ≥ −2Re⟨T ∗
12T11h, g⟩

for all h, g ∈ H . Thus, T ∗
11T12 = 0 and hence T12 = 0. This means that M reduces T .

2

To prove the next result, we use the Berberian construction [2] [15].

Proposition 2 (Lemma 2.7 of [15]) Let H be a complex Hilbert space. Then there exists a Hilbert space R ⊇ H
and a unital linear map Π : B(H) → B(R) such that: (a) Π(ST ) = Π(S)Π(T ), Π(T ∗) = (Π(T ))∗, ∥Π(T )∥ =

∥T∥ ;
(b) S ≤ T =⇒ Π(S) ≤ Π(T ) ;

(c) σ(Π(T )) = σ(T ), σap(Π(T )) = σap(T ) = σp(Π(T )).

Corollary 5 For a concave operator T the following statements hold.

(a) Every eigenvalue of T is a normal eigenvalue; that is, Ta = ζa implies T ∗a = ζa .

(b) If ζ ∈ σap(T ) then ζ ∈ σap(T
∗) .

Proof (a) Since M = Ca is a one-dimensional invariant subspace of T , by Theorem 3 it reduces T , which

implies that T ∗a = ζa .

(b) Suppose that ζ ∈ σap(T ) = σp(Π(T )). Since Π(T ) is a concave operator, by applying (a), we see that

ζ ∈ σp((Π(T ))∗) = σp(Π((T ∗))) = σap(T
∗). 2

3. The concavity of shifts operators

An operator T ∈ B(H) is called a forward unilateral (bilateral) weighted shift if there is an orthonormal basis

{en : n ≥ 0}
(
{en : n ∈ Z}

)
and a sequence of bounded complex numbers {wn : n ≥ 0}

(
{wn : n ∈ Z}

)
such that

Ten = wnen+1 for all n ≥ 0 (n ∈ Z). It is known that a weighted shift operator T is unitarily equivalent to

a weighted shift operator with a nonnegative weight sequence. We can assume that wn ≥ 0 for all n (see [5],

page 53). In addition, T is injective if and only if wn > 0 for every n . Recall that the adjoint of T is called a

backward unilateral (bilateral) shift. It is also known that T is an isometry if and only if wn = 1 for all n .

Let wn =
√

2n+1
2n and Ten = wnen+1 for every n ≥ 0. Then T is a concave forward weighted shift

operator, due to

∥T 2en∥2 − 2∥Ten∥2 + 1 =
1− 2n

22n + 1
≤ 0.

As another example of such operators, take wo =
√
2 and wn = 1 for n ≥ 1.

1215



KARIMI et al./Turk J Math

In spite of the above examples, the only concave bilateral weighted shifts are unitaries. Thanks to the

fact that the kernel of such an operator is {0} , all weights are positive, which in turn implies that the kernel of

its adjoint is {0} .
In the next result, we give a necessary and sufficient condition for a unilateral forward weighted shift to

be concave.

Proposition 3 A unilateral forward weighted shift with weight sequence (wn)n is a concave operator if and

only if

1 ≤ w0 and 1 ≤ wn+1 ≤
√
2− w−2

n (n = 0, 1, 2, · · · ). (5)

Moreover, in this case (wn)n is decreasing and converges to 1 .

Proof Let T be a unilateral forward weighted shift with weight sequence (wn)n . If T is concave then

wn = ∥Ten∥ ≥ 1 for all n ≥ 0. Now the proof follows from the equality

∥T 2en∥2 − 2∥Ten∥2 + ∥en∥2 = w2
nw

2
n+1 − 2w2

n + 1

= w2
n(w

2
n+1 − (2− w−2

n )).

On the other hand, since
√
2− w−2

n ≤ wn , the sequence wn is decreasing; thus, (5) implies that limn→∞ wn =

1. 2

Note that since every concave operator is injective, there is not any concave backward unilateral weighted shift

operator.

4. N-Supercyclicity of concave operators

Proposition 4 No concave operator is N-supercyclic.

Proof Take a concave operator T ∈ B(H). Assume, on the contrary, that there exists a subspace E of H ,

of dimension N , such that orb(T,E) = H . The subspace E has an empty interior because E ̸= H . Moreover,

H = orb(T,E) = E ∪ (∪∞
n=1T

nE),

which implies that H = ∪∞
n=1T

nE . Hence, T must have a dense range. Then the operator T is invertible.

Thus, applying (4), we see that T−1 is also a concave operator. Therefore, ∥T−1x∥ ≥ ∥x∥ for all x ∈ H . Thus,

∥Tx∥ ≥ ∥x∥ = ∥T−1Tx∥ ≥ ∥Tx∥.

Hence, T is a unitary operator that cannot be N-supercyclic (see Theorem 4.9 of [6], and see also [3]). 2

Theorem 4 Suppose that T ∈ B(H) is a co-concave, N-supercyclic operator. Then ∩n≥0T
∗nH = (0) .

Proof Put M = ∩n≥0T
∗nH . Clearly M is an invariant subspace of T ∗ and also of T . Indeed, since T ∗ is

bounded below, TT ∗ is invertible. Let S = (TT ∗)−1T . Thus, for every x ∈ H ,

∥T ∗Sx∥2 = ⟨S∗TT ∗Sx, x⟩ = ⟨S∗Tx, x⟩ = ⟨x, T ∗Sx⟩ ≤ ∥x∥∥T ∗Sx∥,
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which implies that ∥T ∗Sx∥ ≤ ∥x∥ . However, since ∥Sx∥ ≤ ∥T ∗Sx∥, we conclude that ∥Sx∥ ≤ ∥x∥ for all

x ∈ H . Moreover, for every nonnegative integer n , each x ∈ M can be written as x = T ∗n

xn for some xn ∈ H

and so Sx = T ∗n−1

xn ∈ M . Hence, SM ⊆ M .

On the other hand, if x ∈ M , then x = T ∗2

y for some y ∈ H . Thus,

∥S2x∥2 − 2∥Sx∥2 + ∥x∥2 = ∥y∥2 − 2∥T ∗y∥2 + ∥T ∗2

y∥2 ≤ 0,

which states that the operator S : M −→ M is a concave operator. Thus, if x ∈ M then ∥Sx∥ ≥ ∥x∥ ;
hence, ∥Sx∥ = ∥x∥ . Moreover, since ST ∗ = I , the operator S : M → M is onto, and it is also injective, so

ST ∗x = T ∗Sx = x . Furthermore,

∥x∥ = ∥ST ∗x∥ = ∥T ∗x∥,

which implies that TT ∗x = x . Consequently, Tx = T (T ∗Sx) = Sx ∈ M ; i.e. TM ⊆ M . Moreover, we deduce

that T : M → M is in fact a unitary operator.

In continuation, we argue by contradiction and we assume that the subspace M is nonzero. We also

suppose that there exists an N -dimensional subspace E of H such that orb(T,E) is dense in H . Let (h1, ..., hN )

be a basis of E and suppose that hi = gi ⊕ ki , 1 ≤ i ≤ N where gi ∈ M and ki ∈ M⊥ . If gi = 0 for all i

then H = M⊥ , which is impossible, so gi ̸= 0 for some i . Take f ∈ M , and let ϵ > 0 be arbitrary. Then there

are n ≥ 0 and α1, ..., αN in C such that

∥
N∑
i=1

αiT
ngi − f∥ ≤ ∥

N∑
i=1

αiT
n(gi ⊕ ki)− f ⊕ 0∥ < ϵ.

Thus, taking F = span{g1, ..., gN} , we see that orb(T |M , F ) = M . Therefore, T |M is an N-supercyclic unitary

operator and this is absurd. 2

As can be derived from the proof of Theorem 4, for a co-concave operator T , if M := ∩n≥0T
∗nH , then

T : M −→ M is an isometry. Considering the fact that isometries have nontrivial invariant subspaces [7], we

obtain the following corollary.

Corollary 6 Suppose that T ∈ B(H) is a co-concave operator such that ∩n≥0T
∗nH ̸= (0) . Then T has a

nontrivial invariant subspace.

To prove the next theorem, we need the supercyclicity criterion due to Salas [12].

Theorem 5 (Supercyclicity criterion.) Suppose that X is a separable Banach space and T is a bounded

operator on X . If there is an increasing sequence of positive integers (nk)k∈N and two dense sets D1, D2 ⊆ X

such that

(1) there exists a function S : D2 → D2 satisfying TSx = x for all x ∈ D2 ,

(2) ∥Tnkx∥.∥Snky∥ → 0 for every x ∈ D1 and y ∈ D2 ,

then T is supercyclic.

Theorem 6 Suppose that T is a co-concave operator such that ∩n≥0T
∗nH = (0) ; then T satisfies the super-

cyclicity criterion.
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Proof Since T ∗ is bounded below it is left invertible and so T is right invertible. Therefore, it admits a

complete set of eigenvectors. Thus, if for every positive real number r , we denote Dr = {z ∈ C : |z| < r} ,
then H =

∨
µ∈Dr

ker(T − µ) (see [4], part (A) of the lemma). Let S = T ∗(TT ∗)−1 and choose r > 0 so that

r < 1
∥S∥ , and take

D1 = D2 = span{ker(T − µ) : µ ∈ Dr}.

Now, if x ∈ D1 = D2 , then

∥Tnx∥∥Snx∥ ≤ |µ|n∥S∥n∥x∥ ≤ (r∥S∥)n∥x∥ → 0

as n → ∞ . Finally, TnSnx = x for every x ∈ H and every n ≥ 0. Hence, the operator T satisfies the

supercyclicity criterion. 2

Two direct consequences of the above theorem run as follows:

Corollary 7 If T is a co-concave operator in B(H) then T is supercyclic if and only if ∩n≥0T
∗nH = (0) .

Corollary 8 A co-concave operator is supercyclic if and only if it is N-supercyclic.

Now, as an application of the above result, we present an example. Recall that the Dirichlet space D is the set

of all functions analytic on the open unit disc D for which

∫
D
|f ′(z)|2dA(z) < ∞,

where dA(z) denotes the normalized Lebesgue area measure on D . The inner product on D , which makes it

into a Hilbert space, is defined by

⟨f, g⟩ = f(0)g(0) +

∫
D
f ′(z)g′(z)dA(z).

Thus, the associated norm of a function f in D is given by

||f ||2D = |f(0)|2 +
∫
D
|f ′(z)|2dA(z).

Example 1 Let Mz be the multiplication operator by the independent variable z on Dirichlet space D defined

by (Mzf)(ζ) = ζf(ζ), ζ ∈ D . If fn(ζ) = ζn, n = 0, 1, 2, . . . then it is easily seen that

||M2
z fn||2D − 2||Mzfn||2D + ||fn||2D = 0,

which implies that Mz is a concave operator on D . Moreover, ∩n≥0M
n
z D = (0) . Hence, T = M∗

z is supercyclic

on D .

1218



KARIMI et al./Turk J Math

5. Concave operators on the Hilbert–Schmidt class

The Hilbert–Schmidt class, C2(H), is the class of all bounded operators S defined on a Hilbert space H ,

satisfying

∥S∥22 =
∞∑

n=1

∥Sen∥2 < ∞,

where ∥.∥ is the norm on H induced by its inner product. We recall that C2(H) is a Hilbert space equipped

with the inner product defined by ⟨S, T ⟩ = tr(T ∗S) in which tr(T ∗S) denotes the trace of T ∗S . Furthermore,

C2(H) is an ideal of the algebra of all bounded operators on H . Besides, the Hilbert–Schmidt class contains

the finite rank operators as a dense linear manifold [5].

For any bounded operator T on a Hilbert space H , the left multiplication operator LT and the right

multiplication operator RT on C2(H) are defined by LT (S) = TS and RT (S) = ST for every S ∈ C2(H).

Moreover, L∗
T = LT∗ and R∗

T = RT∗ . In the next theorem, we see the relation between concavity of the

operators T, LT , and RT .

Theorem 7 Suppose that H is a Hilbert space and T ∈ B(H) . Then the following statements are equivalent:

(a) T is concave.

(b) LT is concave.

(c) RT is co-concave.

Proof Observe that (a) and (b) are equivalent, thanks to the fact that T 7−→ LT is a C∗ -(into) isomorphism

and T ≥ 0 iff LT ≥ 0. Indeed,

∆LT
− L∗

T∆LT
LT = L∆T−T∗∆TT .

Now, suppose that LT is concave. Taking into account that (RT )
∗ = RT∗ , we will show that the operator RT∗

is concave. Let S ∈ C2(H). Then

∥R2
T∗(S)∥2 = ∥T 2S∗∥2 = ∥L2

TS
∗∥2.

Similarly, ∥RT∗(S)∥2 = ∥LTS
∗∥2 . Hence:

∥R2
T∗(S)∥22 − 2∥RT∗(S)∥22 + ∥S∥22 = ∥L2

T (S
∗)∥22 − 2∥LT (S

∗)∥22 + ∥S∗∥22 ≤ 0.

Thus, RT∗ is concave.

At last, suppose that RT is co-concave. Taking S ∈ C2(H), we observe that

∞∑
n=1

[∥T 2S∗en∥2 − 2∥TS∗en∥2 + ∥S∗en∥2] = ∥T 2S∗∥22 − 2∥TS∗∥22 + ∥S∗∥22

= ∥R2
T∗(S)∥22 − 2∥RT∗(S)∥22 + ∥S∥22 ≤ 0.

Now, for h ∈ H , let Sk be the rank one operator defined by

Skf = ⟨f, h⟩ek.
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Then

∥T 2h∥2 − 2∥Th∥2 + ∥h∥2 =
∞∑

n=1

[∥T 2S∗
ken∥2 − 2∥T 2S∗

ken∥2 + ∥S∗
ken∥2] ≤ 0,

which implies that T is a concave operator. 2

It follows from Theorem 7 and Proposition 4 that the left multiplication operator of a concave operator

is not N-supercyclic. However, as we are going to see in the next example, its right multiplication operator may

be supercyclic.

Example 2 Let T be a concave unilateral weighted shift operator defined by Ten = wnen+1 , n ≥ 1 . If

S ∈ ∩n≥0(R
∗
T )

n(C2(H)) then there is a sequence (Sn)n≥1 of operators in C2(H) such that S = SnT
∗n

for each

n ∈ N , but T ∗n

en = 0 for all n ≥ 1 and so S ≡ 0 . Now Corollary 7 implies that RT is supercyclic.

We remark that if T is a concave bilateral weighted shift then Ten = en+1 for each n ∈ Z ; thus, if

S ∈ C2(H), then

∥RTS∥22 =
∑
n∈Z

∥STen∥2 =
∑
n∈Z

∥Sen∥2 = ∥S∥22.

Similarly, ∥R∗
TS∥2 = ∥S∥2 . Hence, RT is a unitary operator that is not N-supercyclic.
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