Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2016) 40: 1211 - 1220
© TÜBITAK
doi:10.3906/mat-1501-41

Some properties of concave operators

Lotfollah KARIMI ${ }^{1, *}$, Masoumeh FAGHIH-AHMADI ${ }^{2}$, Karim HEDAYATAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, Hamedan University of Technology, Hamedan, Iran
${ }^{2}$ Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran

| Received: 21.01 .2015 | Accepted/Published Online: 27.01 .2016 | Final Version: 02.12 .2016 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

A bounded linear operator T on a Hilbert space \mathcal{H} is concave if, for each $x \in \mathcal{H},\left\|T^{2} x\right\|^{2}-2\|T x\|^{2}+\|x\|^{2} \leq 0$. In this paper, it is shown that if T is a concave operator then so is every power of T. Moreover, we investigate the concavity of shift operators. Furthermore, we obtain necessary and sufficient conditions for N-supercyclicity of co-concave operators. Finally, we establish necessary and sufficient conditions for the left and right multiplications to be concave on the Hilbert-Schmidt class.

Key words: Concave operators, weighted shifts, N -supercyclicity

1. Introduction and preliminaries

Recall that a real valued function f on an interval I is concave if

$$
f((1-t) a+t b) \geq(1-t) f(a)+t f(b)
$$

whenever $a, b \in I$ and $0 \leq t \leq 1$. Clearly, f is convex if and only if $-f$ is concave. Moreover, a sequence $\left(a_{n}\right)_{n}$ in \mathbb{R} is said to be concave if

$$
a_{n+2}-2 a_{n+1}+a_{n} \leq 0 \quad(n=0,1,2, \cdots)
$$

If I is an open interval it is known that every concave function on I is continuous. Besides, every continuous function f satisfying

$$
f\left(\frac{a+b}{2}\right) \geq \frac{1}{2}[f(a)+f(b)] \quad a, b \in I
$$

is concave [14]. Some more facts on concave functions run as follows:
(i) A sequence $\left(a_{n}\right)_{n}$ is concave if and only if the function $f(t)$ defined on $[0, \infty)$, which is linear on each interval $[n, n+1]$ and such that $f(n)=a_{n}(n=0,1,2, \cdots)$, is concave.
(ii) If $f(t)$ is a concave function on $[0, \infty)$, then so is the function $f(k t)$ for every $k=1,2, \cdots$.
(iii) A nonnegative concave function $f(t)$ on $[0, \infty)$ is nondecreasing and $\lim _{t \rightarrow \infty} f(t)^{1 / t}=1$.
(iv) A nonnegative concave function $f(t)$ on $(-\infty, \infty)$ is constant.

[^0]Let \mathcal{H} be a separable infinite dimensional Hilbert space, and let $B(\mathcal{H})$ be the space of all bounded linear operators on \mathcal{H}. An operator $T \in B(\mathcal{H})$ is said to be concave if, for all $x \in \mathcal{H}$,

$$
\left\|T^{2} x\right\|^{2}-2\|T x\|^{2}+\|x\|^{2} \leq 0
$$

We remark that an operator T is concave if and only if the sequence $\left(\left\|T^{n} x\right\|^{2}\right)_{n=0}^{\infty}$ forms a concave sequence for every $x \in \mathcal{H}$. Thus, (i) and (iii) imply that for every nonzero x in $\mathcal{H}, \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{1 / n}=1$.

The class of concave operators is closely related to the study of Brownian operators with respect to which the stochastic integral of a process with values in a separable Hilbert space has been defined. Indeed, Theorem B of [11] states that T is a concave operator with $\|T\|^{2} \leq 2$ if and only if it extends to a Brownian operator.

It is obvious that every isometry is a concave operator. As another class of concave operators, we may consider a class of composition operators defined on a discrete measure space. Suppose that $X=\{(n, m)$: $n, m \in \mathbb{Z}$ such that $n \leq m\}$ and $\left(a_{n}\right)_{n=-\infty}^{\infty}$ is a sequence of positive real numbers. Let μ be the measure on the power set of X given by $\mu((n, n))=1$ for $n \in \mathbb{Z}$ and $\mu((n, m))=a_{n}$ for $n<m$. Consider the measurable function $\varphi: X \rightarrow X$ given by $\varphi((n, n))=(n-1, n-1)$ for $n \in \mathbb{Z}$ and $\varphi((n, m))=(n, m-1)$ for $n<m$. Define the composition operator C_{φ} in $L^{2}(X, \mu)$ by $C_{\varphi} f=f \circ \varphi$. Then C_{φ} is a bounded linear operator on $L^{2}(X, \mu)$ if and only if $\left(a_{n}\right)_{n=-\infty}^{\infty}$ is a bounded sequence. Moreover, C_{φ} is concave if and only if $a_{n+1} \leq a_{n}$ for all integers n. Furthermore, C_{φ} is not unitarily equivalent to any orthogonal sum of weighted shifts or isometries; see [10, Example 4.4 and Remark 4.5]. Another class of concave operators consists of the Cauchy dual of the Bergman type operators. Note that an operator S in $B(\mathcal{H})$ is said to be of Bergman type if

$$
\|S x+y\|^{2} \leq 2\left(\|x\|^{2}+\|S y\|^{2}\right) \quad(x, y \in \mathcal{H})
$$

and the operator $T=S\left(S^{*} S\right)^{-1}$ is called the Cauchy dual of S (see the proof of Theorem 3.6 of [13]).
In this paper, we show that if T is a concave operator then so is all of its nonnegative powers. Moreover, we give necessary and sufficient conditions under which a forward unilateral weighted shift is concave. We also show that the only concave bilateral weighted shifts are isometries.

The linear dynamics of operators is a branch of operator theory that appeared during the study of the famous invariant subset (subspace) problem. The interest in studying supercyclicity dates back to 1974 [9]. N-supercyclicity first originated in the work of Feldman [6]. Recall that for a subset E of a Hilbert space \mathcal{H} and for $T \in B(\mathcal{H})$, the orbit of E under T, denoted by $\operatorname{orb}(T, E)$, is the set $\left\{T^{n} x: n \geq 0, x \in E\right\}$. For any integer $n \geq 1$, the operator T is N -supercyclic if \mathcal{H} has an N -dimensional subspace whose orbit under T is dense in \mathcal{H}. A one-supercyclic operator is called a supercyclic operator. Also, if the set E has only one element and $\operatorname{orb}(T, E)$ is dense in \mathcal{H} then T is called a hypercyclic operator. Clearly every hypercyclic operator is supercyclic and every supercyclic operator is an N-supercyclic operator, but the converses are not true [6]. Some good sources on the dynamics of operators include [1] and [8]. In this paper, we show that every concave operator is not N -supercyclic. Moreover, we obtain necessary and sufficient conditions for left and right multiplications to be concave on the Hilbert-Schmidt class of operators.

Throughout this paper, T is assumed to be a bounded linear operator on a Hilbert space \mathcal{H}. We begin with some easy observations. In the following result, \mathbb{D} denotes the open unit disc. Also, $\sigma(T)$ and $\sigma_{a p}(T)$ are, respectively, the spectrum and the approximate point spectrum of T.

Proposition 1 The approximate point spectrum of a concave operator T lies on the unit circle. Thus, $\sigma(T) \subset$ $\partial \mathbb{D}$ or $\sigma(T)=\overline{\mathbb{D}}$.

Proof Take $\lambda \in \sigma_{a p}(T)$ and suppose that $\left(x_{n}\right)_{n}$ is a sequence in \mathcal{H} with $\left\|x_{n}\right\|=1$ for each $n \in \mathbb{N}$ and

$$
(T-\lambda I)\left(x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
\left|\left\|T^{2} x_{n}\right\|-\left|\lambda^{2}\right|\right| & \leq\left\|T^{2} x_{n}-\lambda^{2} x_{n}\right\| \\
& \leq\|T\|\left\|(T-\lambda) x_{n}\right\|+|\lambda|\left\|(T-\lambda) x_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, which implies that

$$
\left(|\lambda|^{2}-1\right)^{2}=\lim _{n \rightarrow \infty}\left[\left\|T^{2} x_{n}\right\|^{2}-2\left\|T x_{n}\right\|^{2}+\left\|x_{n}\right\|^{2}\right] \leq 0
$$

Hence, $|\lambda|=1$. Since $\partial \sigma(T) \subseteq \sigma_{a p}(T)$, we conclude that $\sigma(T) \subseteq \partial \mathbb{D}$ or $\sigma(T)=\overline{\mathbb{D}}$.

Corollary 1 The spectral radius of a concave operator is one.
Corollary 2 Concave operators are not compact.
Proof Suppose that T is a concave operator. Since it is compact, $0 \in \sigma(T)$ and so $\overline{\mathbb{D}} \subseteq \sigma(T)$. However, this contradicts the fact that the spectrum of a compact operator is at most countable.

2. Basic properties

Taking $\Delta_{T}=T^{*} T-I$, it is easily seen that T is a concave operator if and only if

$$
\begin{equation*}
T^{*} \Delta_{T} T \leq \Delta_{T} \tag{1}
\end{equation*}
$$

To prove that each power of every concave operator is concave, we need the following lemma. For simplicity we use Δ_{n} instead of $\Delta_{T^{n}}$ for every $n \geq 1$.

Lemma 1 If T is a concave operator then the following inequalities hold:

$$
\begin{equation*}
\left(T^{k+1}\right)^{*} \Delta_{1} T^{k+1} \leq\left(T^{k}\right)^{*} \Delta_{1} T^{k} \quad(k=0,1, \cdots) \tag{2}
\end{equation*}
$$

and for $n=2,3, \cdots$

$$
\begin{equation*}
\left(T^{n+k}\right)^{*} \Delta_{n} T^{n+k} \leq \Delta_{n} \quad(k=0,1, \cdots) \tag{3}
\end{equation*}
$$

Proof Note that (2) follows immediately from (1). Suppose that (3) holds for some n. Since $\Delta_{n+1}=$ $T^{*} \Delta_{n} T+\Delta_{1}$ we can see from (3) and (2) that

$$
\begin{aligned}
\left(T^{n+1+k}\right)^{*} \Delta_{n+1} T^{n+1+k}= & T^{*}\left\{\left(T^{n+k+1}\right)^{*} \Delta_{n} T^{n+k+1}\right\} T+\left(T^{n+k+1}\right)^{*} \Delta_{1} T^{n+k+1} \\
& \leq T^{*} \Delta_{n} T+\Delta_{1}=\Delta_{n+1}
\end{aligned}
$$

completing induction.

Theorem 1 If T is concave then $\Delta_{T} \geq 0$; that is, $\|T x\| \geq\|x\|$ for every $x \in \mathcal{H}$. Furthermore, T^{n} is concave for all $n \geq 2$.

Proof It follows from (2) that

$$
n \Delta_{T} \geq \sum_{k=1}^{n}\left(T^{k}\right)^{*} \Delta_{T} T^{k}=\left(T^{n+1}\right)^{*} T^{n+1}-T^{*} T \geq-T^{*} T \quad(n=1,2, \cdots)
$$

Hence,

$$
\Delta_{T} \geq \lim _{n \rightarrow \infty} \frac{-1}{n} T^{*} T=0
$$

Finally, (3) with $k=0$ means that T^{n} is concave.

Theorem $2 A$ concave operator T with $\operatorname{ker}\left(T^{*}\right)=\{0\}$ is unitary.
Proof The assumption $\operatorname{ker}\left(T^{*}\right)=\{0\}$ means that $\operatorname{ran}(T)$ is dense in \mathcal{H}. This coupled with the property $\|T x\| \geq\|x\| \quad(x \in \mathcal{H})$ implies that T is invertible. Then, since

$$
\begin{equation*}
\Delta_{T^{-1}}-\left(T^{-1}\right)^{*} \Delta_{T^{-1}} T^{-1}=\left(T^{-2}\right)^{*}\left\{\Delta_{T}-T^{*} \Delta_{T} T\right\} T^{-2} \geq 0 \tag{4}
\end{equation*}
$$

we can conclude that T^{-1} is concave, and hence $\left\|T^{-1} x\right\| \geq\|x\|(x \in \mathcal{H})$. Combined with the property that $\|T x\| \geq\|x\|(x \in \mathcal{H})$ we conclude that T is unitary.

Corollary 3 Every concave operator on a finite-dimensional Hilbert space is unitary.
Proof By finite dimensionality and Theorem 1, $\operatorname{ker} T^{*}=\operatorname{ker} T=\{0\}$.
Recall that an operator T is called co-concave if T^{*} is concave.

Corollary $4 A$ concave operator T is unitary if T is co-concave or T is normal.
Proof If T^{*} is concave, $\operatorname{ker} T^{*}=\{0\}$. If T is normal, $\operatorname{ker} T^{*}=\operatorname{ker} T=\{0\}$.

Theorem 3 Suppose that T is a concave operator and \mathcal{M} is a closed T-invariant subspace. Then the restriction $\left.T\right|_{\mathcal{M}}$ is concave. Furthermore, if $\operatorname{dim}(\mathcal{M})<\infty$, then \mathcal{M} reduces T.
Proof The first assertion is trivial. Write

$$
T=\left(\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right)
$$

according to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then, by concavity of T,

$$
0 \leq \Delta_{T}=\left(\begin{array}{cc}
T_{11}^{*} T_{11}-I_{\mathcal{M}} & T_{11}^{*} T_{12} \\
T_{12}^{*} T_{11} & T_{12}^{*} T_{12}+T_{22}^{*} T_{22}-I_{\mathcal{M}^{\perp}}
\end{array}\right)
$$

When $\operatorname{dim} \mathcal{M}<\infty$, by Corollary $3, T_{11}$ is unitary and consequently

$$
0 \leq\left(\begin{array}{cc}
0 & T_{11}^{*} T_{12} \\
T_{12}^{*} T_{11} & T_{12}^{*} T_{12}+T_{22}^{*} T_{22}-I_{\mathcal{M}^{\perp}}
\end{array}\right)
$$

Positivity of this block matrix implies that

$$
\left\langle\left(T_{12}^{*} T_{12}+T_{22}^{*} T_{22}-I_{\mathcal{M}^{\perp}}\right) g, g\right\rangle \geq-2 \operatorname{Re}\left\langle T_{12}^{*} T_{11} h, g\right\rangle
$$

for all $h, g \in \mathcal{H}$. Thus, $T_{11}^{*} T_{12}=0$ and hence $T_{12}=0$. This means that \mathcal{M} reduces T.

To prove the next result, we use the Berberian construction [2] [15].

Proposition 2 (Lemma 2.7 of [15]) Let \mathcal{H} be a complex Hilbert space. Then there exists a Hilbert space $\mathcal{R} \supseteq \mathcal{H}$ and a unital linear map $\Pi: B(\mathcal{H}) \rightarrow B(\mathcal{R})$ such that: (a) $\Pi(S T)=\Pi(S) \Pi(T), \Pi\left(T^{*}\right)=(\Pi(T))^{*},\|\Pi(T)\|=$ $\|T\|$;
(b) $S \leq T \Longrightarrow \Pi(S) \leq \Pi(T)$;
(c) $\sigma(\Pi(T))=\sigma(T), \sigma_{a p}(\Pi(T))=\sigma_{a p}(T)=\sigma_{p}(\Pi(T))$.

Corollary 5 For a concave operator T the following statements hold.
(a) Every eigenvalue of T is a normal eigenvalue; that is, $T a=\zeta$ implies $T^{*} a=\bar{\zeta} a$.
(b) If $\zeta \in \sigma_{a p}(T)$ then $\bar{\zeta} \in \sigma_{a p}\left(T^{*}\right)$.

Proof (a) Since $\mathcal{M}=\mathbb{C} a$ is a one-dimensional invariant subspace of T, by Theorem 3 it reduces T, which implies that $T^{*} a=\bar{\zeta} a$.
(b) Suppose that $\zeta \in \sigma_{a p}(T)=\sigma_{p}(\Pi(T))$. Since $\Pi(T)$ is a concave operator, by applying (a), we see that $\bar{\zeta} \in \sigma_{p}\left((\Pi(T))^{*}\right)=\sigma_{p}\left(\Pi\left(\left(T^{*}\right)\right)\right)=\sigma_{a p}\left(T^{*}\right)$.

3. The concavity of shifts operators

An operator $T \in B(\mathcal{H})$ is called a forward unilateral (bilateral) weighted shift if there is an orthonormal basis $\left\{e_{n}: n \geq 0\right\}\left(\left\{e_{n}: n \in \mathbb{Z}\right\}\right)$ and a sequence of bounded complex numbers $\left\{w_{n}: n \geq 0\right\}\left(\left\{w_{n}: n \in \mathbb{Z}\right\}\right)$ such that $T e_{n}=w_{n} e_{n+1}$ for all $n \geq 0(n \in \mathbb{Z})$. It is known that a weighted shift operator T is unitarily equivalent to a weighted shift operator with a nonnegative weight sequence. We can assume that $w_{n} \geq 0$ for all n (see [5], page 53). In addition, T is injective if and only if $w_{n}>0$ for every n. Recall that the adjoint of T is called a backward unilateral (bilateral) shift. It is also known that T is an isometry if and only if $w_{n}=1$ for all n.

Let $w_{n}=\sqrt{\frac{2^{n}+1}{2^{n}}}$ and $T e_{n}=w_{n} e_{n+1}$ for every $n \geq 0$. Then T is a concave forward weighted shift operator, due to

$$
\left\|T^{2} e_{n}\right\|^{2}-2\left\|T e_{n}\right\|^{2}+1=\frac{1-2^{n}}{2^{2 n}+1} \leq 0
$$

As another example of such operators, take $w_{o}=\sqrt{2}$ and $w_{n}=1$ for $n \geq 1$.

In spite of the above examples, the only concave bilateral weighted shifts are unitaries. Thanks to the fact that the kernel of such an operator is $\{0\}$, all weights are positive, which in turn implies that the kernel of its adjoint is $\{0\}$.

In the next result, we give a necessary and sufficient condition for a unilateral forward weighted shift to be concave.

Proposition 3 A unilateral forward weighted shift with weight sequence $\left(w_{n}\right)_{n}$ is a concave operator if and only if

$$
\begin{equation*}
1 \leq w_{0} \quad \text { and } 1 \leq w_{n+1} \leq \sqrt{2-w_{n}^{-2}} \quad(n=0,1,2, \cdots) \tag{5}
\end{equation*}
$$

Moreover, in this case $\left(w_{n}\right)_{n}$ is decreasing and converges to 1 .
Proof Let T be a unilateral forward weighted shift with weight sequence $\left(w_{n}\right)_{n}$. If T is concave then $w_{n}=\left\|T e_{n}\right\| \geq 1$ for all $n \geq 0$. Now the proof follows from the equality

$$
\begin{aligned}
\left\|T^{2} e_{n}\right\|^{2}-2\left\|T e_{n}\right\|^{2}+\left\|e_{n}\right\|^{2} & =w_{n}^{2} w_{n+1}^{2}-2 w_{n}^{2}+1 \\
& =w_{n}^{2}\left(w_{n+1}^{2}-\left(2-w_{n}^{-2}\right)\right)
\end{aligned}
$$

On the other hand, since $\sqrt{2-w_{n}^{-2}} \leq w_{n}$, the sequence w_{n} is decreasing; thus, (5) implies that $\lim _{n \rightarrow \infty} w_{n}=$ 1.

Note that since every concave operator is injective, there is not any concave backward unilateral weighted shift operator.

4. N-Supercyclicity of concave operators

Proposition 4 No concave operator is N-supercyclic.
Proof Take a concave operator $T \in B(\mathcal{H})$. Assume, on the contrary, that there exists a subspace E of \mathcal{H}, of dimension N, such that $\overline{\operatorname{orb}(T, E)}=\mathcal{H}$. The subspace E has an empty interior because $E \neq \mathcal{H}$. Moreover,

$$
\mathcal{H}=\overline{\operatorname{orb}(T, E)}=\bar{E} \cup\left(\overline{\cup_{n=1}^{\infty} T^{n} E}\right)
$$

which implies that $\mathcal{H}=\overline{\cup_{n=1}^{\infty} T^{n} E}$. Hence, T must have a dense range. Then the operator T is invertible. Thus, applying (4), we see that T^{-1} is also a concave operator. Therefore, $\left\|T^{-1} x\right\| \geq\|x\|$ for all $x \in \mathcal{H}$. Thus,

$$
\|T x\| \geq\|x\|=\left\|T^{-1} T x\right\| \geq\|T x\|
$$

Hence, T is a unitary operator that cannot be N-supercyclic (see Theorem 4.9 of [6], and see also [3]).

Theorem 4 Suppose that $T \in B(\mathcal{H})$ is a co-concave, N-supercyclic operator. Then $\cap_{n \geq 0} T^{*^{n}} \mathcal{H}=(0)$.
Proof Put $M=\cap_{n \geq 0} T^{*^{n}} \mathcal{H}$. Clearly M is an invariant subspace of T^{*} and also of T. Indeed, since T^{*} is bounded below, $T T^{*}$ is invertible. Let $S=\left(T T^{*}\right)^{-1} T$. Thus, for every $x \in \mathcal{H}$,

$$
\left\|T^{*} S x\right\|^{2}=\left\langle S^{*} T T^{*} S x, x\right\rangle=\left\langle S^{*} T x, x\right\rangle=\left\langle x, T^{*} S x\right\rangle \leq\|x\|\left\|T^{*} S x\right\|
$$

which implies that $\left\|T^{*} S x\right\| \leq\|x\|$. However, since $\|S x\| \leq\left\|T^{*} S x\right\|$, we conclude that $\|S x\| \leq\|x\|$ for all $x \in \mathcal{H}$. Moreover, for every nonnegative integer n, each $x \in M$ can be written as $x=T^{*^{n}} x_{n}$ for some $x_{n} \in \mathcal{H}$ and so $S x=T^{*^{n-1}} x_{n} \in M$. Hence, $S M \subseteq M$.

On the other hand, if $x \in M$, then $x=T^{*^{2}} y$ for some $y \in \mathcal{H}$. Thus,

$$
\left\|S^{2} x\right\|^{2}-2\|S x\|^{2}+\|x\|^{2}=\|y\|^{2}-2\left\|T^{*} y\right\|^{2}+\left\|T^{*^{2}} y\right\|^{2} \leq 0
$$

which states that the operator $S: M \longrightarrow M$ is a concave operator. Thus, if $x \in M$ then $\|S x\| \geq\|x\|$; hence, $\|S x\|=\|x\|$. Moreover, since $S T^{*}=I$, the operator $S: M \rightarrow M$ is onto, and it is also injective, so $S T^{*} x=T^{*} S x=x$. Furthermore,

$$
\|x\|=\left\|S T^{*} x\right\|=\left\|T^{*} x\right\|
$$

which implies that $T T^{*} x=x$. Consequently, $T x=T\left(T^{*} S x\right)=S x \in M$; i.e. $T M \subseteq M$. Moreover, we deduce that $T: M \rightarrow M$ is in fact a unitary operator.

In continuation, we argue by contradiction and we assume that the subspace M is nonzero. We also suppose that there exists an N-dimensional subspace E of \mathcal{H} such that $\operatorname{orb}(T, E)$ is dense in \mathcal{H}. Let $\left(h_{1}, \ldots, h_{N}\right)$ be a basis of E and suppose that $h_{i}=g_{i} \oplus k_{i}, 1 \leq i \leq N$ where $g_{i} \in M$ and $k_{i} \in M^{\perp}$. If $g_{i}=0$ for all i then $\mathcal{H}=M^{\perp}$, which is impossible, so $g_{i} \neq 0$ for some i. Take $f \in M$, and let $\epsilon>0$ be arbitrary. Then there are $n \geq 0$ and $\alpha_{1}, \ldots, \alpha_{N}$ in \mathbb{C} such that

$$
\left\|\sum_{i=1}^{N} \alpha_{i} T^{n} g_{i}-f\right\| \leq\left\|\sum_{i=1}^{N} \alpha_{i} T^{n}\left(g_{i} \oplus k_{i}\right)-f \oplus 0\right\|<\epsilon .
$$

Thus, taking $F=\operatorname{span}\left\{g_{1}, \ldots, g_{N}\right\}$, we see that $\overline{\operatorname{orb}\left(\left.T\right|_{M}, F\right)}=M$. Therefore, $\left.T\right|_{M}$ is an N-supercyclic unitary operator and this is absurd.
As can be derived from the proof of Theorem 4, for a co-concave operator T, if $M:=\cap_{n \geq 0} T^{* n} \mathcal{H}$, then $T: M \longrightarrow M$ is an isometry. Considering the fact that isometries have nontrivial invariant subspaces [7], we obtain the following corollary.

Corollary 6 Suppose that $T \in B(\mathcal{H})$ is a co-concave operator such that $\cap_{n \geq 0} T^{*^{n}} \mathcal{H} \neq(0)$. Then T has a nontrivial invariant subspace.

To prove the next theorem, we need the supercyclicity criterion due to Salas [12].
Theorem 5 (Supercyclicity criterion.) Suppose that X is a separable Banach space and T is a bounded operator on X. If there is an increasing sequence of positive integers $\left(n_{k}\right)_{k \in \mathbb{N}}$ and two dense sets $D_{1}, D_{2} \subseteq X$ such that
(1) there exists a function $S: D_{2} \rightarrow D_{2}$ satisfying $T S x=x$ for all $x \in D_{2}$,
(2) $\left\|T^{n_{k}} x\right\| \cdot\left\|S^{n_{k}} y\right\| \rightarrow 0$ for every $x \in D_{1}$ and $y \in D_{2}$,
then T is supercyclic.
Theorem 6 Suppose that T is a co-concave operator such that $\cap_{n \geq 0} T^{*^{n}} \mathcal{H}=(0)$; then T satisfies the supercyclicity criterion.

Proof Since T^{*} is bounded below it is left invertible and so T is right invertible. Therefore, it admits a complete set of eigenvectors. Thus, if for every positive real number r, we denote $\mathbb{D}_{r}=\{z \in \mathbb{C}:|z|<r\}$, then $\mathcal{H}=\bigvee_{\mu \in \mathbb{D}_{r}} \operatorname{ker}(T-\mu)$ (see [4], part (A) of the lemma). Let $S=T^{*}\left(T T^{*}\right)^{-1}$ and choose $r>0$ so that $r<\frac{1}{\|S\|}$, and take

$$
D_{1}=D_{2}=\operatorname{span}\left\{\operatorname{ker}(T-\mu): \mu \in \mathbb{D}_{r}\right\}
$$

Now, if $x \in D_{1}=D_{2}$, then

$$
\left\|T^{n} x\right\|\left\|S^{n} x\right\| \leq|\mu|^{n}\|S\|^{n}\|x\| \leq(r\|S\|)^{n}\|x\| \rightarrow 0
$$

as $n \rightarrow \infty$. Finally, $T^{n} S^{n} x=x$ for every $x \in \mathcal{H}$ and every $n \geq 0$. Hence, the operator T satisfies the supercyclicity criterion.

Two direct consequences of the above theorem run as follows:

Corollary 7 If T is a co-concave operator in $B(\mathcal{H})$ then T is supercyclic if and only if $\cap_{n \geq 0} T^{*^{n}} \mathcal{H}=(0)$.

Corollary 8 A co-concave operator is supercyclic if and only if it is N -supercyclic.
Now, as an application of the above result, we present an example. Recall that the Dirichlet space \mathcal{D} is the set of all functions analytic on the open unit disc \mathbb{D} for which

$$
\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

where $d A(z)$ denotes the normalized Lebesgue area measure on \mathbb{D}. The inner product on \mathcal{D}, which makes it into a Hilbert space, is defined by

$$
\langle f, g\rangle=f(0) \overline{g(0)}+\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)} d A(z)
$$

Thus, the associated norm of a function f in \mathcal{D} is given by

$$
\|f\|_{\mathcal{D}}^{2}=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)
$$

Example 1 Let M_{z} be the multiplication operator by the independent variable z on Dirichlet space \mathcal{D} defined by $\left(M_{z} f\right)(\zeta)=\zeta f(\zeta), \zeta \in \mathbb{D}$. If $f_{n}(\zeta)=\zeta^{n}, n=0,1,2, \ldots$ then it is easily seen that

$$
\left\|M_{z}^{2} f_{n}\right\|_{\mathcal{D}}^{2}-2\left\|M_{z} f_{n}\right\|_{\mathcal{D}}^{2}+\left\|f_{n}\right\|_{\mathcal{D}}^{2}=0
$$

which implies that M_{z} is a concave operator on \mathcal{D}. Moreover, $\cap_{n \geq 0} M_{z}^{n} \mathcal{D}=(0)$. Hence, $T=M_{z}^{*}$ is supercyclic on \mathcal{D}.

KARIMI et al./Turk J Math

5. Concave operators on the Hilbert-Schmidt class

The Hilbert-Schmidt class, $C_{2}(\mathcal{H})$, is the class of all bounded operators S defined on a Hilbert space \mathcal{H}, satisfying

$$
\|S\|_{2}^{2}=\sum_{n=1}^{\infty}\left\|S e_{n}\right\|^{2}<\infty
$$

where $\|$.$\| is the norm on \mathcal{H}$ induced by its inner product. We recall that $C_{2}(\mathcal{H})$ is a Hilbert space equipped with the inner product defined by $\langle S, T\rangle=\operatorname{tr}\left(T^{*} S\right)$ in which $\operatorname{tr}\left(T^{*} S\right)$ denotes the trace of $T^{*} S$. Furthermore, $C_{2}(\mathcal{H})$ is an ideal of the algebra of all bounded operators on \mathcal{H}. Besides, the Hilbert-Schmidt class contains the finite rank operators as a dense linear manifold [5].

For any bounded operator T on a Hilbert space \mathcal{H}, the left multiplication operator L_{T} and the right multiplication operator R_{T} on $C_{2}(\mathcal{H})$ are defined by $L_{T}(S)=T S$ and $R_{T}(S)=S T$ for every $S \in C_{2}(\mathcal{H})$. Moreover, $L_{T}^{*}=L_{T^{*}}$ and $R_{T}^{*}=R_{T^{*}}$. In the next theorem, we see the relation between concavity of the operators T, L_{T}, and R_{T}.

Theorem 7 Suppose that \mathcal{H} is a Hilbert space and $T \in B(\mathcal{H})$. Then the following statements are equivalent:
(a) T is concave.
(b) L_{T} is concave.
(c) R_{T} is co-concave.

Proof Observe that (a) and (b) are equivalent, thanks to the fact that $T \longmapsto L_{T}$ is a C^{*}-(into) isomorphism and $T \geq 0$ iff $L_{T} \geq 0$. Indeed,

$$
\Delta_{L_{T}}-L_{T}^{*} \Delta_{L_{T}} L_{T}=L_{\Delta_{T}-T^{*} \Delta_{T} T}
$$

Now, suppose that L_{T} is concave. Taking into account that $\left(R_{T}\right)^{*}=R_{T^{*}}$, we will show that the operator $R_{T^{*}}$ is concave. Let $S \in C_{2}(\mathcal{H})$. Then

$$
\left\|R_{T^{*}}^{2}(S)\right\|_{2}=\left\|T^{2} S^{*}\right\|_{2}=\left\|L_{T}^{2} S^{*}\right\|_{2}
$$

Similarly, $\left\|R_{T^{*}}(S)\right\|_{2}=\left\|L_{T} S^{*}\right\|_{2}$. Hence:

$$
\left\|R_{T^{*}}^{2}(S)\right\|_{2}^{2}-2\left\|R_{T^{*}}(S)\right\|_{2}^{2}+\|S\|_{2}^{2}=\left\|L_{T}^{2}\left(S^{*}\right)\right\|_{2}^{2}-2\left\|L_{T}\left(S^{*}\right)\right\|_{2}^{2}+\left\|S^{*}\right\|_{2}^{2} \leq 0
$$

Thus, $R_{T^{*}}$ is concave.
At last, suppose that R_{T} is co-concave. Taking $S \in C_{2}(\mathcal{H})$, we observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left[\left\|T^{2} S^{*} e_{n}\right\|^{2}-2\left\|T S^{*} e_{n}\right\|^{2}+\left\|S^{*} e_{n}\right\|^{2}\right] & =\left\|T^{2} S^{*}\right\|_{2}^{2}-2\left\|T S^{*}\right\|_{2}^{2}+\left\|S^{*}\right\|_{2}^{2} \\
& =\left\|R_{T^{*}}^{2}(S)\right\|_{2}^{2}-2\left\|R_{T^{*}}(S)\right\|_{2}^{2}+\|S\|_{2}^{2} \leq 0
\end{aligned}
$$

Now, for $h \in \mathcal{H}$, let S_{k} be the rank one operator defined by

$$
S_{k} f=\langle f, h\rangle e_{k}
$$

Then

$$
\left\|T^{2} h\right\|^{2}-2\|T h\|^{2}+\|h\|^{2}=\sum_{n=1}^{\infty}\left[\left\|T^{2} S_{k}^{*} e_{n}\right\|^{2}-2\left\|T^{2} S_{k}^{*} e_{n}\right\|^{2}+\left\|S_{k}^{*} e_{n}\right\|^{2}\right] \leq 0
$$

which implies that T is a concave operator.
It follows from Theorem 7 and Proposition 4 that the left multiplication operator of a concave operator is not N-supercyclic. However, as we are going to see in the next example, its right multiplication operator may be supercyclic.

Example 2 Let T be a concave unilateral weighted shift operator defined by $T e_{n}=w_{n} e_{n+1}, n \geq 1$. If $S \in \cap_{n \geq 0}\left(R_{T}^{*}\right)^{n}\left(C_{2}(\mathcal{H})\right)$ then there is a sequence $\left(S_{n}\right)_{n \geq 1}$ of operators in $C_{2}(\mathcal{H})$ such that $S=S_{n} T^{*^{n}}$ for each $n \in \mathbb{N}$, but $T^{*^{n}} e_{n}=0$ for all $n \geq 1$ and so $S \equiv 0$. Now Corollary 7 implies that R_{T} is supercyclic.

We remark that if T is a concave bilateral weighted shift then $T e_{n}=e_{n+1}$ for each $n \in \mathbb{Z}$; thus, if $S \in C_{2}(\mathcal{H})$, then

$$
\left\|R_{T} S\right\|_{2}^{2}=\sum_{n \in \mathbb{Z}}\left\|S T e_{n}\right\|^{2}=\sum_{n \in \mathbb{Z}}\left\|S e_{n}\right\|^{2}=\|S\|_{2}^{2}
$$

Similarly, $\left\|R_{T}^{*} S\right\|_{2}=\|S\|_{2}$. Hence, R_{T} is a unitary operator that is not N-supercyclic.

Acknowledgments

The authors would like to thank Prof T Ando for his valuable comments. This work was supported in part by grant N0 16/91/3/66, Department of Mathematics, Hamedan University of Technology.

References

[1] Bayart F, Matheron E. Dynamics of Linear Operators. Cambridge, UK: Cambridge University Press, 2009.
[2] Berberian SK. Approximate proper vectors. P Am Math Soc 1962; 13: 111-114.
[3] Bourdon PS, Feldman NS, Shapiro JH. Some properties of N-supercyclic operators. Stud Math 2004; 165: 135-157.
[4] Chavan S. Co-analytic, right-invertible operators are supercyclic. Colloq Math 2010; 119: 137-142.
[5] Conway JB. The Theory of Subnormal Operators. Providence, RI, USA: American Mathematical Society, 1991.
[6] Feldman NS. N-supercyclic operators. Stud Math 2002; 151: 141-159.
[7] Godement R. Theoremes tauberiens et theorie spectrale. Ann Sci Ecole Norm S 1947; 64: 119-138 (in French).
[8] Grosse-Erdmann KG, Peris A. Linear Chaos. London UK: Springer-Verlag, 2011.
[9] Hilden HM, Wallen LJ. Some cyclic and non-cyclic vectors of certain operators. Indiana U Math J 1974; 24: 557-565.
[10] Jabloński Z. Hyperexpansive composition operators. Math Proc Cambridge 2003; 135: 513-526.
[11] McCullough S. Subbrownian operators. J Operat Theor 1989; 22: 291-305.
[12] Salas NS. Supercyclicity and weighted shifts. Stud Math 1999; 135: 55-74.
[13] Shimorin S. Wold-type decompositions and wandering subspaces for operators close to isometries. J Reine Angew Math 2001; 531: 147-189.
[14] Wayne RA, Varberg DE. Convex Functions. New York, NY, USA: Academic Press, 1973.
[15] Xia D. Spectral Theory of Hyponormal Operators. Boston, MA, USA: Birkhauser Verlag, 1983.

[^0]: *Correspondence: lkarimi@hut.ac.ir
 2010 AMS Mathematics Subject Classification: 47B99, 47B37, 47A16.

