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Abstract: In this paper the initial-boundary value problem for a nonlinear strongly damped wave equation is considered.

We analyze the structural stability of solutions of the nonlinear strongly damped wave equation with coefficients from

H1(Ω).
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1. Introduction

Let Ω ⊂ Rn be a bounded domain of Rn whose boundary ∂Ω is assumed to be class C2 . The model considered

here is given as the following initial-boundary value problem:

utt −∆u+ β |ut|2 ut = α∆ut, x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω (1.2)

u = 0, x ∈ ∂Ω, t > 0, (1.3)

where α and β are positive constants.

Basically, in such a style of models, continuous dependence of solutions on the given coefficients reflects

the effect of small changes on the solutions that eventually yields the structural stability result [4].

The term α∆ut indicates that the stress is proportional not only to the strain, as with Hooke’s law, but

also to the strain rate as in a linearized Kelvin material [9].

Many works on strongly damped nonlinear wave equations have been carried out at different levels. In

1980, Webb [14] considered the following problem:

wtt − α∆wt −∆w = f(w), t > 0, (1.4)

w(x, 0) = ϕ (x) , x ∈ Ω (1.5)

wt (x, 0) = ψ (x) , x ∈ Ω (1.6)
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w (x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.7)

He firstly established the existence of a unique strong global solution to (1.4) and then he analyzed the behavior

of this solution as t→ ∞ .

In [2], Massatt investigated both the existence and the limiting behavior for the equation utt+Aut+Au =

f(t, u, ut), where A is a sectoral operator and f satisfies certain regularity and growth assumptions, being

periodic in t .

In [3], the authors considered the long-time behavior of a strongly damped nonlinear wave equation and

showed that the initial boundary value problem has a global solution and that there exists a compact global

attractor with finite dimension.

In [4], the authors investigated the existence and uniqueness of solutions of the following equation of

hyperbolic type with a strong dissipation:

utt (t, x)−
(
α+ β

(∫
Ω

|∇u (t, y)|2dy
)y)

∆u (t, x)−

λ∆ut (t, x) + µ|u (t, x)|q−1
u (t, x) = 0, x ∈ Ω, t ≥ 0

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x ∈ Ω, u|∂Ω = 0.

(1.8)

Then, in [6], Çelebi and Uğurlu considered the existence of a wide collection of finite sets of functionals

on the phase space H2 (0, 1) ∩ H1
0 (0, 1) that completely determine the asymptotic behavior of solutions to

the strongly damped nonlinear wave equation. They also showed that the asymptotic behavior of solutions is

determined by the values of two sufficiently close points in the interval [0, 1].

Different conclusions were obtained in many other articles [2, 7, 10, 13, 15, 16]. References [1, 3–5, 12]

can be given for more information on the structural stability result for interested readers.

In this study, our main aim is to analyze the global behavior of solutions to (1.1)–(1.3) and the structural

stability of these solutions on coefficients α and β . The proof relies on energy-type a priori estimates.

Throughout this article we denote by ∥.∥ the norm in L2 (Ω).

2. Essential inequality

Theorem 1 For every (u0, u1) ∈ (H2 (Ω) ∩H1
0 (Ω)) ×H1

0 (Ω) , the solution (u, ut) to (1.1)-(1.3) satisfies the

following inequality:

∥∇ut∥2 ≤ D1. (2.1)

Here D1 is a positive constant, depending on the initial values of (1.1).

Proof We first multiply (1.1) by −∆ut and integrate over Ω. Then we have

d

dt

[
1

2
∥∇ut∥2 +

1

2
∥∆u∥2

]
≤ 0. (2.2)

It follows from (2.2) that

E1 (t) =
1

2
∥∇ut∥2 +

1

2
∥∆u∥2 ≤ E1 (0) . (2.3)

Hence, (2.1) follows from (2.3). 2
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3. Continuous dependence on coefficient α

We consider the following problems.

utt −∆u+ β |ut|2 ut = α1∆ut, x ∈ Ω, t > 0 (3.1)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω (3.2)

u|∂Ω = 0, x ∈ ∂Ω, t > 0 (3.3)

vtt −∆v + β |vt|2 vt = α2∆vt, x ∈ Ω, t > 0 (3.4)

v(x, 0) = 0, vt(x, 0) = 0, x ∈ Ω (3.5)

v|∂Ω = 0, x ∈ ∂Ω, t > 0 (3.6)

Assume that u is a solution of (3.1)–(3.3) and v is a solution of (3.4)–(3.6). We define the variables w and α

by w = u− v and α = α1−α2 . It is easy to see that w satisfies the following initial boundary value problem:

wtt −∆w + β
(
|ut|2 ut − |vt|2 vt

)
= α1∆wt + α∆vt, x ∈ Ω, t > 0; (3.7)

w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω; (3.8)

w|∂Ω = 0, x ∈ ∂Ω, t > 0. (3.9)

Theorem 2 Let w be the solution to (3.7)–(3.9). Then w satisfies the estimate

∥wt∥2 + ∥∇w∥2 ≤M1(α1 − α2)
2t, ∀t > 0,

where M1 is a positive constant and depends on the initial data and the parameters of (1.1).

Proof If we multiply (3.7) by wt and integrate over Ω we get the relation

d

dt

[
1

2
∥wt∥2 +

1

2
∥∇w∥2

]
+ α1 ∥∇wt∥2 + β

∫
Ω

(
|ut|2 ut − |vt|2 vt

)
wtdx+

α

∫
Ω

∇wt∇vtdx = 0. (3.10)

It can be easily shown that (
|ut|2 ut − |vt|2 vt

)
wt ≥ 0. (3.11)

1233
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Indeed, (
|ut|2ut − |vt|2vt

)
wt =

1
2 |ut|

2
(ut − vt + vt)wt − 1

2 |vt|
2
vtwt+

1
2 |ut|

2
utwt +

1
2 |vt|

2
(ut − vt − ut)wt

= 1
2 |ut|

2
wtwt +

1
2 |vt|

2
wtwt +

1
2vtwt

(
|ut|2 − |vt|2

)
+ 1

2utwt

(
|ut|2 − |vt|2

)
= 1

2w
2
t

(
|ut|2 + |vt|2

)
+ 1

2 (|ut|+ |vt|)2(|ut| − |vt|)2.

Now using Cauchy–Schwarz and ε -Young inequalities with (3.11) we obtain from (3.10) that

d

dt
E2(t) + (α1 −

ε1
2
) ∥∇wt∥2 ≤ α2

2ε1
∥∇vt∥2 , (3.12)

where

E2(t) =
1

2
∥wt∥2 +

1

2
∥∇w∥2 .

Taking into account (2.1) we get

d

dt
E2(t) ≤

|α|2

α1
D1, (3.13)

which gives

E2(t) ≤
|α|2

α1
D1t.

Hence, the statement of the theorem holds. 2

4. Continuous dependence on coefficient β

We consider the following problems:

utt −∆u+ β1 |ut|2 ut = α∆ut, x ∈ Ω, t > 0; (4.1)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω; (4.2)

u|∂Ω = 0, x ∈ ∂Ω, t > 0; (4.3)

vtt −∆v + β2 |vt|2 vt = α∆vt, x ∈ Ω, t > 0; (4.4)

v(x, 0) = 0, vt(x, 0) = 0, x ∈ Ω; (4.5)

v|∂Ω = 0, x ∈ ∂Ω, t > 0. (4.6)

Let u be a solution of (4.1)–(4.3) and v be a solution of (4.4)–(4.6). Similar to the argument followed

in the previous section, we define the variables w and β as w = u− v and β = β1 − β2 . Then w satisfies the

following initial boundary value problem:

wtt −∆w + β1

(
|ut|2 ut − |vt|2 vt

)
+ β |vt|2 vt = α∆wt, x ∈ Ω, t > 0; (4.7)
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w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω; (4.8)

w|∂Ω = 0, x ∈ ∂Ω, t > 0. (4.9)

Now the following theorem establishes continuous dependence of the solution to (1.1)–(1.3) on the coefficient β

in H1 (Ω).

Theorem 3 Let w be the solution to (4.7)–(4.9). Then w satisfies the estimate

∥wt∥2 + ∥∇w∥2 ≤M2(e
t − 1)(β1 − β2)

2, ∀t > 0

where M2 is a positive constant, depending on the parameters of (1.1).

Proof Multiplying (4.7) by wt and integrating over Ω, we obtain

d

dt
E2(t) + α ∥∇wt∥ − 2 + β1

∫
Ω

(
|ut|2 ut − |vt|2 vt

)
wtdx+ β

∫
Ω

|vt|3 wtdx = 0. (4.10)

Using (3.11) in (4.10) we obtain

d

dt
E2 (t) ≤ |β|

∫
Ω

|vt|3 |wt| dx. (4.11)

Using the Cauchy–Schwarz and the Cauchy inequalities we can estimate the term |β|
∫
Ω

|vt|3 |wt| dx as follows:

|β|
∫
Ω

|vt|3 |wt| dx ≤ |β|
(∫
Ω

|vt|6dx
) 1

2
(∫
Ω

|wt|2dx
) 1

2

≤ |β|2
2

∫
Ω

|vt|6dx+ 1
2

∫
Ω

|wt|2dx = |β|2
2 ∥vt∥66 +

1
2∥wt∥2.

(4.12)

Taking into account (4.12) in (4.11) we get

d

dt
E2(t) ≤ E2(t) +

|β|2

2
∥vt∥66 . (4.13)

If we use the Sobolev inequality for the second term of (4.13) and consider (2.1) we have from (4.13) that

∥vt∥66 ≤ c ∥∇vt∥62 ≤ cD3
1 = c1, (4.14)

since
d

dt
E2(t) ≤ E2(t) + β2c2 (4.15)

where c2 = c1
2 . Solving the first-order differential inequality (4.15), we obtain

E2(t) ≤ c2(e
t − 1)β2,

which gives that ∥∇w∥ → 0 as β → 0, t > 0 and hence the proof is completed. 2
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5. Conclusion

In this article, by using the multiplier method, we conclude that the solution of the problem (1.1)–(1.3) describing

a strongly damped nonlinear wave equation is continuously dependent on the coefficients α and β .
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