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Abstract: In this paper, the two-component Degasperis–Procesi system arising in shallow water theory is investigated.

By using a special transformation and the characteristic method, a class of perturbational self-similar solutions is

constructed. Such solutions are not only more general than those obtained by Yuen in 2011, but also they may

have potential applications in the modeling of tsunamis. In addition, the method proposed can be extended to other

mathematical physics models like the two-component Camassa–Holm equations.

Key words: 2-Component Degasperis–Procesi system, special transformation, characteristic method, perturbational
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1. Introduction

In the present work, we consider the following 2-component Degasperis–Procesi shallow water system:

{
ρt + k2uρx + (k1 + k2)ρux = 0,

ut − uxxt + 4uux − 3uuxx − uuxxx + k3ρρx = 0,
(1)

where k1, k2 , and k3 are constants. It is noted that when ρ = 0 system (1) reduces to the classical Degasperis–

Procesi (DP) equation, which has been extensively studied by many authors (see references [6-8, 10, 13, 19,

20, 22, 31, 41]). For example, Degasperis et al. proved that the DP model was integrable [7]. Lundmark et

al. showed that such a system allowed multipeakon solutions [22]. Later, Lin and Liu proved that such peakon

solutions were stable under small perturbations [19]. Zhou and Liu et al. demonstrated that the DP equation

possessed blow-up phenomena [10, 20, 41]. Constantin and Lannes found that there was some hydrodynamical

relevance between the Camassa–Holm (CH) and DP equations [6]. Important contributions to the study of the

DP equation were also made by Matsuno and Henry et al. (see e.g. [13, 31]).

However, our main concern here is with the interesting case when ρ ̸= 0, namely the 2-component DP

system (1). To the best of our knowledge, except for the work mentioned in [15, 33, 39], little related work

has been carried out. In particular, no work has been done on the constructions of analytical solutions to the

2-component DP system. In fact, it is of significance to investigate the 2-component DP equation because such
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a model representing breaking waves and peaked traveling waves is of great importance in hydrodynamics [36],

and the traveling wave solutions of large amplitude to the governing equations for water waves are peaked waves

[4]. Furthermore, such a model is relevant to the modeling of tsunamis (see references [5, 18]).

There exist many powerful methods that have been used to construct analytical solutions of nonlinear

partial differential equations, which contain inverse scattering method, Darboux transformation, bilinear tech-

nique, variable separation approach, Wronskian and Casoratian techniques, various tanh methods, transformed

rational function method, and multiple exp-function method [1,11,14,23-30,37]. Among these methods, the

transformed rational method is the most general solution algorithm to construct traveling wave solutions by

using a rational function transformation [28]. The multiple exp-function method and the Casoratian techniques

are the most effective approaches to produce multiple wave solutions and mixed rational-solition solutions,

respectively [29, 30].

Here, we would like to use the characteristic method [21] to seek solutions of self-similar type for the

2-component DP system. Investigation on such type solutions is a current hot topic in various models and

much work has been done. For instance, Barna [3] presented the self-similar solutions for the 3-dimensional

Navier–Stokes (NS) equations via a group theoretical method. Yuen and An [2, 40] derived some self-similar

solutions with elliptic symmetry for the N-dimensional NS equations via the separation method. Since we notice

that the system (1) shares some similarities with the NS equations in form, it is natural to inquire whether

one can construct self-similar solutions of perturbational type for (1). In this paper, by introducing a special

transformation, we successfully obtain perturbational self-similar solutions for the 2-component DP equation

via the characteristic method. The main result is described in the following theorem:

Theorem For the 2-component DP system, there exists a family of perturbational self-similar solutions:
ρ(x, t) = max

{
f(η)

a(t̄)
k1+k2

k2

, 0

}
u(x, t) =

a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄)

(2)

where

f(η) = ±
√
−k2ξ

k3
η + η0 with η =

(
x̄− d(t̄)

a(t̄)

)2

with

x̄ =
4

k2
x , t̄ = 4t .

In the above, prime denotes
d

dt̄
and η0, ξ ̸= 0 are constants. The auxiliary function a(t̄) is governed by the

Emden dynamical system [16, 17]:(
a(t̄)

4
k2

)′′
=

4 ξ

k2a(t̄)
4
k2

(
k1
2 +k2−1)

, a(0) = a0 ̸= 0, a′(0) = a1 (3)

and d(t̄) is governed by

d(t̄) =

∫ t̄ c

a(t)
4
k2

−1
dt (4)

with constants a0, a1 , and c.
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Remark 1 It is observed that when the time-dependent function d(t̄) degenerates to zero, the solution

described by (2) coincides with those obtained by Yuen in [39]. Thus, in this sense, we can conclude that the

solution obtained here is more general than Yuen’s. What is more important is that such a perturbational

solution may have potential applications in the modeling of tsunamis as suggested in [5, 18].

Remark 2 What we want to emphasize here is that there exist two special cases wherein exact solutions of

the 2-component DP system can be constructed explicitly. Details will be given in the following section.

Remark 3 The method proposed can also be extended to construct perturbational solutions of the 2-

component CH equations [38] as well as other models whose forms are analogous to the 2-component DP

system.

2. Perturbational solutions of the 2-component DP system

In this section, it is shown that the perturbational solutions of the 2-component DP system can be constructed

via the characteristic method. However, this progress is achieved mainly due to the novel important lemma

together with a special transformation introduced:

Lemma 1 For the 1 + 1-dimensional continuity equation of (1):

ρt + k2uρx + (k1 + k2)ρux = 0 , (5)

there exist solutions

ρ(t, x) =
f(η)

a(t̄)
k1+k2

k2

, u(t, x) =
a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄) (6)

with t̄ = 4t , x̄ = 4
k2
x , η = x̄−d(t̄)

a(t̄) , f(η) ∈ C1 and a(t̄) ∈ C1.

Proof For later use, we introduce a special transformation first

ρ(x, t) = ρ(x̄, t̄ ) , u(x, t) = u(x̄, t̄ ), t̄ = 4t, x̄ =
4

k2
x, (7)

so that under transformation (7), equation (5) becomes

ρt̄ + uρx̄ +
k1 + k2

k2
ρux̄ = 0. (8)

Inspired by the work of [2, 35], we perturb the velocity as this form

ρ = ρ(x̄, t̄ ) , u =
a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄) . (9)

Substituting the above ansatz into (8) yields

ρt̄ + uρx̄ +
k1 + k2

k2
ρux̄ = ρt̄ +

[
a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄)

]
ρx̄ +

(k1 + k2)a
′(t̄)

k2a(t̄)
ρ = 0 .
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According to the characteristic method [21], we have

dt̄

1
=

dx̄

a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄)

=
dρ

− (k1 + k2)a
′(t̄)

k2a(t̄)
ρ

,

where the solution is

Φ

(
x̄− d(t̄)

a(t̄)
, ρ a(t̄)

k1+k2
k2

)
= 0 (10)

with an arbitrary function Φ ∈ C1 . It is convenient to write (10) in an explicit form

ρ(x, t) =
f
(

x̄−d(t̄)
a(t̄)

)
a(t̄)

k1+k2
k2

. (11)

Therefore, the proof is completed. 2

Remark 4 It is necessary to point out that the variable transformation made by (7) as well as the negative

symbol in the perturbational function d(t̄) is crucial to guarantee the use of the characteristic method.

On applications of the above lemma, we obtain the generalized perturbational solutions for the 2-

component DP system, namely

Theorem For the 2-component DP system (1), there exists a family of perturbational solutions:


ρ(x, t) = max

{
f(η)

a(t̄)
k1+k2

k2

, 0

}
u(x, t) =

a′(t̄)

a(t̄)
(x̄− d(t̄)) + d′(t̄)

(12)

where

f(η) = ±
√
−k2ξ

k3
η + η0 with η =

(
x̄− d(t̄)

a(t̄)

)2

. (13)

In the above, ′ =
d

dt̄
, x̄ =

4

k2
x, t̄ = 4t and η0 , ξ ̸= 0 are constants. The auxiliary function a(t̄) is governed

by the Emden dynamical system:(
a(t̄)

4
k2

)′′
=

4ξ

k2a(t̄)
4
k2

(
k1
2 +k2−1)

, a(0) = a0 ̸= 0, a′(0) = a1 (14)

and d(t̄) is determined by

d(t̄) =

∫ t̄ c

a(t)
4
k2

−1
dt (15)

with arbitrary constants a0 , a1 , and c.

Proof of Theorem It is clear, from the above Lemma, that the function (12) indeed satisfies the continuity

equation of (1). In the sequel, we only need to validate the function (12) also holds for the second equation.
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Insertion of (12) into the second equation yields

ut − uxxt + 4uux − 3uuxx − uuxxx + k3ρρx

=4(ut̄ −
16

k22
ux̄x̄t̄ +

4

k2
uux̄ − 12

k22
uux̄x̄ − 16

k32
uux̄x̄x̄ +

k3
k2

ρρx̄)

=
4(x̄− d(t̄))

a(t̄)

[
a′′(t̄)− (1− 4

k2
)
a′2(t̄)

a(t̄)
+

2k3
k2

f(η)ḟ(η)

a(t̄)3+
2k1
k2

]
+ 4

[
d′′(t̄)− (1− 4

k2
)
a′(t̄)

a(t̄)
d′(t̄)

]
(16)

=
4

a(t̄)4+
2k1
k2

(
ξ +

2k3
k2

f(η)ḟ(η)

)
(x̄− d(t̄))

if we require that the auxiliary functions d(t̄), a(t̄) are governed by the following equations

d(t̄) =

∫ t̄ c

a(t)
4
k2

−1
dt , c = const (17)

and

a′′(t̄)− (1− 4

k2
)
a′2(t̄)

a(t̄)
=

ξ

a(t̄)3+
2k1
k2

, a(0) = a0 ̸= 0, a′(0) = a1 (18)

which can be reducible to the Emden equation

A′′(t̄) =
4ξ

k2A(t̄)
k1
2 +k2−1

, A(t̄) = a(t̄)
4
k2 . (19)

So that the function f(η) is determined by

ξ +
2k3
k2

f(η)ḟ(η) = 0

where

f(η) = ±
√
−k2ξ

k3
η + η0, with η =

(
x̄− d(t̄)

a(t̄)

)2

. (20)

The proof is completed. 2

Here two special cases are discussed, wherein some exact perturbational solutions are constructed explic-

itly:

Case 1 When k1

2 + k2− 1 = 0, namely k1 +2k2 = 2, the Emden equation (14) reduces to the following

second-order ordinary differential equation:

(
a(t̄)

4
k2

)′′
=

4ξ

k2
, a(0) = a0 ̸= 0 , a′(0) = a1

whose solution takes the form of

a(t̄) =

(
2ξ

k2
t̄2 +

4

k2
a1a

4
k2

−1

0 t̄+ a
4
k2
0

) k2
4

. (21)
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Then the value of d(t̄) in (15) may be readily obtained by classical methods as described in Ref. [12]. Thus,

the solution of the 2-component DP equation (1) is now written as
ρ(x, t) = max

±

√
−ξ

k2k3

(
4x− k2d(t̄)

a(t̄)

)2

+ η0

a(t̄)
k1+k2

k2

, 0


u(x, t) =

a′(t̄)

a(t̄)

(
4

k2
x− d(t̄)

)
+

c

a(t̄)
4
k2

−1

(22)

with d(t̄) and a(t̄) given by (15) and (21), respectively.

Case 2 When k1

2 + k2 − 1 = 3, namely k1 + 2k2 = 8, the Emden equation (14) is reducible to a

particular system of Ermakov–Pinney type [9, 32]

Ω̈ + w2(t)Ω =
K
Ω3

(23)

whose solution admits the nonlinear superposition principle [34, 35]

Ω =
√

λΩ2
1 + 2µΩ1Ω2 + νΩ2

2 (24)

with Ω1 and Ω2 being linearly independent solutions of

Ω̈ + 4w2(t)Ω = 0 (25)

with unit Wronskian and λν − µ2 = K . Therefore, the exact solution of a(t̄) is

a(t̄) =

(
4ξ + k2c

2
1(t̄

2 + 2t̄c2 + c22)

k2c1

)k2
8

(26)

with c1 =
ξ

a20
+ a21 and c2 =

a30a1
ξ + a20a

2
1

.

Thus, in the case of k1 + 2k2 = 8, the above analysis leads to the solution of the 2-component DP

equation: 
ρ(x, t) = max

±

√
−ξ

k2k3

(
4x− k2d(t̄)

a(t̄)

)2

+ η0

a(t̄)
k1+k2

k2

, 0


u(x, t) =

a′(t̄)

a(t̄)

(
4

k2
x− d(t̄)

)
+

c

a(t̄)
4
k2

−1

(27)

with d(t̄) and a(t̄) governed by (15) and (26), respectively.

Remark 5 The perturbational solutions obtained in this paper belong to the self-similar type and share the

same properties (like blowup, global existence) as that given by Yuen. Interested readers may refer to [39].
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3. Conclusions

It is known that the two-component DP system is an important model that has been widely used in fluids,

hydrodynamics, and modeling tsunamis (see [5, 18, 36] and references therein). In [33], Popowicz constructed

the Hamiltonian structures for certain parameters. In [15], Lin and Guo analyzed some aspects of blowup

mechanism, traveling wave solutions, and the persistence properties of the system. In this paper, we construct

some perturbational self-similar solutions to this model by using the special transformation and characteristic

method. These solutions constitute a generalization of what has been obtained by Yuen in [39]. What is

more important is that the method proposed can be extended to construct perturbational solutions of other

mathematical physics models like 2-component CH equations. In addition, it is hoped that the perturbational

self-similar solutions derived can be used to predict or model tsunamis in oceans. However, there are still some

problems left, for example, whether the 2-component DP system has Lax pairs and bilinear forms as well as

multi-soliton solutions? What are the properties of the solutions? All these interesting questions are worthy of

deep investigations in the future.
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Bäcklund transformation and soliton solutions. Appl Math Model 2015; 39: 3221-3226.

[26] MaWX, Fuchssteiner B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int J Nonlinear

Mech 1996; 31: 329-338.

[27] Ma WX, You YC. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer

Math Soc 2005; 357: 1753-1758.

[28] Ma WX, Lee JH. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa

equation. Chaos, Solitons & Fractals 2009; 42: 1356-1363.

[29] Ma WX, Huang TW, Zhang Y. A multiple exp-function method for nonlinear differential equations and its

application. Phys Scr 2010; 82: 065003, 8 pages.

[30] Ma WX. Mixed Rational-Soliton Solutions to the Toda Lattice Equation. Differential & Difference Equations and

Applications. New York, NY, USA: Hindawi Publ Corp, 2006, pp. 711–720.

[31] Matsuno Y. Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inverse Problems

2005; 21: 1553-1570.

[32] Pinney E. The nonlinear differential equation y′′(x) + p(x)y + cy−3 = 0. Proc Am Math Soc 1950; 1: 681-681.

[33] Popowicz Z. A two-component generalization of the Degasperis-Procesi equation. J Phys A: Math Gen 2006; 39:

13717-13726.

[34] Reid JL, Ray JR. Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion. J Math

Phys 1980; 21: 1583-1587.

[35] Rogers C, An HL. Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory. Stud Appl Math

2010; 125: 275-299.

1244

http://dx.doi.org/10.1016/j.jmaa.2005.03.001
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1016/j.nonrwa.2010.05.003
http://dx.doi.org/10.1016/j.nonrwa.2010.05.003
http://dx.doi.org/10.1007/978-3-540-71256-5_2
http://dx.doi.org/10.1007/978-3-540-71256-5_2
http://dx.doi.org/10.1007/s00220-006-0082-5
http://dx.doi.org/10.1007/s00220-006-0082-5
http://dx.doi.org/10.1002/9780470287095
http://dx.doi.org/10.1002/9780470287095
http://dx.doi.org/10.1088/0266-5611/19/6/001
http://dx.doi.org/10.1088/0266-5611/19/6/001
http://dx.doi.org/10.1088/0305-4470/29/14/038
http://dx.doi.org/10.1088/0305-4470/29/14/038
http://dx.doi.org/10.1007/s11071-014-1279-3
http://dx.doi.org/10.1007/s11071-014-1279-3
http://dx.doi.org/10.1016/j.apm.2014.10.046
http://dx.doi.org/10.1016/j.apm.2014.10.046
http://dx.doi.org/10.1016/0020-7462(95)00064-X
http://dx.doi.org/10.1016/0020-7462(95)00064-X
http://dx.doi.org/10.1090/S0002-9947-04-03726-2
http://dx.doi.org/10.1090/S0002-9947-04-03726-2
http://dx.doi.org/10.1016/j.chaos.2009.03.043
http://dx.doi.org/10.1016/j.chaos.2009.03.043
http://dx.doi.org/10.1088/0031-8949/82/06/065003
http://dx.doi.org/10.1088/0031-8949/82/06/065003
http://dx.doi.org/10.1088/0266-5611/21/5/004
http://dx.doi.org/10.1088/0266-5611/21/5/004
http://dx.doi.org/10.1090/S0002-9939-1950-0037979-4
http://dx.doi.org/10.1088/0305-4470/39/44/007
http://dx.doi.org/10.1088/0305-4470/39/44/007
http://dx.doi.org/10.1063/1.524625
http://dx.doi.org/10.1063/1.524625


AN et al./Turk J Math

[36] Whitham GB. Linear and Nonlinear Waves. New York, NY, USA: Wiley, 1999.

[37] Yan ZY. New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Phys

Lett A 2001; 292: 100-106.

[38] Yuen MW. Self-similar blowup solutions to the 2-component Camassa-Holm equations. J Math Phys 2010; 51:

093524, 14 pages.

[39] Yuen MW. Self-similar blowup solutions to the 2-component Degasperis-Procesi shallow water system. Commun

Nonlinear Sci Numer Simul 2011; 16: 3463-3469.

[40] Yuen MW. Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in

RN . Commun Nonlinear Sci Numer Simul 2012; 17: 4524-4528.

[41] Zhou Y. Blowup phenomena for the integrable Degasperis-Procesi equation. Phys Lett A 2004; 328: 157-162.

1245

http://dx.doi.org/10.1002/9781118032954
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1063/1.3490189
http://dx.doi.org/10.1063/1.3490189
http://dx.doi.org/10.1016/j.cnsns.2010.12.039
http://dx.doi.org/10.1016/j.cnsns.2010.12.039
http://dx.doi.org/10.1016/j.cnsns.2012.05.022
http://dx.doi.org/10.1016/j.cnsns.2012.05.022
http://dx.doi.org/10.1016/j.physleta.2004.06.027

	Introduction
	Perturbational solutions of the 2-component DP system
	Conclusions

