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Abstract: In this paper, by applying the generalized Omori–Yau maximum principle for complete spacelike hypersurfaces

in warped product spaces, we obtain the sign relationship between the derivative of warping function and support function.

Afterwards, by using this result and imposing suitable restrictions on the higher order mean curvatures, we establish

uniqueness results for the entire graph in a Riemannian warped product space, which has a strictly monotone warping

function. Furthermore, applications to such a space are given.
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1. Introduction

In recent years, there has been steadily growing interest in the study of hypersurfaces immersed into a Rie-

mannian product space R ×f M
n . A basic question on this topic is the problem of uniqueness of spacelike

hypersurfaces with some suitable restriction on the mean curvature, more generally, on the higher order mean

curvatures. Before giving details of our work we present a brief outline of some recent results related to it.

Some works have studied hypersurfaces with constant mean curvature (more generally, constant higher

order mean curvatures) immersed in warped product spaces. In [15] Montiel studied the uniqueness of constant

mean curvature compact hypersurfaces immersed in warped products of the type R ×f M
n and S1 ×f M

n ,

whose Ricci curvature RicM of the fiber Mn and the warping function f satisfy the following convergence

condition RicM ≥ (n− 1) supR(f
′2 − f ′′f)⟨ , ⟩M . Later, in [2, 7] the authors extended the results of [15] to the

complete noncompact hypersurface. More recently, in [3] Aĺıas et al. generalized the result in [2] to constant

higher order mean curvatures by using a suitable generalized version of the Omori–Yau maximum principle.

On the other hand, under suitable restrictions on the value of higher order mean curvatures including

mean curvature, some authors obtained that the hypersurfaces are slices. In [9], Camargo et al. applied a

technique of Yau [19] to obtain that the complete hypersurfaces immersed in pseudo-hyperbolic space R×etM
n

are slices when the norm of the gradient of the height function is integrable and mean curvature (non-necessarily

constant) satisfies 0 < H ≤ 1 or higher order mean curvatures satisfy 0 < Hk ≤ Hk+1 . Afterwards, in [4, 6],

Colares, de Lima, and Aĺıas obtain an extension of the result of [7]; they get that the complete hypersurfaces

immersed in a warped product space are slices when the Ricci curvatures and warping function f satisfy some

suitable restriction. Furthermore, higher order mean curvatures Hk satisfy 0 < Hk+1

Hk
≤ f ′

f with f ′ and Hk are

positive.
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Moreover, we have noticed that many works have approached problems in this branch that have similar

requests, such as [5, 10, 13]; they all require higher order mean curvatures and the derivative of warping function

be positive, which is not suitable for spaces such as (−π
2 ,

π
2 )×cos tHn and R×cosh t Sn . At this point, it is worth

considering the case when the warping function of the ambient space has a negative derivative because there is a

close sign relationship among mean curvature H , support function ⟨N, ∂t⟩ , and derivative of warping function.

Inspired by the work by Aĺıas et al. in [3] we obtain Theorem 3.1 and Corollary 3.1 by using the Omori–Yau

maximum principle. Then combining with a consequence of Stokes’ theorem for complete manifolds in [12] of

Caminha, which is our main analytical tool, we obtain Theorem 3.2 when there exist some suitable restrictions

on the mean curvature.

Furthermore, we extend this result to the higher order mean curvatures, and obtain Theorems 4.1 and

4.2, which are rigidity theorems concerning entire graphs in a Riemannian warped product space R×f M
n . We

also give some applications related to the previous theorems in sections 3 and 4, such as Corollaries 3.3 and 3.4

and Corollary 4.3.

2. Preliminaries

Let Mn be a connected n -dimensional Riemannian manifold, and f : R → R+ is a positive smooth function.

In the product differentiable manifold M
n+1

= R×f M
n , let πR and πM denote the projections onto the fibers

R and M , respectively. A particular class of Riemannian manifold is the one obtained by furnishing M with

the metric

⟨v, w⟩p = ⟨(πR)∗v, (πR)∗w⟩R + (f ◦ πR)2(p)(πM )∗v, (πM )∗w⟩M ,

for all p ∈M
n+1

and all v, w ∈ TpM , where ⟨ , ⟩R and ⟨ , ⟩M stand for the metrics of R and Mn , respectively.

Such a space is called a warped product ; in what follows we shall denote it as M
n+1

= R×f M
n . For simplicity

of notation we will denote the warped metric as

⟨ , ⟩ = dt2 + f2(t)⟨ , ⟩M .

Under this condition, for a fixed t0 ∈ R , we say that Mn
t0 = {t0} ×Mn is a slice of M

n+1
.

We consider the entire graphs in a warped product M = R×f M
n , which are defined by

Σn(u) = {(u(x), x) : x ∈Mn} ⊂M,

where u is a smooth function on M . Let Ω ⊆Mn be a connected domain of a complete Riemannian manifold

Mn . The metric induced on Ω from the metric on the ambient space via Σn(u) is ⟨ , ⟩ = dt2 + f2(t)⟨ , ⟩M .

The graph Σn(u) is said to be entire if Ω =Mn . It can be easily seen from the metric induced on Ω of Σn(u)

that when the function f(u) is bounded on Mn , the entire graph Σn(u) is complete. In particular, this occurs

when Σn(u) lies in a slab of R×f M
n .

In this setting, if we let A be the corresponding shape operator, then at each p ∈ Σn , A restricts to

a self-adjoint linear map Ap : TpΣ → TpΣ. For 0 ≤ k ≤ n , let Sk(p) denote the r -th elementary symmetric

function on the eigenvalues of Ap . We get n smooth functions Sk : Σn → R such that

det(tI −A) =
n∑

k=0

(−1)kSkt
n−k,
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where S0 = 1 by definition. If p ∈ Σn and {ek} is a basis of TpΣ formed by eigenvectors of Ap , with the

corresponding eigenvalues {λk} , then

Sk(p) = σk(λ1(p), λ2(p), . . . , λn(p)) =
∑

i1<···<ik

λi1 · · ·λik ,

The k th-mean curvature Hk of the hypersurface is then defined by(
n
k

)
Hk = Sk =

∑
i1<···<ik

λi1 · · ·λik . (1)

Thus H0 = 1 and H1 = − 1
n tr(A) = H is the mean curvature of Σn .

In what follows we will work with the so-called Newton transformations Pk : X(Σ) → X(Σ), which are

defined from A by P0 = I (the identity of X(Σ)) and for 1 ≤ k ≤ n ,

Pk = SkI −A ◦ Pk−1.

Observe that the Newton transformations Pk are all self-adjoint operators that commute with the shape operator

A . Even more, if {ek} is an orthonormal frame on TpΣ that is diagonalizable with Ap , Ap(ei) = λi(p)ei , then

(Pk)p(ei) = µi,k(p)ei, (2)

where

µi,k =
∑

i1<···<ik,ij ̸=i

λi1 · · ·λik .

For each k, 0 ≤ k ≤ n− 1, we have

tr(Pk) = ckHk, tr(A ◦ Pk) = ckHk+1,

where ck = (n− k)

(
n
k

)
= (k + 1)

(
n

k + 1

)
. Associated with each Newton transformation Pk , we consider the

second order linear differential operator Lk : C∞(Σ) → C∞(Σ), given by

Lk(f) = tr(Pk ◦ ∇2f).

Here ∇2f : X(Σ) → X(Σ) denotes the self-adjoint linear operator metrically equivalent to the hessian of f , and

it is given by

⟨∇2f(X), Y ⟩ = ⟨∇X(∇f), Y ⟩, X, Y ∈ X(Σ).

In particular, L0 = ∆ and if M has constant sectional curvature, Rosenberg proved in [18] that Lk(f) =

div(Pk∇f), where div stands for the divergence on Σ.

Let ψ : Σn → R ×f M
n be a Riemannian immersion, with Σ oriented by unit vector field N . We

will refer to the normal vector field N as future-pointing Gauss map of the hypersurface if N is in the same

time-orientation as ∂t . In what follows, we suppose support function ⟨N, ∂t⟩ does not change sign on Σn . Let

h denote the (vertical) height function naturally attached to Σn , namely, h = (πR) |Σ .
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Let ∇ and ∇ denote gradients with respect to the metrics of R×f M
n and Σn , respectively. A simple

computation shows that the gradient of πR on R×f M
n is given by

∇πR = ⟨∇πR, ∂t⟩ = ∂t,

so that the gradient of h on Σn is

∇h = (∇πR)⊤ = ∂⊤t = ∂t − ⟨N, ∂t⟩N.

In particular, we get

|∇h|2 = 1− ⟨N, ∂t⟩2, (3)

where | | denotes the norm of a vector field on Σn . Moreover, observe that for a graph Σn(u), its height

function h is nothing but the function u seen as a function on Σn(u).

We will need the following result of Aĺıas et al.

Lemma 2.1 ([3]) Let ψ : Σn → R ×f M
n be a spacelike hypersurface, h = (πR)|Σ : Σn → R the height

function of Σn , and g : R → R be any primitive of the warping function f ; then

div(Pk∇g(h)) = ⟨divPk,∇g(h)⟩+ Lk(g(h)), (4)

where

Lk(g(h)) = ckf(h)(
f ′

f
(h)Hk + ⟨N, ∂t⟩Hk+1).

In particular, when k = 0, div(∇g(h)) = nf(h)( f
′

f (h) + ⟨N, ∂t⟩H).

When k = 1, denote N∗ as the projection of N onto the fiber Mn , RicM is the Ricci curvature of fiber

Mn and N∗ = N − ⟨N, ∂t⟩∂t ; then from Corollary 7.43 of [17] and [3] we have

div(P1∇g(h)) = −f(h)⟨N, ∂t⟩(RicM (N∗, N∗)− (n− 1)(f ′2 − f ′′f)(h)⟨N∗, N∗⟩M ) +

+ n(n− 1)f(h)H(
f ′

f
(h) + ⟨N, ∂t⟩

H2

H
).

When k ≥ 2, if the sectional curvature of fiber Mn is constant κ , then

div(Pk∇g(h)) = −(n− k)⟨N, ∂t⟩
κ− (f ′2 − f ′′f)

f
⟨Pk−1∇h,∇h⟩+

+ ckf(u)Hk(
f ′

f
+ ⟨N, ∂t⟩

Hk+1

Hk
).

Now we quote some useful lemmas in which geometric conditions are given in order to guarantee the sign

of Hk and Pk when k ≥ 1.

Lemma 2.2 ([14]) Let ψ : Σn → M
n+1

be a Riemannian immersion in a Riemannian manifold M
n+1

. If

H2 > 0 on Σn , then P1 is positive definite for an appropriate choice of the Gauss map N .
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Lemma 2.3 ([8]) Let ψ : Σn →M
n+1

be a Riemannian immersion in a Riemannian manifold M
n+1

. If Σn

has an elliptic point with respect to an appropriate choice of the Gauss map N and Hr+1 > 0 on Σn for some

2 ≤ r ≤ n− 1 , then Pk is positive definite and Hk is positive for all 1 ≤ k ≤ r .

Lemma 2.4 ([4]) Let ψ : Σn → M
n+1

be a Riemannian immersion in a Riemannian manifold M
n+1

. If

f(h) attains a local maximum at some p ∈ Σn , such that f ′(h(p)) ̸= 0 , then p is an elliptic point for Σn .

Recall that by an elliptic point in a spacelike hypersurface we mean a point p0 ∈ Σ where all principal

curvatures λi(p0) have the same sign. There is also a Lorentzian version in [1] for Lemma 2.4.

In order to prove our rigidity results, we will use the following result due to Yau. In [19] Yau has the

Stokes’ Theorem on an n -dimensional, complete noncompact Riemannian manifold. Then in [11] Caminha et

al. obtained a suitable consequence of Yau’s result. We state it as follows. Let L1(Σ) be the space of Lebesgue

integrable functions on Σ.

Lemma 2.5 ([11]) Let X be a smooth vector field on the n-dimensional complete noncompact oriented Rie-

mannian manifold Σn , such that divX does not change sign on Σn . If |X| ∈ L1(Σ) , then divX = 0 .

3. Sign relationship and uniqueness theorem in Riemannian warped products

In this section, we will apply the results that we have discussed in the previous section to study the rigidity

of spacelike hypersurfaces in Riemannian warped products R ×f M
n , where Mn is a complete Riemannian

manifold. In order to prove our results, we need the following lemma, which is the well-known generalized

maximum principal due to [16] of Omori and [19] of Yau.

Lemma 3.1 Let Σn be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded
from below on Σ and u : Σn → R be a smooth function that is bounded from below on Σn . Then there is a
sequence of points pk ∈ Σn such that

lim
k
u(pk) = inf u , lim

k
|∇u(pk)| = 0 and lim

k
△u(pk) ≥ 0 .

Equivalently, for any smooth function u : Σn → R that is bounded from above on Σn , there is a sequence
of points pk ∈ Σn such that

lim
k
u(pk) = supu , lim

k
|∇u(pk)| = 0 and lim

k
△u(pk) ≤ 0 .

As an application of Lemma 3.1, we will prove the following result, which obtains a sign relationship

among mean curvature H , support function ⟨N, ∂t⟩ , and the derivative of warping function f .

Theorem 3.1 Let φ : Σn → R×f M
n be a complete spacelike hypersurface with non-vanishing mean curvature

that is contained in a slab. Choose on Σ some orientation of N such that H > 0 . Suppose that the support
function ⟨N, ∂t⟩ does not change sign and the Omori–Yau maximum principle for Laplacian holds on Σ . Assume
that one of the following conditions holds:
(C1) the warping function is strictly monotonic.
(C2) log f is convex.
Then we have f ′⟨N, ∂t⟩ < 0 . On the other hand, if H < 0 , then f ′⟨N, ∂t⟩ > 0

Proof (C1) Since the hypersurface is contained in a bounded slab we have h is bounded and we apply the

Omori–Yau maximum principle to the Laplacian to assure the existence of sequences {pj}, {qj} ⊂ Σ such that

lim
j
h(pj) = suph = h∗, lim

j
|∇h(pj)| = 0, lim

j
△h(pj) ≤ 0;

1250



DONG and LIU/Turk J Math

lim
j
h(qj) = inf h = h∗, lim

j
|∇h(qj)| = 0, lim

j
△h(qj) ≥ 0.

Since △h = f ′

f (h)(n− |∇h|2) + nH1⟨N, ∂t⟩ , then we have

lim
j

△h(pj) = lim
j
(
f ′

f
(h(pj))(n− |∇h(pj)|2) + nH1(pj)⟨N, ∂t⟩(pj)) ≤ 0. (5)

lim
j

△h(qj) = lim
j
(
f ′

f
(h(qj))(n− |∇h(qj)|2) + nH1(qj)⟨N, ∂t⟩(qj)) ≥ 0. (6)

Since f is strictly monotonic, we have f ′ > 0 or f ′ < 0. If f ′ > 0, then from (3.1) making j → ∞ we obtain

f ′

f
(h∗) ≤ − lim

k
H1(pj)⟨N, ∂t⟩(pj).

Moreover, from f ′(h∗) ≥ 0 and H1 > 0, we obtain ⟨N, ∂t⟩ < 0.

On the other hand, if f ′ < 0, then from (3.2) we have

f ′

f
(h∗) ≥ − lim

k
H1(qj)⟨N, ∂t⟩(qj).

From f ′(h∗) ≤ 0 and H1 > 0, we have ⟨N, ∂t⟩ > 0.

(C2) From the hypothesis log f is convex we have that

f ′

f
(h∗) ≤

f ′

f
(h) ≤ f ′

f
(h∗).

Then, taking into account that ⟨N, ∂t⟩ does not change sign, thus if ⟨N, ∂t⟩ > 0, from the inequality (3.1) we

have

f ′

f
(h) ≤ f ′

f
(h∗) ≤ − lim

k
H1(pj)⟨N, ∂t⟩(pj) < 0.

If ⟨N, ∂t⟩ < 0, from the inequality (3.2) we have

f ′

f
(h) ≥ f ′

f
(h∗) ≥ − lim

k
H1(qj)⟨N, ∂t⟩(qj) > 0.

Thus, we conclude the result.

From the proof we also have if H1 < 0 and ⟨N, ∂t⟩ does not change sign, it is easy to get that

f ′⟨N, ∂t⟩ > 0. 2

By Lemma 2.3 we generalized Theorem 3.1 to the case of higher order mean curvatures, which is presented

below.

Corollary 3.1 Let φ : Σn → R×fM
n be a complete spacelike hypersurface with non-vanishing mean curvature

that is contained in a slab of R ×f M
n . There exists an elliptic point on Σn and the Omori–Yau maximum

principle for Laplacian holds on Σ , Assume that the warping function satisfies C1 or C2 and the support
function ⟨N, ∂t⟩ does not change sign; then for 2 ≤ k ≤ n− 1 we have
(i) if Hk+1Hk > 0, then f ′⟨N, ∂t⟩ < 0,
(ii) if Hk+1Hk < 0, then f ′⟨N, ∂t⟩ > 0.
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Proof (i) Since there exists an elliptic point on Σ and Hk+1Hk > 0, we have that N is the right orientation

such that both Hk and Hk+1 are positive. Now using Lemma 2.3 we have H1 > 0; thus by Theorem 3.1 we

have f ′⟨N, ∂t⟩ < 0.

(ii) From the hypothesis we have one of Hk and Hk+1 is negative. Since there exists an elliptic point

then from (2.1) and the definition of elliptic point we have Hj < 0 with respect to this orientation, where

1 ≤ j = 2t+ 1 ≤ k + 1; thus H1 < 0. Now from Theorem 3.1 it is easy to get the result. 2

Before stating our main results, we will introduce a sufficient condition that guarantees the Omori–Yau

maximum principle holds on Σ for the Laplacian.

Lemma 3.2 Let φ : Σn → I ×f M
n be an immersed hypersurface and Mn be an n-dimensional complete

Riemannian manifold with sectional curvature bounded from below. Assume that Σ is contained in a slab and

the mean curvature is bounded; then the Omori–Yau maximum principle holds on Σ for the Laplacian.

Now, taking into account the results above, we deduce the following result. We denote Du to be the

gradient of u as a function on Mn , while ∇u = ∇h is the gradient of the height function on Σn(u).

Theorem 3.2 Let M
n+1

= R ×f M
n be a Riemannian warped product space and Σn(u) be an entire graph

that lies in a slab [t1, t2]×Mn , where the sectional curvature of fiber Mn is bounded from below. Suppose the
warping function f satisfies C1 or C2 on [t1, t2] and |Du| ∈ L1(Mn) . Assume that either

(i) 0 < H ≤ |f ′|
f (u), or

(ii) − |f ′|
f (u) ≤ H < 0;

then Σn(u) is a slice {t0} ×Mn , where t0 ∈ [t1, t2] .

Proof (i) Since the sectional curvature of fiber Mn is bounded from below, Σn(u) lies in a slab [t1, t2]×Mn

and |Du| ∈ L1(Mn); then from Lemma 3.2 we have that the Omori–Yau maximum principle for Laplacian holds

on Σn . Combining the assumption that the warped product function satisfies condition C1 or C2 on [t1, t2] ,

we obtain that Theorem 3.1 holds true. Let u = h be the height function on Σn(u). Since N = ⟨N, ∂t⟩∂t+N∗ ,

where N∗ denotes the projection of N on the fiber Mn , we have from (2.4)

|∇u|2 = ⟨N∗, N∗⟩ = f2(u)⟨N∗, N∗⟩M =
|Du|2M

f2(u) + |Du|2M
.

Furthermore, we also have dΣ =
√
|G|dM , where dΣ and dM stand for the Riemannian volume elements of

(Σn(u), ⟨ , ⟩) and (Mn, ⟨ , ⟩), respectively, |G| = f2n−2(u)(f2(u)+ |Du|2M ), and |∇u|dΣ = fn−1(u)|Du|MdM .

Since Σn(u) lies in a slab of R×f M
n , we have |∇g(u)| ≤ f(u)|∇u| ∈ L1(Σn(u)).

Now from Lemma 2.1 we have

div(∇g(u)) = nf(u)(
f ′

f
(u) + ⟨N, ∂t⟩H). (7)

Moreover, from the hypothesis we have H > 0; then by Theorem 3.1 we get f ′⟨N, ∂t⟩ < 0.

First, assume that f ′ > 0; then we have ⟨N, ∂t⟩ < 0 and f ′

f (u) + ⟨N, ∂t⟩H ≥ f ′

f (u) −H ≥ 0; thus we

have div(∇g(u)) ≥ 0 does not change sign. Since Σn(u) is complete and |∇g(u)| ∈ L1(Σn), we can apply

1252



DONG and LIU/Turk J Math

Lemma 2.5 to get div(∇g(u)) = 0. Taking into account the hypothesis of (i), we obtain ⟨N, ∂t⟩ ≡ −1, which
concludes that |∇u| ≡ 0 on Σn(u). Therefore, Σn(u) is a slice.

On the other hand, if f ′ < 0, ⟨N, ∂t⟩ > 0, then f ′

f (u) + ⟨N, ∂t⟩H ≤ f ′

f (u) + H ≤ 0; consequently,

div(∇g(u)) ≤ 0. Now, taking into account |∇g(u)| ∈ L1(Mn), we can apply Lemma 2.5 to get that
div(∇g(u)) = 0 and from (3.3) we conclude that ⟨N, ∂t⟩ ≡ 1; thus |∇u| ≡ 0 on Σn(u). Then Σn(u) is a
slice {t0} ×Mn , where t0 ∈ [t1, t2] .

(ii) From the hypothesis we have H < 0, and by Theorem 3.1 we have f ′⟨N, ∂t⟩ > 0.

If f ′ > 0, then we have ⟨N, ∂t⟩ > 0 and f ′

f (u) + ⟨N, ∂t⟩H ≥ f ′

f (u) +H ≥ 0; thus div(∇g(u)) ≥ 0.

If f ′ < 0, then we have ⟨N, ∂t⟩ < 0 and f ′

f (u) + ⟨N, ∂t⟩H ≤ f ′

f (u)−H ≤ 0; thus div(∇g(u)) ≤ 0.

Now in the same argument as (i), we conclude that Σn(u) is a slice {t0} ×Mn with t0 ∈ [t1, t2] . 2

As a direct consequence of Theorem 3.2 we have the following corollary.

Corollary 3.2 Let M
n+1

= R ×f M
n be a Riemannian warped product space and Σn(u) be an entire graph

that lies in a slab [t1, t2] ×Mn , where the sectional curvature of fiber Mn is bounded from below. Suppose

that the warping function f satisfies C1 or C2 on [t1, t2] and |Du| ∈ L1(Mn) ; then if the nonvanishing mean

curvature satisfies

−|f ′|
f

(u) ≤ H ≤ |f ′|
f

(u),

then Σn(u) is a slice {t0} ×Mn , where t0 ∈ [t1, t2] .

Now let us consider the ambient space is the warped product space R ×et Rn , which can be considered

as (n+1)-dimensional hyperbolic space Hn+1 ; the slice Mn
t is isometric to Rn and is called the horosphere of

Hn+1 . It is easy to show that warping function f = et satisfies conditions both C1 and C2 , and from Theorem

3.2 we have the following.

Corollary 3.3 Let Hn+1 = R ×et Rn be the hyperbolic space and Σn(u) be an entire graph that lies between

two horospheres. Assume that the nonvanishing mean curvature H satisfies

−1 ≤ H ≤ 1;

then if |Du| ∈ L1(Rn) , the hypersurface Σn(u) is a horosphere.

To close this section, we establish the following rigidity result when the ambient space M
n+1

=

(−π
2 ,

π
2 ) ×cos t Hn . The warping function cos t satisfies condition C1 on (−π

2 , 0) or (0, π2 ). We obtain the

following result.

Corollary 3.4 Let φ : Σn(u) → (−π
2 ,

π
2 ) ×cos t Hn be an embedding, where Σn(u) is an entire graph that lies

in a slab of [t1, t2] × Hn with −π
2 < t2 < 0 or 0 < t1 <

π
2 . Assume that the nonvanishing mean curvature H

satisfies

−| tan t| ≤ H ≤ | tan t|;

then if |Du| ∈ L1(Hn) , the hypersurface Σn(u) is isometric to Hn .
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4. Extensions to the k -th mean curvatures

In this section, we extend the result of Theorem 3.2 to higher order mean curvatures. Under this condition, we

need to consider the warped product spaces R×f M
n satisfy the following convergence condition:

RicM ≥ (n− 1) sup
R

(f ′2 − f ′′f)⟨ , ⟩M , (8)

where RicM is the Ricci tensor of the fiber Mn .

Theorem 4.1 Let M = R ×f M
n be a Riemannian warped product space and Σn(u) be an entire graph that

lies in a slab [t1, t2] ×Mn , and the sectional curvature of fiber Mn satisfies the convergence condition (4.1).
Let the mean curvature H be bounded, H2 > 0 , and the warping function f satisfies C1 or C2 on [t1, t2] .
Assume that one of the following conditions holds:

(i) 0 < H2

H ≤ |f ′|
f (u).

(ii) − |f ′|
f (u) ≤ H2

H < 0 .

Then if |Du| ∈ L1(Mn), Σn(u) is a slice {t0} ×Mn , where t0 ∈ [t1, t2] .

Proof (i) In a similar way as in Theorem 3.2, we have that the Omori–Yau maximum principle for Laplacian
holds on Σn ; thus we get Theorem 3.1 hold true on Σn(u). From the definition of P1 we have that it is bounded
on Σn(u) whenever |A| is itself bounded on Σn(u). Since H is bounded, H2 > 0, and |A|2 = n2H2−n(n−1)H2

we obtain that there exists a constant c , such that |P1∇u| ≤ |P1||∇g(u)| ≤ cf(u)|∇u| ∈ L1(Σn(u)).

From Lemma 2.1 we have

div(P1(∇g(u))) = −f(u)⟨N, ∂t⟩(RicM (N∗, N∗)− (n− 1)(f ′2 − f ′′f)(u)⟨N∗, N∗⟩M ) +

+ n(n− 1)f(u)H(
f ′

f
(u) + ⟨N, ∂t⟩

H2

H
),

where N∗ denotes the projection of N onto the fiber Mn and N∗ = N − ⟨N, ∂t⟩∂t .
Using the hypothesis we obtain that H1 > 0; then by Theorem 3.1 we have f ′⟨N, ∂t⟩ < 0.

If f ′ > 0, then ⟨N, ∂t⟩ < 0, and

f ′

f
(u) + ⟨N, ∂t⟩

H2

H
≥ f ′

f
(u)− H2

H
≥ 0.

Now, using the hypothesis that RicM satisfies the convergence condition (4.1), we obtain that div(P1(∇g(u))) ≥
0.

On the other hand, if f ′ < 0, then ⟨N, ∂t⟩ > 0, and

f ′

f
(u) + ⟨N, ∂t⟩

H2

H
≤ f ′

f
(u) +

H2

H
≤ 0.

Moreover, from RicM satisfies the convergence condition (4.1), we also obtain that div(P1(∇g(u))) does not
change sign on Σn(u). Therefore, by using the same argument of the proof of Theorem 3.2, we can apply
Lemma 2.5 to conclude that Σn(u) is a slice {t0} ×Mn , where t0 ∈ [t1, t2] .

(ii) Using the hypothesis we obtain that H1 < 0; thus f⟨N, ∂t⟩ > 0.

If f ′ > 0, ⟨N, ∂t⟩ > 0, and

H(
f ′

f
(u) + ⟨N, ∂t⟩

H2

H
) ≤ H(

f ′

f
(u) +

H2

H
) ≤ 0,
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together with RicM satisfies the convergence condition (4.1), we obtain div(P1(∇g(u))) ≤ 0.

If f ′ < 0, then ⟨N, ∂t⟩ < 0, and

H(
f ′

f
(u) + ⟨N, ∂t⟩

H2

H
) ≥ H(

f ′

f
(u)− H2

H
) ≥ 0;

thus, using the hypothesis (4.1), we also obtain that div(P1(∇g(u))) ≥ 0.

Now as the proof of case (i) we obtain Σn(u) is a slice {t0} ×Mn with t0 ∈ [t1, t2] . 2

From the proof of Theorem 4.1 we get the following corollary.

Corollary 4.1 Let M = R×f M
n be a Riemannian warped product space and Σn(u) be an entire graph that

lies in a slab [t1, t2] ×Mn , where the sectional curvature of the fiber Mn satisfies the convergence condition

(4.1). Suppose that nonvanishing H is bounded, H2 > 0 , and the warping function f satisfies C1 or C2 on

[t1, t2] . Then if |Du| ∈ L1(Mn) and

−|f ′|
f

(u) ≤ H2

H
≤ |f ′|

f
(u),

Σn(u) is a slice {t0} ×Mn , where t0 ∈ [t1, t2] .

Motivated by the previous results, in the next result we generalize Theorem 4.1 to the case of higher

order mean curvatures.

Theorem 4.2 Let M = R×fM
n be a Riemannian warped product space, where the sectional curvature of fiber

Mn is constant κ and satisfies the convergence condition (4.1). Σn(u) is an entire graph that lies in a slab
[t1, t2] ×Mn . Suppose that H is bounded and the warping function f satisfies C1 or C2 on [t1, t2] . Assume
that Hk > 0 and one of the following conditions is satisfied:

(i) 0 < Hk+1

Hk
≤ |f ′|

f (u).

(ii) − |f ′|
f (u) ≤ Hk+1

Hk
< 0 .

Then if f(u) has a local maximum on Σn(u) and |Du| ∈ L1(Mn), Σn(u) is a slice {t0}×Mn , where t0 ∈ [t1, t2] .

Proof (i) In a similar way as in Theorem 3.2, we get that Corollary 3.1 hold true on Σn(u). Since f(u) has

a local maximum on Σn(u), then by Lemma 2.4 we have that there exists an elliptic point on Σn . From the

definition of elliptic point and (2.1) we get that when HkHk+1 > 0, we must have both Hk+1 and Hk positive.

Furthermore, Pj is positive definite for all j ∈ {1, · · · , k} . Moreover, H2 > 0 on Σn .

From the definition, Pk is bounded on Σn(u) whenever |A| is itself bounded on Σn(u). Since H is

bounded and H2 > 0, we obtain that there exists a constant c , such that |Pk| < c ; thus,

|Pk∇u| ≤ |Pk||∇g(u)| ≤ cf(u)|∇u| ∈ L1(Σn(u)).

Consequently, from Lemma 2.1 we have

div(Pk(∇g(u))) = −(n− k)⟨N, ∂t⟩
κ− (f ′2 − f ′′f)

f
⟨Pk−1∇u,∇u⟩+

+ ckHkf(u)(
f ′

f
(u) + ⟨N, ∂t⟩

Hk+1

Hk
).
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Moreover, from the existence of an elliptic point and the hypothesis, we have Pk−1 positive definite and

f ′⟨N, ∂t⟩ < 0.

Similarly as in the proof of Theorem 4.1 (i) and from the inequality (4.1) we also obtain that div(Pk(∇g(u)))
does not change sign on Σn(u). Therefore, by Lemma 2.5 we conclude that Σn(u) is a slice {t0} ×Mn , where

t0 ∈ [t1, t2] .

(ii) Using the hypothesis we obtain Hk+1 < 0; since there exists an elliptic point, k must be even; then

Pk−1 are negative definite. By Corollary 3.1 we have f ′(u)⟨N, ∂t⟩ > 0.

Hence, proceeding as the case (ii) of Theorem 4.1 we conclude that Σn(u) is a slice {t0}×Mn with t0 ∈ [t1, t2] .
2

Similarly to Corollary 4.1, we obtain the following result.

Corollary 4.2 Let M = R ×f M
n be a Riemannian warped product space, where the sectional curvature of

fiber Mn is constant κ and satisfies the convergence condition (4.1). Σn(u) is an entire graph that lies in a
slab [t1, t2]×Mn . Suppose that the mean curvature H is bounded and the warping function f satisfies C1 or
C2 on [t1, t2] . Assume that nonvanishing Hk+1 and positive Hk satisfy

−|f ′|
f

(u) ≤ Hk+1

Hk
≤ |f ′|

f
(u).

Then if f(u) has a local maximum on Σn(u) and |Du| ∈ L1(Mn) , Σn(u) is a slice {t0} × Mn , where
t0 ∈ [t1, t2] .

Considering the warped product as R ×cosh t Hn , it is easy to know that warping function f = cosh t

satisfies C2 . As an application of Theorems 4.1 and 4.2, we have the following.

Corollary 4.3 Let M
n+1

= R×cosh tHn be a warped product space and Σn(u) be an entire graph that lies in a

slab of [t1, t2]×Mn . Assume that the mean curvature H is bounded, nonvanishing higher order mean curvature

Hk+1 and Hk (1 ≤ k ≤ n− 1) satisfy Hk > 0 , and

−| tanh t| ≤ Hk+1

Hk
≤ | tanh t|;

then if |Du| ∈ L1(Hn) , the hypersurface Σn(u) is isometric to Hn .

When we consider the warped product space R ×t Sn , it is easy to show that warping function f = t

satisfies C1 but not C2 .

Corollary 4.4 Let M
n+1

= R×t Sn be a Riemannian warped space and φ : Σn(u) → R×t Sn be an embedding

that lies in a slab of M , such that Σn(u) = φ(Σ) . Assume that the mean curvature H is bounded, nonvanishing

higher order mean curvature Hk+1 and Hk for any 1 ≤ k ≤ n− 1 satisfy Hk > 0 , and

− 1

|φ(p)|
≤ Hk+1

Hk
≤ 1

|φ(p)|
;

then if |Du| ∈ L1(Rn) , the hypersurface Σn(u) is isometric to Sn .
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