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Abstract: In this article, we prove some normality criteria for a family of meromorphic functions, which involves sharing

of a nonzero value by certain differential monomials generated by the members of the family. These results generalize

some of the results of Schwick.
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1. Introduction and main results

The notion of normal families was introduced by Montel in 1907. Let us begin by recalling the definition. A

family of meromorphic functions defined on a domain D ⊂ C is said to be normal in the domain if every

sequence in the family has a subsequence that converges spherically uniformly on compact subsets of D to a

meromorphic function or to ∞ (see [1, 6, 9, 14]).

One important aspect of the theory of complex analytic functions is to find normality criteria for families

of meromorphic functions. Montel obtained a normality criterion, now known as the fundamental normality

test, which says that a family of meromorphic functions in a domain is normal if it omits three distinct complex

numbers. This result has undergone various extensions. In 1975, Zalcman [15] proved a remarkable result, now

known as Zalcman’s lemma, for families of meromorphic functions that are not normal in a domain. Roughly

speaking, it says that a nonnormal family can be rescaled at small scale to obtain a nonconstant meromorphic

function in the limit. This result of Zalcman gave birth to many new normality criteria. These normality

criteria have been used extensively in complex dynamics for studying the Julia–Fatou dichotomy.

Schwick [11] gave a connection between normality and sharing values and proved a result that says

that a family of meromorphic functions on a domain D ⊂ C is normal if every function of the family and

its first-order derivative share three distinct complex numbers. Since then, many results of normality criteria

concerning sharing values have been obtained [3, 5, 8, 12, 17–19].

Let f and g be meromorphic functions in a domain D and p ∈ C. If the zeros of f − p are the zeros of

g − p ignoring multiplicity, we write f = p ⇒ g = p. Hence, f = p ⇐⇒ g = p means that f − p and g − p

have the same zeros ignoring multiplicity. If f − p = 0 ⇐⇒ g − p = 0, then we say that f and g share the

value p IM (see [13]).

Schwick [10] also proved a normality criterion that states that: Let n, k be positive integers such that

n ≥ k+3 , and let F be a family of functions meromorphic in a domain D . If each f ∈ F satisfies (fn)(k)(z) ̸= 1

∗Correspondence: ggopal.datt@gmail.com

2010 AMS Mathematics Subject Classification: 30D45.

1258



DATT and KUMAR/Turk J Math

for z ∈ D , then F is a normal family. This result holds good for holomorphic functions in the case of n ≥ k+1.

Recently, Dethloff et al. [4] came up with new normality criteria, which improve the result given by Schwick

[10].

Theorem 1.1 Let p ̸= 0 be a complex number, n be a nonnegative integer, and n1, n2, . . . , nk, t1, t2, . . . , tk

be positive integers. Let F be a family of meromorphic functions in a domain D such that for every f ∈
F , fn(fn1)(t1) . . . (fnk)(tk) − p is nowhere vanishing on D . Assume that

(a) nj ≥ tj for all 1 ≤ j ≤ k ,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Then F is normal on D .

For the case of holomorphic functions they proved the following strengthened version:

Theorem 1.2 Let p ̸= 0 be a complex number, n be a nonnegative integer, and n1, n2, . . . , nk, t1, t2, . . . , tk

be positive integers. Let F be a family of holomorphic functions in a domain D such that for every f ∈
F , fn(fn1)(t1) . . . (fnk)(tk) − p is nowhere vanishing on D . Assume that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 2 +
∑k

j=1 tj .

Then F is normal on D .

The main aim of this paper is to find normality criteria in terms of sharing values, which is motivated by

[4].

Theorem 1.3 Let p ̸= 0 be a complex number, n be a nonnegative integer, and n1, n2, . . . , nk, t1, t2, . . . , tk be

positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Let F be a family of meromorphic functions in a domain D such that for every pair of functions f, g ∈
F , fn(fn1)(t1) . . . (fnk)(tk) and gn(gn1)(t1) . . . (gnk)(tk) share p IM on D . Then F is normal in D .

For families of holomorphic functions we have the following strengthened version:

Theorem 1.4 Let p ̸= 0 be a complex number, n be a nonnegative integer, and n1, n2, . . . , nk, t1, t2, . . . , tk be

positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 2 +
∑k

j=1 tj .
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Let F be a family of holomorphic functions in a domain D such that for every pair of functions f, g ∈
F , fn(fn1)(t1) . . . (fnk)(tk) and gn(gn1)(t1) . . . (gnk)(tk) share p IM on D . Then F is normal in D .

The following examples show that the condition on p is necessary.

Example 1.5 Let F = {emz : m = 1, 2, . . .} be a family on ∆ := {z : |z| < 1}. Let n, n′
is , and t′is be as in

Theorem 1.3. Then for every pair f, g ∈ F , fn(fn1)(t1) . . . (fnk)(tk) and gn(gn1)(t1) . . . (gnk)(tk) share 0 and

∞ , but F is not normal.

Example 1.6 Let F = {mz : m = 1, 2, . . .} be a family on ∆ := {z : |z| < 1}. Let n, n′
is t′is be as in Theorem

1.3. Then for every pair f, g ∈ F , fn(fn1)(t1) . . . (fnk)(tk) and gn(gn1)(t1) . . . (gnk)(tk) share 0 and ∞ , but F
is not normal.

The following example supports our result.

Example 1.7 Let F = {fn : n ∈ N}, where fn(z) = n . Then F satisfies conditions of Theorem 1.3 and F is

normal.

It is natural to ask what happens if we have a zero of fn(fn1)(t1) . . . (fnk)(tk) − p . For this question we can

extend Theorem 1.1 in the following manner.

Theorem 1.8 Let p ̸= 0 be a complex number, n be a nonnegative integer, and n1, n2, . . . , nk, t1, t2, . . . , tk be

positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Let F be a family of meromorphic functions in a domain D such that for every f ∈ F , fn(fn1)(t1) . . . (fnk)(tk)−
p has at most one zero IM. Then F is normal in D .

Remark 1.9 Theorem 1.1 is an immediate corollary of Theorem 1.3 and Theorem 1.8.

2. Some notations

Let ∆ = {z : |z| < 1} be the unit disk and ∆(z0, r) := {z : |z − z0| < r}. We use the following standard

functions of value distribution theory, namely

T (r, f),m(r, f), N(r, f) and N(r, f).

We let S(r, f) be any function satisfying

S(r, f) = o
(
T (r, f)

)
, as r → +∞,

possibly outside of a set with finite measure.
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3. Some lemmas

In order to prove our results we need the following lemmas. The following is a new version of Zalcman’s lemma

(see [15, 16]).

Lemma 3.1 Let F be a family of meromorphic functions in the unit disk ∆ , with the property that for every

function f ∈ F , the zeros of f are of multiplicity at least l and the poles of f are of multiplicity at least k . If

F is not normal at z0 in ∆ , then for −l < α < k , there exist

1. a sequence of complex numbers zn → z0 , |zn| < r < 1 ,

2. a sequence of functions fn ∈ F ,

3. a sequence of positive numbers ρn → 0 ,

such that gn(ζ) = ραnfn(zn + ρnζ) converges to a nonconstant meromorphic function g on C with g#(ζ) ≤
g#(0) = 1 . Moreover, g is of order at most two. Here g# denotes the spherical derivative of g .

Lemma 3.2 [2] Let f be an entire function. If the spherical derivative f#(z) is bounded for all z ∈ C , then

f has order at most 1.

Let f be a nonconstant meromorphic function in C . A differential polynomial P of f is defined by

P (z) :=

n∑
i=1

αi(z)

p∏
j=0

(
f (j) (z)

)Sij

, where Sij s are nonnegative integers and αi(z) ̸≡ 0 are small functions of

f , which means T (r, αi) = o
(
T (r, f)

)
. The lower degree of the differential polynomial P is defined by

d(P ) := min
1≤i≤n

p∑
j=0

Sij .

The following result was proved by Dethloff et al. in [4].

Lemma 3.3 Let a1, . . . , aq be distinct nonzero complex numbers. Let f be a nonconstant meromorphic function

and let P be a nonconstant differential polynomial of f with d(P ) ≥ 2. Then

T (r, f) ≤
(
qθ(P ) + 1

qd(P )− 1

)
N

(
r,

1

f

)
+

1

qd(P )− 1

q∑
j=1

N

(
r,

1

P − aj

)
+ S (r, f)

for all r ∈ [1,+∞) excluding a set of finite Lebesgue measure, where θ(P ) := max
1≤i≤n

p∑
j=0

jSij .

Moreover, in the case of an entire function, we have

T (r, f) ≤
(
qθ(P ) + 1

qd(P )

)
N

(
r,

1

f

)
+

1

qd(P )

q∑
j=1

N

(
r,

1

P − aj

)
+ S(r, f)

for all r ∈ [1,+∞) excluding a set of finite Lebesgue measure.
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This result was proved by Hinchliffe in [7] for q = 1.

Lemma 3.4 Let f be a transcendental meromorphic function. Let n be a nonnegative integer and n1, n2, . . . ,

nk, t1, t2, . . . , tk be positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Then fn(fn1)(t1) . . . (fnk)(tk) assumes every nonzero complex value p ∈ C infinitely often.

Proof On the contrary, assume that fn(fn1)(t1) . . . (fnk)(tk) takes the value p only finitely many times. Then

N

(
r,

1

(fn(fn1)(t1) . . . (fnk)(tk) − p

)
= O (log r) = S(r, f). (3.1)

Without loss of generality, we may assume p = 1. Let P = fn(fn1)(t1) . . . (fnk)(tk) . Consider (fni)(ti) =∑
cm0,m1,...,mti

fm0(f ′)m1 . . . (f (ti))mti , where cm0,m1,...,mti
are constants and m0,m1, . . . ,mti are nonnegative

integers such that

ti∑
j=0

mj = ni,

ti∑
j=1

jmj = ti. It is easy to calculate

d(P ) = n+
k∑

j=1

nj and θ(P ) =
k∑

j=1

tj .

Clearly, d(P ) > 2, so by Lemma 3.3, we get

T (r, f) ≤
( ∑k

j=1 tj + 1

n+
∑k

j=1 nj − 1

)
N

(
r,

1

f

)
+

(
1

n+
∑k

j=1 nj − 1

)
N

(
r,

1

P − 1

)
+ S(r, f),

and this gives

(
n+

∑k
j=1 nj −

∑k
j=1 tj − 2

n+
∑k

j=1 nj − 1

)
T (r, f) ≤

(
1

n+
∑k

j=1 nj − 1

)
N

(
r,

1

P − 1

)
+ S(r, f),

and this gives (
1

n+
∑k

j=1 nj − 1

)
T (r, f) ≤

(
1

n+
∑k

j=1 nj − 1

)
N

(
r,

1

P − 1

)
+ S(r, f).

By using (3.1), we get T (r, f) = S(r, f), which is a contradiction. 2

Lemma 3.5 Let f be a transcendental entire function. Let n be a nonnegative integer and n1, n2, . . . , nk, t1,

t2, . . . , tk be positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,
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(b) n+
∑k

j=1 nj ≥ 2 +
∑k

j=1 tj .

Then fn(fn1)(t1) . . . (fnk)(tk) assumes every nonzero complex value p ∈ C infinitely often.

We can prove this lemma by arguments similar to the proof of Lemma 3.4.

Lemma 3.6 [17, 18], Let R = P
Q be a rational function and Q be nonconstant. Then

(
R(k)

)
∞ ≤ (R)∞ − k,

where k is a positive integer, (R)∞ = deg(P )− deg(Q) , and deg(P ) denotes the degree of P.

Lemma 3.7 [17] Let R = amzm + . . .+ a1z + a0 +
P
B , where a0, a1, . . . , am−1, am( ̸= 0) are constants, m is a

positive integer, and P, B are polynomials with deg(P ) < deg(B) . If k ≤ m , then
(
R(k)

)
∞ = (R)∞ − k.

Lemma 3.8 Let f be a nonconstant rational function, p ∈ C \ {0} , n be a nonnegative integer, and

n1, n2, . . . , nk, t1, t2, . . . , tk be positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Then fn(fn1)(t1) . . . (fnk)(tk) has at least two distinct p-points.

Proof On the contrary, assume that fn(fn1)(t1) . . . (fnk)(tk) has at most one p -point. Now there are two

cases to consider.

Case 1: Suppose fn(fn1)(t1) . . . (fnk)(tk) has exactly one p -point. First we assume that f is a nonconstant

polynomial. Since fn(fn1)(t1) . . . (fnk)(tk) has exactly one p -point, we can set

fn(fn1)(t1) . . . (fnk)(tk) − p = A(z − z0)
l,

where A is a nonzero constant and l is a positive integer satisfying l ≥ n+
∑

nj −
∑

tj ≥ 3. Then

(
fn(fn1)(t1) . . . (fnk)(tk)

)′
= Al(z − z0)

l−1.

Since a zero of f is a zero of fn(fn1)(t1) . . . (fnk)(tk) with multiplicity greater than 1, it is also a zero

of
(
fn(fn1)(t1) . . . (fnk)(tk)

)′
. Since

(
fn(fn1)(t1) . . . (fnk)(tk)

)′
has exactly one zero, namely z0 , and f is a

nonconstant polynomial, it follows that z0 is a zero of f and so is a zero of fn(fn1)(t1) . . . (fnk)(tk) , which is a

contradiction. Therefore, f is a rational function that is not a polynomial. Let

f(z) = A
(z − α1)

m1(z − α2)
m2 . . . (z − αs)

ms

(z − β1)n
′
1(z − β2)n

′
2 . . . (z − βt)n

′
t

, (3.2)

where A is a nonzero constant and mi s and nj s are integers. We put

M = n

s∑
i=1

mi, N = n

t∑
j=1

n′
j , (3.3)
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and

Mi = ni

s∑
j=1

mj , Ni = ni

t∑
j=1

n′
j , i = 1, 2, . . . , k. (3.4)

From (3.2), we get

fni(z) = Ani
(z − α1)

nim1(z − α2)
nim2 . . . (z − αs)

nims

(z − β1)nin′
1(z − β2)nin′

2 . . . (z − βt)nin′
t

, (3.5)

and so

(fni)(ti)(z) =
(z − α1)

nim1−ti(z − α2)
nim2−ti . . . (z − αs)

nims−tigi(z)

(z − β1)nin′
1+ti(z − β2)nin′

2+ti . . . (z − βt)nin′
t+ti

, (3.6)

where gi(z) is a polynomial. From (3.5) and (3.6), we get

(fni)∞ = Mi −Ni and
(
(fni)(ti)

)
∞ = Mi −Ni − ti(s+ t) + deggi(z).

Since by Lemma 3.6,
(
(fni)(ti)

)
∞ ≤ (fni)∞ − ti , we get

deg(gi) ≤ ti(s+ t− 1). (3.7)

From (3.2) and (3.6), we get

fn(fn1)(t1) . . . (fnk)(tk) (3.8)

= An (z − α1)
m1n

′−t′(z − α2)
m2n

′−t′ . . . (z − αs)
msn

′−t′g(z)

(z − β1)n
′
1n

′+t′(z − β2)n
′
2n

′+t′ . . . (z − βt)n
′
tn

′+t′

=
p1
q1

,

where n′ = n+
k∑

j=1

nj , t
′ =

k∑
j=1

tj and p1, q1 , g(z) are polynomials with

deg (g(z)) ≤ (s+ t− 1)
k∑

j=1

tj = t′(s+ t− 1). (3.9)

Since fn(fn1)(t1) . . . (fnk)(tk) has exactly one p -point and it is at z0, we get from (3.8) that

fn(fn1)(t1) . . . (fnk)(tk)

= p+
B(z − z0)

l

(z − β1)n
′
1n

′+t′(z − β2)n
′
2n

′+t′ . . . (z − βt)n
′
tn

′+t′

=
p1
q1

, (3.10)

where B is a nonzero constant and l is a positive integer. From (3.8), we also obtain that(
fn(fn1)(t1) . . . (fnk)(tk)

)′
=

(z − α1)
m1n

′−t′−1(z − α2)
m2n

′−t′−1 . . . (z − αs)
msn

′−t′−1g1(z)

(z − β1)n
′
1n

′+t′+1(z − β2)n
′
2n

′+t′+1 . . . (z − βt)n
′
tn

′+t′+1
, (3.11)
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where g1(z) is a polynomial. From (3.10), we obtain that(
fn(fn1)(t1) . . . (fnk)(tk)

)′
=

(z − z0)
l−1g2(z)

(z − β1)n
′
1n

′+t′+1(z − β2)n
′
2n

′+t′+1 . . . (z − βt)n
′
tn

′+t′+1
, (3.12)

where g2(z) is a polynomial. From (3.8) and (3.11), we obtain

(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞

= M +
k∑

i=1

Mi − st′ + deg(g(z))−N −
k∑

i=1

Ni − tt′,

((
fn(fn1)(t1) . . . (fnk)(tk)

)′)
∞

= M +
k∑

i=1

Mi − st′ + deg (g1(z))−N −
k∑

i=1

Ni − tt′ − s− t.

By Lemma 3.6, we get((
fn(fn1)(t1) . . . (fnk)(tk)

)′)
∞

≤
(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞

− 1. (3.13)

Hence, we obtain

deg (g1 (z)) ≤ s+ t+ deg(g(z))− 1

≤ s+ t+ (s+ t− 1)t′ − 1

= (s+ t− 1)(t′ + 1). (3.14)

Now we consider the following subcases.

Subcase 1. When l < N +
k∑

i=1

Ni + tt′ .

From (3.10), we have deg(p1) = deg(q1), and from (3.8) and (3.9), we get that

deg(q1) = N +

k∑
i=1

Ni + tt′ = deg(p1)

≤ M +
k∑

i=1

Mi + (t− 1)t′.

Hence,
(
M +

∑k
i=1 Mi

)
−(N+

∑k
i=1 Ni) ≥ t′. This implies

∑s
j=1 mj−

∑t
j=1 n

′
j ≥ 1. Therefore (f)∞ ≥ 1

and (fni)∞ ≥ ni . Therefore, we can write fni as follows:

fni = amzm + . . .+ a1z + a0 +
p
B ,

where m(≥ ni) is an integer, am, . . . , a1, a0 are constants such that am ̸= 0, and p, B are polynomials with

deg(p) < deg(B). Now by using Lemma 3.7, we get(
(fni)

(ti)
)
∞

= (fni)∞ − ti ≥ ni − ti. (3.15)
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Since (f)∞ ≥ 1, from (3.15), we see that
(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞ ≥ n′ − t′ ≥ 3, which contradicts

the fact that deg(p1) = deg(q1).

Subcase 2. When l = N +

k∑
i=1

Ni + tt′ .

Then from (3.10), we get
(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞ ≤ 0. Now we show that

s∑
i=1

mi ≤
t∑

i=1

n′
i. (3.16)

Otherwise, (fn)∞ = n
∑s

i=1 mi − n
∑t

i=1 n
′
i ≥ n and

(
(fni)

(ti)
)
∞

= (fni)∞ − ti ≥ ni − ti and so(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞ ≥ n+

∑k
i=1 ni −

∑k
i=1 ti ≥ 3, which is a contradiction.

Since αi ̸= z0 for i = 1, 2, . . . , s from (3.11) and (3.12), we see that (z − z0)
l−1 is a factor of g1 .

Therefore, by (3.14), we get l − 1 ≤ deg(g1) ≤ (s+ t− 1)(t′ + 1). Now we have

N +
k∑

i=1

Ni = l − t
k∑

i=1

ti

≤ (s+ t− 1)

( k∑
i=1

ti + 1

)
+ 1− t

k∑
i=1

ti

= s

( k∑
i=1

ti + 1

)
+ t−

k∑
i=1

ti

≤
s∑

i=1

mi

( k∑
i=1

ni + 1

)
+

t∑
i=1

n′
i −

k∑
i=1

ti

≤
k∑

i=1

Mi + 2

t∑
i=1

n′
i −

k∑
i=1

ti

≤
k∑

i=1

Ni + 2
t∑

i=1

n′
i −

k∑
i=1

ti,

which is a contradiction when n > 2. For the case n ∈ {1, 2} , we use the condition n+
∑k

i=1 ni ≥ 3+
∑k

i=1 ti,

to get

N +
k∑

i=1

Ni ≤
s∑

i=1

mi

( k∑
i=1

ti + 1

)
+ t−

k∑
i=1

ti

≤
k∑

i=1

ni

s∑
i=1

mi +
t∑

i=1

n′
i −

k∑
i=1

ti

≤
k∑

i=1

Mi +
t∑

i=1

n′
i −

k∑
i=1

ti
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≤
k∑

i=1

Ni +
N

n
−

k∑
i=1

ti

≤ N +
k∑

i=1

Ni −
k∑

i=1

ti,

which is again a contradiction. For n = 0 we have N = 0 by (3.3). Now use
∑k

i=1 ni ≥ 3 +
∑k

i=1 ti,

s ≤
∑k

i=1 Mi∑k
i=1 ni

, and t ≤
∑k

i=1 Ni∑k
i=1 ni

to get

k∑
i=1

Ni ≤ (t′ + 1)s+ t− t′

≤ (t′ + 1)

∑k
i=1 Mi∑k
i=1 ni

+

∑k
i=1 Ni∑k
i=1 ni

− t′

≤

(∑k
i=1 ti + 2∑k

i=1 ni

)
k∑

i=1

Ni − t′

<
k∑

i=1

Ni −
k∑

i=1

ti,

which is again absurd.

Subcase 3. When l > N +
k∑

i=1

Ni + tt′ .

Then from (3.10), we have (fn(fn1)(t1) . . . (fnk)(tk))∞ > 0. Now we claim that

s∑
i=1

mi >
t∑

i=1

n′
i. (3.17)

If
∑s

i=1 mi ≤
∑t

i=1 n
′
i , then (f)∞ ≤ 0, (fni)∞ ≤ 0, and (fn)∞ ≤ 0. Hence, by Lemma 3.6, we obtain that(

fn(fn1)(t1) . . . (fnk)(tk)
)
∞

= (fn)∞ +
(
(fn1)(t1)

)
∞

+ . . .+
(
(fnk)(tk)

)
∞

≤ 0 +

∞∑
i=1

(fni)∞ − ti < 0,

which is a contradiction.

Again from (3.10) and (3.12), we get

(
fn(fn1)(t1) . . . (fnk)(tk)

)
∞

= l −

(
N +

k∑
i=1

Ni + tt′

)
and

((
fn(fn1)(t1) . . . (fnk)(tk)

)′)
∞

= l − 1 + deg(g2)−

(
t∑

i=1

n′
i

)
(n′ + tt′ + t),

and from this with Lemma 3.6, we obtain deg(g2) ≤ t.
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Since for each i = 1, 2, . . . , s, αi ̸= z0. From (3.11) and (3.12), we observe that

(z − α1)
m1n

′−t′−1(z − α2)
m2n

′−t′−1 . . . (z − αs)
msn

′−t′−1 is a factor of g2. Therefore,

M +
k∑

i=1

Mi − st′ − s ≤ deg(g2) ≤ t, (3.18)

and from (3.18), we get that

M +

k∑
i=1

Mi ≤ s+ t+ st′ = t+ (t′ + 1)s

≤
t∑

i=1

n′
i +

(
k∑

i=1

ni + 1

)
s∑

i=1

mi

<
s∑

i=1

mi +

(
k∑

i=1

ni + 1

)
s∑

i=1

mi

=
2

n
M +

k∑
i=1

Mi,

which is a contradiction when n > 2. For the case n ∈ {1, 2} , we use the condition n+
∑k

i=1 ni ≥ 3 +
∑k

i=1 ti

to get

M +

k∑
i=1

Mi ≤
t∑

i=1

n′
i +

(
k∑

i=1

ti + 1

)
s∑

i=1

mi

≤ N

n
+

k∑
i=1

ni

s∑
i=1

mi

<
M

n
+

k∑
i=1

Mi,

which is a contradiction. For n = 0 we have M = 0 by (3.3). Now use
∑k

i=1 ni ≥ 3 +
∑k

i=1 ti, s ≤
∑k

i=1 Mi∑k
i=1 ni

,

and t ≤
∑k

i=1 Ni∑k
i=1 ni

to get

k∑
i=1

Mi ≤ (t′ + 1)s+ t

≤ (t′ + 1)

∑k
i=1 Mi∑k
i=1 ni

+

∑k
i=1 Ni∑k
i=1 ni

<

(∑k
i=1 ti + 2∑k

i=1 ni

)
k∑

i=1

Mi

<
k∑

i=1

Mi,

which is again a contradiction.
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Case 2. Suppose fn(fn1)(t1) . . . (fnk)(tk) − p has no zero. Then f cannot be a polynomial, so f is a

rational function that is not a polynomial. Now we put l = 0 in (3.10) and proceed as in Subcase 1. 2

4. Proof of main results

Proof [Proof of Theorem 1.3] Since normality is a local property, we assume that D = ∆. Suppose that

F is not normal in ∆. Then there exists at least one point z0 such that F is not normal at the point z0 in

∆. Without loss of generality, we assume that z0 = 0. Then by Lemma 3.1, for

α = −
∑k

i=1 ti

n+
∑k

i=1 ni

there exist

1. a sequence of complex numbers zj → 0, |zj | < r < 1,

2. a sequence of functions fj ∈ F ,

3. a sequence of positive numbers ρj → 0,

such that gj(ζ) = ραj fj(zj + ρjζ) converges to a nonconstant meromorphic function g(ζ) on C with g#(ζ) ≤

g#(0) = 1. Moreover, g is of order at most two.

We see that

fn
j (zj + ρjζ)(f

n1
j )(t1)(zj + ρjζ) . . . (f

nk
j )(tk)(zj + ρjζ)

= gnj (ζ)(g
n1
j )(t1)(ζ) . . . (gnk

j )(tk)(ζ) → gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ), (4.1)

as j → ∞ , locally spherically uniformly.

Let

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) ≡ p. (4.2)

Then g is a nonvanishing entire function. Using Lemma 3.2, we write g(ζ) = exp(cζ + d), where c(̸= 0), d are

constants. Then from (4.2), we get

(n1c)
t1 . . . (nkc)

tk exp

((
n+

k∑
i=1

ni

)
cζ +

(
n+

k∑
i=1

ni

)
d

)
≡ p,

which is not possible. Hence, gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) ̸≡ p.

Therefore, by Lemma 3.4 and Lemma 3.8, gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) − p has at least two dis-

tinct zeros, say ζ0 and ζ∗0 . Now we choose δ > 0 small enough so that ∆(ζ0, δ) ∩ ∆(ζ∗0 , δ) = ∅ and

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) − p has no other zeros in ∆(ζ0, δ) ∪ ∆(ζ∗0 , δ). By Hurwitz’s theorem, there

exist two sequences {ζj} ⊂ ∆(ζ0, δ) and {ζ∗j } ⊂ ∆(ζ∗0 , δ) converging to ζ0 and ζ∗0 respectively and from (4.1),

for sufficiently large j, we have

gnj (ζj)(g
n1
j )(t1)(ζj) . . . (g

nk
j )(tk)(ζj) = p and gnj (ζ

∗
j )(g

n1
j )(t1)(ζ∗j ) . . . (g

nk
j )(tk)(ζ∗j ) = p. (4.3)
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Since, by assumption that fn
j (f

n1
j )(t1) . . . (fnk

j )(tk) and fn
m(fn1

m )(t1) . . . (fnk
m )(tk) share p in D = ∆, for

each pair fj and fm in F , then by (4.3), for any m and for all j we get

gnm(ζj)(g
n1
m )(t1)(ζj) . . . (g

nk
m )(tk)(ζj) = p and gnm(ζ∗j )(g

n1
m )(t1)(ζ∗j ) . . . (g

nk
m )(tk)(ζ∗j ) = p.

We fix m and letting j → ∞, and noting zj + ρjζj → 0, zj + ρjζ
∗
j → 0, we obtain

fn
m(0)(fn1

m )(t1)(0) . . . (fnk
m )(tk)(0)− p = 0.

Since the zeros are isolated, for sufficiently large j we have zj + ρjζj = 0, zj + ρjζ
∗
j = 0. Hence, ζj = −zj/ρj

and ζ∗j = −zj/ρj , which is not possible as ∆(ζ0, δ) ∩∆(ζ∗0 , δ) = ∅ . This completes the proof. 2

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3.

Proof [Proof of Theorem 1.8] We may again assume that D = ∆. Suppose that F is not normal in ∆.

Then there exists at least one point z0 such that F is not normal at the point z0 in ∆. Without loss of

generality, we assume that z0 = 0. Then by Lemma 3.1, for

α = −
∑k

i=1 ti

n+
∑k

i=1 ni

there exist

1. a sequence of complex numbers zj → 0, |zj | < r < 1,

2. a sequence of functions fj ∈ F ,

3. a sequence of positive numbers ρj → 0,

such that gj(ζ) = ραj fj(zj + ρjζ) converges to a nonconstant meromorphic function g(ζ) on C with g#(ζ) ≤

g#(0) = 1. Moreover, g is of order at most two.

We see that

fn
j (zj + ρjζ)(f

n1
j )(t1)(zj + ρjζ) . . . (f

nk
j )(tk)(zj + ρjζ)

= gnj (ζ)(g
n1
j )(t1)(ζ) . . . (gnk

j )(tk)(ζ) → gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ), (4.4)

as j → ∞, locally spherically uniformly.

From the proof of the above result, we see that gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) ̸≡ p. Now we claim that

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ)− p has at most one zero IM. Suppose that gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ)− p

has two distinct zeros, say ζ0 and ζ∗0 , and choose δ > 0 small enough so that ∆(ζ0, δ) ∩ ∆(ζ∗0 , δ) = ∅ and

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) − p has no other zeros in ∆(ζ0, δ) ∪ ∆(ζ∗0 , δ). By Hurwitz’s theorem, there

exist two sequences {ζj} ⊂ ∆(ζ0, δ), {ζ∗j } ⊂ ∆(ζ∗0 , δ) converging to ζ0 and ζ∗0 respectively and from (4.4), for

sufficiently large j, we have

gnj (ζj)(g
n1
j )(t1)(ζj) . . . (g

nk
j )(tk)(ζj) = p and gnj (ζ

∗
j )(g

n1
j )(t1)(ζ∗j ) . . . (g

nk
j )(tk)(ζ∗j ) = p. (4.5)

Since zj → 0 and ρj → 0, we get for sufficiently large j , zj + ρjζj ∈ ∆(ζ0, δ) and zj + ρjζ
∗
j ∈

∆(ζ∗0 , δ). Therefore, fn
j (f

n1
j )(t1) . . . (fnk

j )(tk) − p has two distinct zeros, which contradicts the fact that
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fn
j (f

n1
j )(t1) . . . (fnk

j )(tk) − p has at most one zero. However, Lemma 3.4 and Lemma 3.8 confirm that there

does not exist such a nonconstant meromorphic function. This contradiction shows that F is normal in ∆ and

this proves the theorem. 2

5. Extensions of Theorem 1.3 and Theorem 1.4

It is natural to ask whether one can replace the value p by a holomorphic function α(z) in Theorem 1.3. In

this direction we extend Theorem 1.3 in the following manner:

Theorem 5.1 Let α(z) be a holomorphic function defined in a domain D ⊂ C such that α(z) ̸= 0 . Let n be

a nonnegative integer and n1, n2, . . . , nk, t1, t2, . . . , tk be positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 3 +
∑k

j=1 tj .

Let F be a family of meromorphic functions in a domain D such that for every pair of functions f, g ∈
F , fn(z)(fn1)(t1)(z) . . . (fnk)(tk)(z) and gn(z)(gn1)(t1)(z) . . . (gnk)(tk)(z) share α(z) IM on D . Then F is

normal in D .

Proof

Once again we assume that D = ∆. Suppose that F is not normal in ∆. Then there exists at least one

point z0 such that F is not normal at the point z0 in ∆. Without loss of generality, we assume that z0 = 0.

Then by Lemma 3.1, for

α = −
∑k

i=1 ti

n+
∑k

i=1 ni

there exist

1. a sequence of complex numbers zj → 0, |zj | < r < 1,

2. a sequence of functions fj ∈ F ,

3. a sequence of positive numbers ρj → 0,

such that gj(ζ) = ραj fj(zj + ρjζ) converges to a nonconstant meromorphic function g(ζ) on C with g#(ζ) ≤

g#(0) = 1. Moreover, g is of order at most two.

We see that

fn
j (zj + ρjζ)(f

n1
j )(t1)(zj + ρjζ) . . . (f

nk
j )(tk)(zj + ρjζ)− α(zj + ρjζ)

= gnj (ζ)(g
n1
j )(t1)(ζ) . . . (gnk

j )(tk)(ζ)− α(zj + ρjζ)

→ gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ)− α(0), (5.1)

as j → ∞, locally spherically uniformly.

Let

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) ≡ α(0). (5.2)
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Then g is an entire function having no zero, so by Lemma 3.2, we write g(ζ) = exp(cζ + d), where c(̸= 0), d

are constants. Then from (5.2), we get

(n1c)
t1 . . . (nkc)

tk exp

((
n+

k∑
i=1

ni

)
cζ +

(
n+

k∑
i=1

ni

)
d

)
≡ α(0),

which is not possible. Hence, gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) ̸≡ α(0).

Therefore by Lemma 3.4 and Lemma 3.8, gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ) − α(0) has at least two dis-

tinct zeros, say ζ0 and ζ∗0 . Now we choose δ > 0 small enough so that ∆(ζ0, δ) ∩ ∆(ζ∗0 , δ) = ∅ and

gn(ζ)(gn1)(t1)(ζ) . . . (gnk)(tk)(ζ)− α(0) has no other zeros in ∆(ζ0, δ) ∪∆(ζ∗0 , δ).

By Hurwitz’s theorem, there exist two sequences {ζj} ⊂ ∆(ζ0, δ), {ζ∗j } ⊂ ∆(ζ∗0 , δ) converging to ζ0 and ζ∗0

respectively and from (5.1), for sufficiently large j , we have

gnj (ζj)(g
n1
j )(t1)(ζj) . . . (g

nk
j )(tk)(ζj) = α(zj + ρjζj)

gnj (ζ
∗
j )(g

n1
j )(t1)(ζ∗j ) . . . (g

nk
j )(tk)(ζ∗j ) = α(zj + ρjζj). (5.3)

Since, by assumption that fn
j (f

n1
j )(t1) . . . (fnk

j )(tk) and fn
m(fn1

m )(t1) . . . (fnk
m )(tk) share α(z) IM in D = ∆,

for each pair fj and fm in F , then by (5.3), for any m and for all j we get

gnm(ζj)(g
n1
m )(t1)(ζj) . . . (g

nk
m )(tk)(ζj) = α(zj + ρjζj)

and

gnm(ζ∗j )(g
n1
m )(t1)(ζ∗j ) . . . (g

nk
m )(tk)(ζ∗j ) = α(zj + ρjζj).

We fix m and letting j → ∞, and noting zj + ρjζj → 0, zj + ρjζ
∗
j → 0, we obtain

fn
m(0)(fn1

m )(t1)(0) . . . (fnk
m )(tk)(0)− α(0) = 0.

Since the zeros are isolated, for sufficiently large j we have zj + ρjζj = 0, zj + ρjζ
∗
j = 0. Hence, ζj = −zj/ρj

and ζ∗j = −zj/ρj , which is not possible as ∆(ζ0, δ) ∩∆(ζ∗0 , δ) = ∅ . This completes the proof. 2

For families of holomorphic functions we have the following result:

Theorem 5.2 Let α(z) be a holomorphic function defined in a domain D ⊂ C such that α(z) ̸= 0 . Let n be

a nonnegative integer and n1, n2, . . . , nk, t1, t2, . . . , tk be positive integers such that

(a) nj ≥ tj for all 1 ≤ j ≤ k,

(b) n+
∑k

j=1 nj ≥ 2 +
∑k

j=1 tj .

Let F be a family of holomorphic functions in a domain D such that for every pair of functions f, g ∈
F , fn(z)(fn1)(t1)(z) . . . (fnk)(tk)(z) and gn(z)(gn1)(t1)(z) . . . (gnk)(tk)(z) share α(z) IM on D . Then F is

normal in D .

The proof is similar to the proof of Theorem 5.1.
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