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Abstract: In this paper, conditions for K-contact, Sasakian, and cosymplectic structures to be invariant under gauge

transformation are found. Moreover, the same question is studied for 3-Sasakian, 3-almost contact, and 3-cosymplectic

manifolds. Finally, it is shown that a slant submanifold of an almost contact metric manifold is invariant by gauge

transformation.
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1. Introduction

Gauge transformation of a contact metric manifold was introduced by Tanno [12]. He obtained a contact metric

structure invariant under gauge transformation. Sakamoto and Takemora introduced the gauge transformation

of an almost contact metric manifold in [9]. The study of gauge transformation has been considered by several

authors (see for instance [7, 8, 11]).

In this paper, we find conditions in which k-contact structures, Sasakian structures, and cosymplectic

structures are invariant under gauge transformation and we see that if the gauge transformation of a Sasakian

manifold is k-contact then it is Sasakian. We study gauge transformation of 3-Sasakian structures, almost

contact 3-structures, and 3-cosymplectic structures and take conditions in which these structures are invariant

under gauge transformation. Finally, we study gauge transformation of slant submanifolds of almost contact

structures. We see that these submanifolds are invariant under gauge transformation.

2. Preliminaries

An almost contact metric manifold is an odd-dimensional manifold M that carries a field φ of endomorphisms of

the tangent spaces, a vector field ξ , called characteristic or Reeb vector field, a 1-form η satisfying φ2 = −I+η⊗ξ

and η(ξ) = 1, where I : TM −→ TM is the identity map [3]. From the definition it also follows that φξ = 0,

ηoφ = 0 and the (1, 1)-tensor field φ has a constant rank 2n . It is well known that any almost contact manifold

(M,φ, ξ, η) admits a Riemannian metric g such that

g(φE,φF ) = g(E,F )− η(E)η(F ), (1)

holds for all E,F ∈ Γ(TM). The metric g is called compatible and the manifold M together with the structure

(φ, ξ, η, g) is called an almost contact metric manifold. As an immediate consequence of (1), one has η = g(·, ξ).
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The 2-form Φ on M defined by Φ(E,F ) = g(E,φF ) is called the fundamental 2-form of the almost

contact metric manifold. An almost contact metric manifold (M,φ, ξ, η, g) is said to be normal when the tensor

field N = [φ,φ] + 2dη ⊗ ξ vanishes identically, where [φ,φ] denotes the Nijenhuis tensor of φ . Almost contact

metric manifolds such that dη = 0 and dΦ = 0 are called almost cosymplectic manifolds. A normal almost

cosymplectic manifold is called a cosymplectic manifold. Almost contact metric manifolds such that dη = Φ are

called contact metric manifolds. A contact metric manifold is called K-contact if the tensor h = 1
2£ξφ vanishes

[1]. Finally, a normal contact metric manifold is said to be a Sasakian manifold [10].

Let M̃ be an immersed submanifold of M , TM̃ the Lie algebra of vector fields on M̃ , and TM̃⊥ the

set of all vector fields normal to M̃ . For any X ∈ TM̃ , we write

φX = TX +NX,

where TX is the tangential components of the tangent bundle and N is a normal-bundle valued 1-form on the

tangent bundle.

The submanifold M̃ is said to be invariant if N is identically zero, that is, φX ∈ TM̃ for any X ∈ TM̃ .

On the other hand, M̃ is said to be an anti-invariant submanifold if T is identically zero, that is, φX ∈ T⊥M̃ ,

for any X ∈ TM̃ . According Lotta’s definition, M̃ is slant if θ(X) ∈ [0, π
2 ] and the angle between φX and

TxM̃ is a constant that is independent of the choice of x ∈ M̃ and X ∈ TxM̃− < ξx > [4].

A gauge transformation of a contact metric manifold (M2n+1, φ, ξ, η, g) is a contact metric manifold

(M2n+1, φ̄, ξ̄, η̄, ḡ) defined by

η̄ = fη, ξ̄ = f−1ξ + Z, φ̄ = φ− η̄ ⊗ φZ,

ḡ = fg + f(f + f2|Z|2 − 1)η ⊗ η − f2η ⊗ g(Z, .)− f2g(Z, .)⊗ η,

with Z = 1
2f

−2φ(
`
f), for f ∈ C∞(M), f > 0.

A gauge transformation of an almost contact metric manifold (M,φ, ξ, η, g) is an almost contact metric

manifold (M2n+1, φ̄, ξ̄, η̄, ḡ) defined by

η̄ = eση, dη̄ = eσ(dη + dη ∧ η), ξ̄ = e−σ(ξ + φA), φ̄ = φ+ η ⊗A,

ḡ = e2σ(g − η ⊗ g(φA, .)− g(φA, .)⊗ η + g(A,A)η ⊗ η),

where σ ∈ C∞(M) and A is a vector field in which dη(φA,X) = dσ(hX), where hX is the projection of X in

ker η .

An almost 3-contact manifold is a (4n + 3)-dimensional smooth manifold M endowed with three almost

contact structures (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3) satisfying the following relations, for every α, β ∈ {1, 2, 3} ,

φαφβ − ηβ ⊗ ξα =

3∑
γ=1

ϵαβγφγ − δαβI, φαξβ =

3∑
γ=1

ϵαβγξγ , ηαoφβ =

3∑
γ=1

ϵαβγηγ , ηα(ξβ) = 0, (2)

where ϵαβγ is the totally antisymmetric symbol. This notion was introduced by Kuo [6] and, indepen-

dently, by Udriste [13]. In [6] Kuo proved that given an almost contact 3-structure (φα, ξα, ηα), there exists a
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Riemannian metric g compatible with (φα, ξα, ηα) and hence we can consider almost contact metric 3-structures.

It is well known that in any almost 3-contact metric manifold the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal

with respect to the compatible metric g . Moreover, by setting H =
∩3

α=1 kerηα one obtains a 4n-dimensional

distribution on M and the tangent bundle splits to the orthogonal sum TM = H⊕ < ξ1, ξ2, ξ3 > .

When the three structures (φα, ξα, ηα, g) are contact metric structures, we say that M is a 3-contact

metric manifold and when they are Sasakian, that is when each structure (φα, ξα, ηα, g) is also normal, we

call M a 3-Sasakian manifold. Indeed as it has been proved in 2001 by Kashiwada [5], every contact metric

3-structure is 3-Sasakian. A manifold with an almost contact 3-structure (φ, ξ, η, g) is called an almost 3-

cosymplectic manifold if each almost contact structure is an almost cosymplectic structure. If each almost

contact structure is a cosymplectic structure the manifold is a 3-cosymplectic manifold.

Theorem 2.1 [2] Any almost 3-cosymplectic manifold is 3-cosymplectic.

3. Gauge transformation of almost contact metric manifolds

In this section we investigate some conditions under which K-contact manifolds, Sasakian manifolds, and

cosymplectic manifolds are invariant under gauge transformation.

Lemma 3.1 Let (M2n+1, φ, ξ, η, g) be a contact metric manifold and 0 < f ∈ C∞(M) and ξ̄ = f−1ξ + Z be

the Reeb vector field of η̄ = fη ; then

X(f) = −2f2g(X,φZ) + ξ(f)η(X), Z(f) = 0. (3)

Proof By using (1) we can write

X(f) = g(
h

f,X)

= g(φ(
h

f), φ(X)) + η(X)η(
h

f)

= 2f2g(Z,φX) + η(X)g(
h

f, ξ)

= −2f2g(X,φZ) + ξ(f)η(X),

setting X = Z we have Z(f) = 0. 2

In the following theorems we find some conditions for which the gauge transformation of a K-contact manifold

(Sasakian resp) is K-contact (Sasakian resp) as well.

Theorem 3.2 The gauge transformation of a K-contact manifold (M,φ, ξ, η, g) is also K-contact manifold iff

(£Zφ)X = g(X,Z)ξ for all X ∈ χ(M) .

Proof Let (M,φ, ξ, η, g) be a K-contact manifold and (M, φ̄, ξ̄, η̄, ḡ) the gauge transformation by f . Since

(£ξ̄φ̄)ξ̄ = 0, it is enough to check h̄X = 0 for any X ∈ χ(M). We see

(£ξ̄φ̄)X = φ[X, ξ̄]− [φX, ξ̄]

= f−1φ[X, ξ] + φ[X,Z]− f−1[φX, ξ]− [φX,Z]− φX(f−1)ξ

= f−1(£ξφ)X + (£Zφ)X − φX(f−1)ξ,
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now using (3) we have

φX(f−1) = −f−2φX(f) = g(X,Z).

Then (M, φ̄, ξ̄, η̄, ḡ) is also K-contact iff (£Zφ)X − g(X,Z)ξ = 0. 2

Theorem 3.3 Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold. The gauge transformation defined by f is also

Sasakian iff φ(£Zφ)X = 0 for all X ∈ χ(M) .

Proof Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold. Since we can write TpM = D⊕ < ξ̄ > , it is sufficient

to prove for the following cases:

For all X,Y belonging to D we have

[φ̄, φ̄](X,Y ) = φ2[X,Y ] + [φ̄X, φ̄Y ]− φ̄[φ̄X, Y ]− φ̄[X, φ̄Y ],

but we can see

φ̄2[X,Y ] = φ2[X,Y ] + η̄[X,Y ]Z, [φ̄X, φ̄Y ] = [φX,φY ],

φ̄[φ̄X, Y ] = φ[φX, Y ]− η̄[φX, Y ]φZ, φ̄[X, φ̄Y ] = φ[X,φY ]− η̄[X,φY ]φZ;

therefore

[φ̄, φ̄](X,Y ) = −2dη̄(X,Y )ξ̄.

For all X belonging to D we have

[φ̄, φ̄](ξ̄, Y ) = φ2[ξ̄, Y ] + [φ̄ξ̄, φ̄Y ]− φ̄[φ̄ξ̄, Y ]− φ̄[ξ̄, φ̄Y ],

if we set ξ̄ = f−1ξ + Z and φ̄X = φX − η̄XφZ in the above equation, we see

[φ̄, φ̄](ξ̄, X) = −2dη̄(ξ̄, X)ξ̄ + φ(LZφ)X.

Finally [φ̄, φ̄](X,Y ) = −2dη̄(X,Y )ξ̄ for any X,Y ∈ χ(M) iff φ(£Zφ)X = 0. 2

Corollary 3.4 Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold and f be a function on M such that 0 < f ;

then the gauge transformation of this structure by f is Sasakian if the structure is K-contact.

Now we find a condition for a cosymplectic structure to be invariant under gauge transformation.

Theorem 3.5 Let (M2n+1, φ, ξ, η, g) be a cosymplectic manifold. The gauge transformation defined by eσ is

also cosymplectic iff

dσ ∧ Φ = 0, dσ ∧ η = 0 , φ(£φAφ) = 0.

Proof Let (M2n+1, φ, ξ, η, g) be a cosymplectic manifold. We have

dη̄ = e2σ(dη + dσ ∧ η),
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Since dη = 0, dη̄ = 0 iff dσ ∧ η = 0. Now since dη = 0 and dΦ = 0 we have

dΦ̄ = e2σ[dσ ∧ Φ− dσ ∧ (η ⊗ g(A, .)) + dσ ∧ (g(A, .)⊗ η)]

= e2σ[−dσ ∧ (η ∧ g(A, .)) + dσ ∧ Φ]

= e2σ[−(dσ ∧ η) ∧ g(A, .) + dσ ∧ Φ],

and so (φ̄, ξ̄, η̄, ḡ) has an almost cosymplectic structure iff dσ ∧ Φ = 0 and dσ ∧ η = 0. If this new almost

cosymplectic structure is normal it will be a cosymplectic structure. Since we can write TpM = D⊕ < ξ̄ > , it

is sufficient to prove for the following cases:

For all X,Y belonging to D we have

[φ̄, φ̄](X,Y ) = φ2[X,Y ] + [φ̄X, φ̄Y ]− φ̄[φ̄X, Y ]− φ̄[X, φ̄Y ],

but we can see

φ̄2[X,Y ] = φ2[X,Y ] + η̄[X,Y ]φA, [φ̄X, φ̄Y ] = [φX,φY ],

φ̄[φ̄X, Y ] = φ[φX, Y ]− η̄[φX, Y ]A, φ̄[X, φ̄Y ] = φ[X,φY ]− η̄[X,φY ]A;

therefore since dη̄ = 0 we have

[φ̄, φ̄](X,Y ) = −2dη̄(X,Y )ξ̄ = 0.

For all X belonging to D we have

[φ̄, φ̄](ξ̄, Y ) = φ2[ξ̄, Y ] + [φ̄ξ̄, φ̄Y ]− φ̄[φ̄ξ̄, Y ]− φ̄[ξ̄, φ̄Y ],

if we set ξ̄ = e−σ(ξ + φA) and φ̄X = φX + η̄(X)A in the above equation, we see

[φ̄, φ̄](ξ̄, X) = φ(£φAφ)X.

Finally [φ̄, φ̄](X,Y ) = −2dη̄(X,Y )ξ̄ = 0 for any X,Y ∈ χ(M) iff φ(£φAφ)X = 0. 2

Corollary 3.6 Let (M2n+1, φ, ξ, η, g) be an almost cosymplectic manifold. The gauge transformation defined

by eσ is also almost cosymplectic iff

dσ ∧ Φ = 0, dσ ∧ η = 0.

4. Gauge transformation of almost contact 3-structures

Now we are in a position to investigate the gauge transformation of almost contact 3-structures. First, let

(M4n+3, φα, ξα, ηα, g) be a 3-Sasakian manifold. If we set η̄α = fηα for α ∈ {1, 2, 3} where f is a positive

function on M , we have three new contact structures:

η̄α = fηα, ξ̄α = f−1ξα + Zα, φ̄α = φα − η̄α ⊗ φαZα ,

ḡα = fg + f(f + f2|Zα|2 − 1)ηα ⊗ ηα − f2ηα ⊗ g(Zα, .)− f2g(Zα, .)⊗ ηα ,
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where Zα = 1
2f

−2φα(
`
f). We say that this transformation is a gauge transformation of a 3-Sasakian manifold.

These new contact metric structures have a 3-Sasakian structure if
`
f ∈

∩
kerηα . Since η̄α(ξ̄β) =

f−1ηγ(
`

f) = 0 iff
`
f ∈

∩
kerηα . Thus we have the following theorem:

Theorem 4.1 The gauge transformation of a 3-Sasakian manifold has a 3-Sasakian structure iff
`
f ∈∩

kerηα .

Remark 4.2 If we set η̄α = fαηα , we will see from (2) that this transformation of a 3-Sasakian structure

cannot carry a 3-Sasakian structure unless f1 = f2 = f3 . Thus we can use theorem 4.1.

Lemma 4.3 If we set η̄ = fη for α ∈ {1, 2, 3} where f is a positive function on M and
`
f ∈

∩
kerηα then

we have g(Zα, Zβ) = 0 and |Zα| = |Zβ | ∀ α, β ∈ {1, 2, 3} .

Proof We have

g(Zα, Zβ) = f−4g(φα

h
f, φβ

h
f) = f−4g(φγ

h
f,

h
f) = 0,

and

g(Zα, Zα) = f−4g(
h

f,
h

f);

since
`
f ∈ H we have |Zα| = |Zβ | for all α, β ∈ {1, 2, 3} . 2

Theorem 4.4 The compatible metric with gauge transformation of a 3-Sasakian manifold is

ḡ(X,Y ) = fg +Σ3
α=1[f(f + f2|Zα|2 − 1)ηα ⊗ ηα − f2ηα ⊗ g(Zα, .)− f2g(Zα, .)⊗ ηα]. (4)

Proof It is sufficient to prove ḡ(φ̄αX, φ̄αY ) = ḡ(X,Y )− η̄α(X)η̄α(Y ). From (4) we have

ḡ(X,Y ) = ḡ1 +Σ3
α=2[f(f + f2|Zα|2 − 1)ηα ⊗ ηα − f2ηα ⊗ g(Zα, .)− f2g(Zα, .)⊗ ηα],

Therefore we have

ḡ(φ̄1X, φ̄1Y ) = ḡ1(X,Y )− η̄1(X)η̄1(Y )

+ f(f + f2|Z2|2 − 1)η3(X)η3(Y )− f2η3(X)g(Z3, Y )− f2g(Z3, X)η3(Y )

+ f(f + f2|Z3|2 − 1)η2(X)η2(Y )− f2η2(X)g(Z2, Y )− f2g(Z2, X)η2(Y ).

From lemma 4.3 and (2) we can see that this metric is compatible with a new 3-Sasakian structure. 2

Now let (M, ξα, φα, ηα, g) with α ∈ {1, 2, 3} be a manifold with an almost contact 3-structure. If we set

η̄α = eσηα then we have three almost contact structures:

η̄α = eσηα, dη̄α = eσ(dηα + dσ ∧ ηα), ξ̄α = e−σ(ξα + φAα), φ̄α = φα + η ⊗Aα,

ḡα = e2σ(g − ηα ⊗ g(φAα, .)− g(φAα, .)⊗ ηα + g(A,A)ηα ⊗ ηα).

We say that this transformation is a gauge transformation of an almost contact 3-structure. In the following

theorem we find a condition in which gauge transformation of an almost contact structure has an almost contact

3-structure.
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Theorem 4.5 A gauge transformation of an almost contact 3-structure has an almost contact 3-structure iff

A1 = A2 = A3 ∈ H .

Proof We have

η̄α(ξ̄β) = ηα(φβAβ)

= ηγ(Aβ),

Therefore η̄α(ξ̄β) = 0 iff Aα ∈ H, ∀α ∈ {1, 2, 3} .

φ̄αξ̄β = e−σ(ξγ + φγAβ),

and so φ̄αξ̄β = ξ̄γ iff A1 = A2 = A3 . With direct computation we can see that

φ̄αφ̄β − η̄β ⊗ ξ̄α = φγ + ηγ ⊗Aα + ηβ ⊗ φαAβ − ηβ ⊗ φαAα.

By setting X ∈ kerηγ and X = ξγ we see that φ̄αφ̄β − η̄β ⊗ ξ̄α = φ̄γ iff A1 = A2 = A3 . Therefore, the almost

contact 3-structure is invariant under the gauge transformation iff A1 = A2 = A3 ∈ H . 2

Remark 4.6 If we set η̄α = eσαηα , we will see from (2) that this transformation of an almost contact 3-

structure cannot result in an almost contact 3-structure unless σ1 = σ2 = σ3 . Then we can use theorem

4.5

Theorem 4.7 A compatible metric with this new almost contact 3-structure is

ḡ = e2σ(g +Σ3
α=1[−ηα ⊗ g(φAα, .)− g(φAα, .)⊗ ηα + g(A,A)ηα ⊗ ηα]). (5)

Proof It is sufficient to prove ḡ(φ̄αX, φ̄αY ) = ḡ(X,Y )− η̄α(X)η̄α(Y ). From (5) we have

ḡ(X,Y ) = ḡ1 + e2σ(Σ3
α=2[−ηα ⊗ g(φAα, .)− g(φAα, .)⊗ ηα + g(A,A)ηα ⊗ ηα)]),

and from (2) and theorem 4.5 we can see that this metric is compatible with the gauge transformation of an

almost contact 3-structure. 2

Now with direct computation we have the following theorem

Theorem 4.8 A gauge transformation of a 3-cosymplectic results in a 3-cosymplectic structure iff

∀α ∈ {1, 2, 3}, dσ ∧ ηα = 0, dσ ∧ Φα = 0, A1 = A2 = A3 ∈ H.

Proof From theorem 2.1 we can see that gauge transformation of a 3-cosymplectic manifold is 3-cosymplectic

iff each structure is almost cosymplectic. Therefore a gauge transformation of a 3-cosymplectic manifold is

3-cosymplectic iff

∀α ∈ {1, 2, 3}, dσ ∧ ηα = 0, dσ ∧ Φα = 0.

2
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5. Gauge transformation and slant submanifolds of an almost contact structure

Let M̃ be a slant submanifold of the almost contact metric manifold (M,φ, ξ, η, g) and θ(X) be the angle

between φX and TxM̃ . It can easily be seen that the distribution D is invariant under the gauge transformation.

Thus we can prove the following theorem:

Theorem 5.1 Slant submanifolds of an almost contact metric manifold are invariant under gauge transforma-

tions.

Proof We know that X ∈ TxM̃− < ξx > are vector fields in TxM̃ ∩D . Since the distribution D is invariant

under gauge transformation we have φ̄X = φX and therefore T̄X = TX and N̄X = NX .

We compute θ̄(X)

cos θ̄ =
ḡ(φX, TX)

|φX|ḡ|TX|ḡ
,

Since ḡ = e2σ(g − η ⊗ g(φA, .)− g(φA, .)⊗ η + g(A,A)η ⊗ η), φX ∈ D and TX ∈ D we have

ḡ(φX, TX) = g(φX, TX), |TX|ḡ = |TX|g, |φX|ḡ = |φX|g,

and so

cosθ̄(X) = cosθ(X).

Finally since θ̄ ∈ [0, π
2 ] , for any x ∈ M̃ and X ∈ TxM̃− < ξ̄ > we have

θ̄(X) = θ(X).

2

Remark 5.2 Invariant and anti-invariant submanifolds are invariant under the gauge transformation of an

almost contact structure since for any X ∈ TM̃ we have φ̄X = φX .
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