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Abstract: Many problems in statistical estimation, classification, and regression can be cast as optimization problems.

Gradient descent, which is one of the simplest and easy to implement multivariate optimization techniques, lies at the

heart of many powerful classes of optimization methods. However, its major disadvantage is the slower rate of convergence

with respect to the other more sophisticated algorithms. In order to improve the convergence speed of gradient descent,

we simultaneously determine near-optimal scalar step size and momentum factor for gradient descent in a deterministic

quadratic bowl from the largest and smallest eigenvalues of the Hessian. The resulting algorithm is demonstrated on

specific and randomly generated test problems and it converges faster than any previous batch gradient descent method.
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1. Introduction

In domains like statistics, finance, bioinformatics, information retrieval, collaborative filtering, and social

network analysis, learning tasks such as regression, classification, and ranking start with a loss function that

measures the error between the prediction of the model and the actual output value. An empirical risk function

is then defined over a training data to estimate this loss accordingly. Consider, for example, least-squares

regression; we seek the plane that minimizes the mean squared error between the predictions and the actual

values of the response variables. In classification, we try to minimize the cost we pay for incorrectly assigning the

observations to the wrong class. Ranking tasks are different than the regression and classification tasks where

the empirical risk is defined as the normalized pairwise least-squares loss over the training data. However, all of

these methods use numerical optimization algorithms, in one way or the other, to minimize the empirical risk.

Learning a regression, classification, or ranking function from data requires evaluation of the objective

function. This involves basically the summation of squared errors over the training dataset used in building the

model. Gradient-based methods must compute this sum for each evaluation of the empirical risk, respectively

its gradient, whereas standard numerical optimization techniques such as variations of Newton’s method and

conjugate gradient algorithms also need second-order information [4]. As available data sets grow ever larger

and/or when there are many parameters to be fit, such classical second-order methods are impractical in almost

all useful cases. Gradient-based methods, by contrast, have a major advantage in large and redundant data sets

with higher dimensionality. In fact, simple stochastic gradient descent outperforms sophisticated second-order

batch methods in general, since the computational requirements of stochastic methods are extremely reduced

by the fact that they only work with a single randomly picked example from the training data (e.g., [2, 9, 14]).
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Normally, we expect that any step in the negative gradient direction will take us closer to the global

minimum, but, for real problems, error surfaces are typically complex and may have numerous local minima.

Therefore, the risk of being stuck in a local minima is much higher in real-life problems. The inclusion ofa

momentum term can help us to escape from these local minima and probably it is the most popular extension

of the gradient descent algorithm. This generally leads to a significant improvement in the performance of

the gradient descent but introduces a second parameter whose value needs to be chosen, in addition to that

of the step size parameter. There have been numerous studies on the stability and convergence speed of the

gradient descent with momentum (GDM) algorithm and research continues. Since the squared error function

is approximately quadratic around a local minimum, recent studies focused on the analysis of quadratic error

functions [1, 10, 12].

This paper starts with clarifying some results in [10, 12], and then, for a given step size, the changing

intervals of the momentum factor, which ensures stability, are determined using a different approach other than

the previous studies. Based on the suggestions in [10, 12] on how the choice of the momentum factor affects

the convergence speed of GDM, this study proposes a near optimal step size and a corresponding momentum

factor that improves the convergence speed much more.

At first, by considering the physical interpretation of GDM in [10], the variation intervals of the momen-

tum factor are analyzed by examining the stability problem for the parametric form of the algorithm used in

[12]. The results of [10, 12] and this study are compared for stability and convergence speed, and a better way

of parameter selection is proposed. Consequently, suitable formulas are derived for a near optimal step size and

a corresponding momentum factor that can significantly increase the convergence speed of GDM.

2. Stability

GDM can be written as

xt+1 = [(1 + µ)I − (1− µ)ηH]xt − µxt−1 + (1− µ)ηb, (1)

for the minimization of the following deterministic error function

F (x) =
1

2
xTHx− bTx+ c, (2)

where I is an n× n identity matrix, η is the step size, µ is the momentum factor, H is an n× n symmetric

positive definite matrix, b is an n -dimensional vector, and c is a given constant. The gradient of the quadratic

function F at point x is ∇F (x) = Hx−b . Since H is symmetric and positive definite, it can be diagonalized as

H = QKQT , QQT = I ,

where Q is a matrix formed by the orthonormal eigenvectors of H , and K is a diagonal matrix formed by the

eigenvalues κi > 0, i = 1, 2, . . . , n of H . Applying the transformation x′ = QTx , (1) becomes

x′
t+1 = [(1 + µ)I − (1− µ)ηK]x′

t − µx′
t−1 + (1− µ)ηb′, (3)

where b′ = QT b . (3) is written in coordinates as

x′
i,t+1 = [1 + µ− (1− µ)ηκi]x

′
i,t − µx′

i,t−1 + (1− µ)ηb′i i = 1, 2, . . . , n; (4)
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then the coordinates of vector x are obtained by the linear combination of the coordinates of x′ . Including the

dummy equation x′
i,t = x′

i,t , we can write (4) in the form

x̃′
i,t+1 = Pix̃

′
i,t + di, x̃′

i,t =

(
x′
i,t−1

x′
i,t

)
i = 1, 2, ..., n, (5)

where Pi =

(
0 1
−µ 1 + µ− (1− µ)ηκi

)
is a 2 × 2 matrix, and di =

[
0

(1− µ)ηb′i

]
is a two-dimensional vector

(i = 1, 2, ..., n). The linear dynamic system given by (5) is stable if the magnitudes of the eigenvalues of the Pi

matrix are smaller than 1 [3]. Thus a relation is set up between the stability problem of the GDM algorithm

(1) and the magnitudes of the eigenvalues of the Pi matrix.

We can write the corresponding characteristic equation for finding the eigenvalues of the Pi matrix and

we have that the eigenvalues λ of the Pi matrix are the roots of the following quadratic equations [10, 12]:

λ2 − [(1 + µ)− (1− µ)ηκi]λ+ µ = 0, i = 1, 2, ..., n. (6)

Two roots (real or complex) of (6) correspond to each κi (i = 1, 2, ..., n). For the stability of the linear iterative

process (5), the magnitude of each root of (6) must be smaller than 1. Therefore the stability problem of

gradient descent with momentum algorithm (1) becomes the examination of (6). The roots of (6) corresponding

to any κ eigenvalue of H matrix are calculated as

λ =
[(1 + µ)− (1− µ)ηκ]±

√
[(1 + µ)− (1− µ)ηκ]2 − 4µ

2
. (7)

[12] examined the stability of the algorithm (1) by using (7), whereas we examined the stability of the GDM

algorithm by considering the quadratic function on the left-hand side of (6) (with respect to λ):

ϕ(λ) = λ2 − [(1 + µ)− (1− µ)ηκ]λ+ µ. (8)

This approach is apparent from a geometric perspective and it facilitates the determination of a near-optimal

step size and a corresponding momentum factor, which we will study in the next section. The discriminant

of the quadratic form (8) is D = [(1 + µ) − (1 − µ)ηκ]2 − 4µ , and if we write according to the degrees of the

momentum factor µ then

D(µ) = (1 + ηκ)2µ2 − 2(1 + η2κ2)µ+ (1− ηκ)2. (9)

In the case of D < 0, the roots of (6) are conjugate complex numbers and their magnitudes are constants equal

to |λ| = √
µ . The quadratic form (9) has two distinct roots in the range [0, 1]: µ1 =

(1− ηκ)2

(1 + ηκ)2
and µ2 = 1.

Therefore, the sign of the function D(µ) is determined as

D(µ) =


< 0, S(ηκ) < µ < 1

= 0, µ = 1 or µ = S(ηκ)

> 0, µ > 1 or µ < S(ηκ)

, (10)

where S(ηκ) =
(1− ηκ)2

(1 + ηκ)2
, η is the step size, and κ is any eigenvalue of the matrix H . S(ηκ) has the following

properties:
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Figure 1. Plot of functions S(ηκ) ,
ηκ− 2

ηκ+ 2
and valid µ intervals.

S(ηκ) decreases from 1 to 0 in the segment 0 ≤ ηκ ≤ 1 and takes the minimum value 0 at ηκ = 1 , and

increases when ηκ > 1 . S(ηκ) is convex in 0 ≤ ηκ ≤ 2 , and concave in (2,+∞) . ηκ = 2 is the turning point

(see Figure 1).

Following is a theorem that is similar to the stability results in [12], and the proof is given in a different

way in this paper.

Theorem 1 (Stability) Assume that η is the step size and κi, i = 1, 2, ..., n are the eigenvalues of the

symmetric positive definite matrix H . If 0 < ηκi ≤ 2, i = 1, 2, ..., n then the GDM algorithm (1) is stable for

any momentum factor µ in the range (0, 1) ; else if max
i

ηκi > 2 then (1) is stable for any momentum factor µ

in the range max
i

ηκi − 2

ηκi + 2
< µ < 1 .

Proof To prove the stability of the algorithm given by (1), it must be shown that the eigenvalues of matrix

P are smaller than 1. The magnitude of any complex root of (6) is |λ| = √
µ , and it is smaller than 1, when

condition 0 < µ < 1 is satisfied. Then it remains to show that the absolute value of any real root of the

quadratic function (8) is smaller than 1. For the quadratic form ϕ(λ) defined by (8), ϕ(0) = µ > 0. The

minimum of the function ϕ(λ),

λmin =
(1 + µ)− (1− µ)ηκ

2
, (11)

and the minimum value is

ϕ(λmin) = −D(µ)

4
. (12)

Depending on the equality (12), in the case of D(µ) ≥ 0, we see that ϕ(λmin) ≤ 0. By examining the eigenvalues

λ according to ηκ :

i. if ηκ = 1 for 0 < µ < 1, then D(µ) < 0, and λ eigenvalues are complex numbers, and in this case

|λ| = √
µ < 1.
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Figure 2. The plot of φ(λ) for various values of µ between [0, 1] .

ii. if 0 < ηκ ≤ 2 and ηκ ̸= 1, then depending on the choice of 0 < µ < 1, D(µ) can be smaller than zero,

larger than zero, or equal to zero. In this case, λmin defined by (11) is evaluated as

3µ− 1

2
≤ λmin =

(1 + µ)− (1− µ)ηκ

2
<

1 + µ

2
. (13)

Since µ changes in range (0,1), we find the upper and lower bounds for λmin from (13)

−1

2
≤ λmin < 1.

On the other hand,

ϕ(1) = (1− µ)ηκ > 0, (since µ < 1),

and
ϕ(−1) = 1 + (1 + µ)− (1− µ)ηκ+ µ = 2(1 + µ)− (1− µ)ηκ. (14)

According to (14), ϕ(−1) is descending with respect to (ηκ) in 0 < ηκ < 2, and when ηκ = 2,

ϕ(−1) ≥ 2(1 + µ)− 2(1− µ) = 4µ > 0. (15)

Thus, when the condition 0 < ηκ ≤ 2 is satisfied, ϕ(−1) > 0 for any momentum factor in 0 < µ < 1. Now,

in the case of D(µ) > 0, we have ϕ(0), ϕ(1), ϕ(−1) > 0 and −1
2 < λmin < 1. Therefore, the schematic plot

of ϕ(λ) will be similar to one of the following plots in Figure 2, and in both cases we see that | λ |< 1.

iii. Now assume that the condition ηκ > 2 is satisfied. Let us show that the absolute values of the real roots

of the quadratic form (8) are smaller than 1 for momentum factors that satisfy
ηκ− 2

ηκ+ 2
< µ < 1. Then it

is sufficient that the conditions λmin ∈ (−1, 0) and ϕ(−1) > 0 are satisfied. According to (14), we have

ϕ(−1) = (ηκ+ 2)µ− (ηκ− 2).

114
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Thus, when ηκ > 2, in order to ϕ(−1) > 0, we see the necessity for the inequality

µ >
ηκ− 2

ηκ+ 2
, (16)

to be satisfied. On the other hand, when 0 < µ < 1, the condition D(µ) > 0 defined by formula (10) is

satisfied when

µ <
(ηκ− 1)2

(ηκ+ 1)2
. (17)

In the case of ηκ > 1, we find

λmin =
1

2
[(ηκ+ 1)µ− (ηκ− 1)] <

1− ηκ

1 + ηκ
< 0,

from (11) and (17) and according to (13) and (16) we have

0 < (ηκ+ 2)µ− (ηκ− 2) = [(ηκ+ 1)µ− (ηκ− 1)] + µ+ 1 = 2λmin + (µ+ 1).

Since µ takes values between 0 and 1, we find that λmin > −µ+1
2 > −1. Therefore, the roots of (6)

settle in (−1, 0) while λmin ∈ (−1, 0) and the momentum factor µ changes in the range ηκ−2
ηκ+2 < µ < 1.

Consequently, the iterative process (1) is stable while the condition max
i

ηκi − 2

ηκi + 2
< µ < 1 is satisfied.

2

Note 1. If we pay attention to the proof of theorem 1, we can see that the following statements are true:

• If 0 < ηκ < 1 and D(µ) > 0, then the corresponding roots of (6) settle in (0, 1).

• If 1 < ηκ < 2 and D(µ) > 0, then the corresponding roots of (6) settle in (−1, 0).

Note 2. Theorem 1 can be expressed in brief:

Assuming that η is the step size and κi, i = 1, 2, ..., n are the eigenvalues of the symmetric positive definite

matrix H , the GDM (1) is stable for the momentum factors in the range

max{0,max
i

ηκi − 2

ηκi + 2
} < µ < 1.

Note 3. From the proof of theorem 1, it is clear that: When the momentum factor µ changes in

−1 < µ < 1, max{0,max
i

ηκi − 2

ηκi + 2
} < µ < 1 is the necessary and sufficient condition for the stability of GDM

(1).

In Figure 1, the variation interval of µ with respect to ηκ is demonstrated geometrically for the stability

of (1).

3. Convergence speed

As explained in [12], the convergence speed of the algorithm (1) depends on the magnitudes of the λ eigenvalues,

that is, the smaller the magnitude the faster the convergence. This implies that for a given step size the choice
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µ = max
i

(1− ηκi)
2

(1 + ηκi)2
= max

i
S(ηκi) provides a better convergence speed in general. However, there is no

examination of the suitable choice of step size η in [12]. In fact, a better choice of step size η should shrink the

magnitudes of the λ eigenvalues much more. In this paper, we propose to determine η = η0 from the following

minimax problem:

max
i

(1− η0κi)
2

(1 + η0κi)2
= min

η>0
max

i

(1− ηκi)
2

(1 + ηκi)2
.

Thus, taking µ = µ0 = max
i

(1− η0κi)
2

(1 + η0κi)2
, a better convergence speed is ensured. Assume that the

eigenvalues of the symmetric positive definite H matrix are ordered in this way: 0 < κn ≤ κn−1 ≤ . . . κ2 ≤ κ1 ,

where κn is the smallest and κ1 is the largest eigenvalue. In this case, the plot of functions Si(η) = S(ηκi) =

(1− ηκi)
2

(1 + ηκi)2
, i = 1, 2, . . . , n is illustrated in Figure 3. Let us mark the nonzero intersection point of functions

S1(η) and Sn(η) with η1,n . From the equality S1(η) = Sn(η), i.e.
(1− ηκ1)

2

(1 + ηκ1)2
=

(1− ηκn)
2

(1 + ηκn)2
, we find that

η1,n =
1

√
κ1κn

.

Lemma i. If < η ≤ 1
√
κ1κn

then Sn(η) ≥ Si(η), i ∈ {1, 2, . . . , n− 1} .

ii. If η ≥ 1
√
κ1κn

then S1(η) ≥ Si(η), i ∈ {2, . . . , n} .

Proof

i. Consider the inequality Sn(η) ≥ Si(η), i ̸= n , i.e.

(1− ηκn)
2

(1 + ηκn)2
≥ (1− ηκi)

2

(1 + ηκi)2
, η > 0. (18)

(18) is satisfied for any η > 0 when κn = κi . Therefore, we consider the case κn < κi , and (18) becomes

2η(κi − κn)(2− 2η2κiκn) ≥ 0.

Since η(κi − κn) ≥ 0, we have 2 − 2η2κiκn ≥ 0, and for 0 < η ≤ 1
√
κiκn

inequality (18) is satisfied. On

the other hand, since
1

√
κ1κn

≤ 1
√
κiκn

i ∈ {2, . . . , n− 1} , the inequality η ≤ 1
√
κiκn

i ∈ {2, . . . , n− 1} is

satisfied when η ≤ 1
√
κ1κn

. Finally, for 0 < η ≤ 1
√
κ1κn

, (18) is also satisfied, that is, Sn(η) ≥ Si(η) i =

1, 2, . . . , n.

ii. Consider the inequality S1(η) ≥ Si(η), i ̸= 1, i.e.

(1− ηκ1)
2

(1 + ηκ1)2
≥ (1− ηκi)

2

(1 + ηκi)2
, η > 0.
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Figure 3. Plots of Si(η) and S̃(η) = max
i

Si(η) and near optimal step size η0 and momentum µ0 .

In this case, we have

2η(κi − κ1)(2− 2η2κiκ1) ≥ 0.

Since η(κi − κ1) ≤ 0, we have 2 − 2η2κiκ1 ≤ 0 and we conclude that the inequality S1(η) ≥ Si(η)

is satisfied for η ≥ 1/
√
κ1κi . On the other hand, since

1
√
κ1κi

≤ 1
√
κ1κn

i ∈ {2, . . . , n − 1} , the

inequality η ≥ 1
√
κ1κi

i ∈ {2, . . . , n − 1} is satisfied when η ≥ 1
√
κ1κn

. Therefore, for η ≥ 1
√
κ1κn

,

S1(η) ≥ Si(η) i = 2, 3 . . . , n.

2

Theorem 2 η0 = 1/
√
κ1κn is the unique solution of the minimax problem

min
0<η

max
i

Si(η) = max
i

Si(η
0).

Proof According to the Lemma, it is clear that

S̃(η) = max
i

Si(η) =

{
Sn(η), 0 < η < η0

S1(η), η ≥ η0
.

S̃(η) is shown with dashed curves in Figure 3. Now we can show that η0 is the minimum of S̃(η). Considering

the properties of S(ηκ), Sn(η) = S(ηκn) is decreasing in 0 < ηκn ≤ 1. Since η0κn =
κn√
κ1κn

≤ 1, Sn(η) takes

its minimum at η = η0 =
1

√
κ1κn

in 0 < η ≤ η0 . In the same way, it is clear that η = η0 is also the minimum

of S1(η) in η0 ≤ η < +∞ . Thus, η = η0 is the minimum of S̃(η) and the corresponding momentum factor is

µ0 = S̃(η0) =
(
√
κ1 −

√
κn)

2

(
√
κ1 +

√
κn)2

. 2
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Eventually, near-optimal step size and momentum factor are given in the following formulas:

η0 =
1

√
κ1κn

, µ0 =
(
√

κ1

κn
− 1)2

(
√

κ1

κn
+ 1)2

, κn > 0. (19)

This near-optimal learning parameter pair (η0, µ0) is calculated for the simple preliminary problem given in the

first row of Table 4, and it is indicated with a red point in Figure 3. Furthermore, one can obtain the following

relations using (19):

(1− µ0)η0 =
4

(
√
κ1 +

√
κn)2

, (20)

if
κ1

κn
→ 1, then µ0 → 0, (21)

if
κ1

κn
→ ∞, then µ0 → 1. (22)

(20) says that only the largest and smallest eigenvalues of the Hessian matrix have an effect on the gradient

term when η = η0 and µ = µ0 used. Step size, which depends on the gradient, shrinks when the relevant

eigenvalues of the Hessian matrix get larger. (21) shows that the effect of the momentum factor decreases

when the eigenvalues of the Hessian matrix are close to each other, whereas the effect of the momentum factor

increases, according to (22), when the range of the eigenvalues of the Hessian matrix is large.

4. Numerical results

In the first phase, best step size and momentum factor were found by trying all possible combinations in a

valid interval of parameter pairs. This was done by first setting the step size η sequentially to a fixed value

in [0.01, 1.00], which is a reasonable range to ensure convergence in the test problems, and for each step size

the momentum factor was chosen from [0.01, 0.99] sequentially. Thus, we had tested all possible combinations

of the step size and momentum pairs, and the pair that gave the best speed of convergence was obtained.

Then near-optimal step size and a corresponding momentum factor were calculated from (19), and the resulting

algorithm (1) was executed with these parameters.

The results obtained are summarized in Table 4. We must keep in mind that the parameters that were

found by trials had taken serious time and reasonable parameter range can differ from one problem to another.

The results indicate that the near-optimal step size and momentum factor are close to the best parameter pair

and there are no significant differences between the performances of the best parameter pairs and the proposed

near-optimal parameter pairs.

In the second phase of the experiments, we modified GDM as to work with near-optimal step size

and momentum factor, and the modified algorithm is named eGDM. Performance of the algorithm eGDM

is compared with that of a conventional GDM and gradient descent with adaptive learning rate and momentum

(GDX) algorithm on randomly generated small and medium scale test problems for a quadratic function. The

problems are generated to allow the user to control the dimensionality of the problem d (e.g., the dimension of

the weight vector) and the condition number of the Hessian matrix H . For simplicity, we have assumed that

the stationary point of the quadratic function was at the origin, and that it had a zero value there. The terms
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Table 1. Near optimal parameters vs. best learning parameters on simple problems.

Best step size and momen-
tum factor found by trial

Near-optimal step size and
momentum factor calcu-
lated by (19)Eigenvalues

η µ iteration η0 µ0 iteration
1, 2, 3, 4, 5 0.45 0.15 18 0.4472 0.1459 21

75.83, 37.95, 40.49, 56.21,
55.31 0.02 0.05 15 0.0186 0.0294 14

2.29, 7.19, 17.67, 19.46,
18.68 0.15 0.25 28 0.1499 0.2396 30

1.60, 138.03, 99.63, 51.02,
62.76 0.06 0.68 98 0.0673 0.6489 104

Table 2. Comparison of convergence performances of the algorithms for the dimension of the problem d = 10.

Condition
number

10 100 1000 10000

epochs time epochs time epochs time epochs time
eGDM 38 0.01 157 0.04 557 0.03 1967 0.06
GDX 643 0.05 1139 0.09 6411 0.78 60919 7.46
GDM 6370 0.22 19854 1.11 59487 1.93 1.68E+05 5.51

b and c in (2) vanish under this assumption. If c is nonzero then the function is simply increased in magnitude

by c at every point. The shape of the contours does not change. When b is nonzero and H is invertible,

the shape of the contours is not changed, but the stationary point of the function moves to x∗ = −H−1b .

Therefore, the objective function (2) is determined solely by the Hessian matrix H . We generate H as follows:

H = QKQT , where Q is a randomly generated orthogonal matrix and K is a diagonal matrix. To generate

the orthogonal matrix Q , we use the QR decomposition of a randomly generated square matrix, each of whose

elements is chosen from the standard normal distribution. The condition number of H is determined by the

diagonal elements of K , which are determined as follows:

K11 = 1/t′

Kii = (t′)ui , i = 2, . . . , n− 1,

Knn = t′

where t′ is the square root of the desired condition number t and each ui is a uniform variate on the interval

(−1,+1) (see e.g. [6]).

The results are summarized for different dimensions of the problem d = 10, d = 100, and d = 1000,

respectively, in Tables 2, 3, and 4. Bold numbers indicate statistically significant performance differences.

Comparisons of the algorithms for a quadratic performance function indicate that the gradient descent with

momentum algorithm with near optimal learning parameters, eGDM, outperforms GDM and GDX. eGDM has

the best performance in all problems compared both in epochs and time (seconds). In particular, the increase

in performance is significant when the dimension of the problem d gets larger. Experiments to find out the

effect of the eigenvalue distribution of the Hessian on convergence show that the convergence speed of all the

algorithms was mainly affected by the condition number of the problem. The distribution of the remaining
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Table 3. Comparison of convergence performances of the algorithms for the dimension of the problem d = 100.

Condition
number

10 100 1000 10000

epochs time epochs time epochs time epochs time
eGDM 40 0.06 158 0.05 544 0.06 1963 0.14

GDX 802 0.13 1564 0.26 6817 1.15 69838 12.15
GDM 6524 0.39 19395 1.15 58003 3.55 1.73E+05 10.67

Table 4. Comparison of convergence performances of the algorithms for the dimension of the problem d = 1000.

Condition
number

10 100 1000 10000

epochs time epochs time epochs time epochs time
eGDM 42 9.47 164 7.03 567 12.66 1950 23.97

GDX 881 16.21 1546 29.51 7631 144.22 74674 1384.30
GDM 6985 67.68 20912 204.15 63781 623.49 1.82E+05 1819.30

eigenvalues also has an effect on the convergence behavior of the algorithm; however, this effect is rather small

compared with the effect of the largest eigenvalue κ1 and the smallest eigenvalue κn of the Hessian matrix.

The results obtained in this phase of the experiments also support the relations given in (20), (21), and (22).

5. Conclusion

Gradient descent with momentum is a competitive optimization method in regression and classification problems

with large and redundant data sets. Step size and momentum factor should be carefully tuned in order to take

advantage of the safe, global convergence properties of the gradient descent method. We propose to determine

near-optimal step size and momentum factor (19) simultaneously for gradient descent in a stochastic quadratic

bowl from the largest and smallest eigenvalue of the Hessian. Numerical results indicate that the gradient

descent with near-optimal learning parameters (eGDM) outperforms the simple gradient descent in the case of

a quadratic function.

An application of this approach to a popular back-propagation algorithm in neural networks can be found

in [7]. In this paper, training time of a multilayer neural network had been reduced significantly in various types

of benchmark problems. In general, near-optimal learning parameters (19) can be adapted to any field where

one wishes to optimize a performance function by using local quadratic approximation. Now we are working

to extend our approach to stochastic optimization problems where the local quadratic approximation of the

performance function is performed at every step of the optimization process. In this way, we can use this

approach in on-line learning of regression and classification functions.

There are two possible avenues for future research to develop the stochastic version of this approach

(eGDM). The first one is to analyze whether the theoretical situation changes for a stochastic quadratic in the

realizable vs. nonrealizable case. For instance, we could use (16) in [11] as our stochastic quadratic model and

try to apply near-optimal parameters in that setting. A stochastic analysis will be difficult but highly valuable,

since on-line gradient descent with momentum is a competitive optimization method in some situations, where

the batch version never is.
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Secondly, we can use the fact that the largest and smallest eigenvalues of the Hessian can be efficiently

estimated empirically to derive a heuristic for step size and momentum factor that can be used when the Hessian

is unknown. For this purpose, we can replace the finite difference calculations in [5] with exact Hessian-vector

products that can be computed efficiently either analytically [8], by forward-mode automatic differentiation

(http://www.autodiff.org/), or even by co-opting complex arithmetic (see Section 2.5 of [13]). Finally, we

will evaluate these ideas on standard benchmark datasets, including nonquadratic, nonconvex, and stochastic

(on-line) problems.
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