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Abstract: The investigation of metric trees began with J. Tits in 1977. Recently we studied a more general notion of

quasi-metric tree. In the current article we prove, among other facts, that the q -hyperconvex hull of a q -hyperconvex

T0 -quasi-metric tree is itself a T0 -quasi-metric tree. This is achieved without using the four-point property, a geometric

concept used by Aksoy and Maurizi to show that every complete metric tree is hyperconvex.
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1. Introduction

Metric trees have been studied since 1977 (see [11] J. Tits, A theorem of Lie-Kolchin for trees, Contributions

to Algebra: a collection of papers dedicated to Ellis Kolchin, Academic Press, New York, 1977). A number of

results on metric trees have found applications in many fields of mathematics like geometry, topology, and group

theory. The importance of metric trees is not limited to mathematics, as for instance the study of phylogenetic

trees in biology and medicine also employs metric trees (see [10] C. Semple, M. Steel, Phylogenetics, Oxford

University Lecture Series in Mathematics and its Applications, 24 2003).

The applications of metric trees in information science, particularly in computer science [3, 6], are great

motivations for the generalization of results about metric trees from a symmetric setting to an asymmetric

framework. Thus this project is a part of that broad mission.

In [4], Dress proved that any metric tree is median. Here, we establish that this result still holds when

the hypothesis is relaxed by dropping the symmetry condition of the distance function. Moreover, Aksoy and

Maurizi in [3] studied the relationship between a metric tree and its hyperconvex hull by using the four-point

property of a metric tree.

In [9], we started investigating the concept of a metric tree in T0 -quasi-metric spaces, which we called

quasi-metric tree. In this article, we continue our study of this concept by generalizing some well-known results

about metric trees from metric setting to the quasi-metric point of view. In particular, we prove that the

q -hyperconvex hull of a T0 -quasi-metric tree is a T0 -quasi-metric tree. Among other results, we also extend the

result of Agyingi et al., which says that when a T0 -quasi-metric space is joincompact then each of its endpoints

is an endpoint of its q -hyperconvex hull. Several examples are also provided in this paper to illustrate the

concepts involved in the study.
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Surprisingly, our investigations reveal that many classical results about metric trees do not require the use

of symmetry of distance function. Hence they hold in a quasi-metric setting, although sometimes in a slightly

different form.

2. Preliminaries

This section recalls some important definitions that we shall use in the rest of the paper.

Definition 1 ([8]) Let X be a set and d : X × X → [0,∞) a function into the set of all nonnegative reals.

Then d is called a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X,

(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.

We shall say that d is a T0 -quasi-metric provided that d also satisfies the following condition

(c) For each x, y ∈ X, d(x, y) = 0 = d(y, x) implies that x = y.

Remark 1 Let d be a quasi-pseudometric on a set X ; then the mapping d−1 : X × X → [0,∞) defined by

d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric, called the conjugate quasi-pseudometric

of d. As usual, a quasi-pseudometric d on X such that d = d−1 is called a pseudometric. Note that for any

(T0 -)quasi-pseudometric d , ds = max{d, d−1} = d ∨ d−1 is a pseudometric (metric). Moreover, if d is a

quasi-pseudometric on X , then (X, d) is called a quasi-pseudometric space.

For more details about the theory of quasi-metric spaces, we refer the reader to [5, 8].

Remark 2 We note that for a quasi-pseudometric space (X, d) , we have the following:

1. For each x ∈ X and ϵ > 0, Bd(x, ϵ) = {y ∈ X : d(x, y) < ϵ} denotes the open ϵ-ball at x.

2. The collection of all open balls yields a base for a topology τ(d). It is called the topology induced by d on

X.

3. Similarly we set for each x ∈ X and ϵ ≥ 0, Cd(x, ϵ) = {y ∈ X : d(x, y) ≤ ϵ}. Note that Cd(x, ϵ) is

τ(d−1)-closed, but not τ(d)-closed in general.

The following T0 -quasi-metric will be useful in the sequel. If a, b ∈ R , we shall put a−̇b = max{a− b, 0}.
Note that r(a, b) = a−̇b with a, b ∈ R defines a T0 -quasi-metric on R .

Definition 2 (a) A map f : (X, d) → (Y, e) between two quasi-pseudometric spaces (X, d) and (Y, e) is

called an isometry provided that e(f(x), f(y)) = d(x, y) whenever x, y ∈ X.

(b) Two quasi-pseudometric spaces (X, d) and (Y, e) will be called isometric provided that there exists a

bijective isometry f : (X, d) → (Y, e).

Definition 3 A map f : (X, d) → (Y, e) between two quasi-pseudometric spaces (X, d) and (Y, e) is called

nonexpansive provided that e(f(x), f(y)) ≤ d(x, y) whenever x, y ∈ X.

We next recall the construction of the q -hyperconvex hull of a T0 -quasi-metric space (see [7] for more

details).
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Definition 4 ([7, Definition 2]) A quasi-pseudometric space (X, d) is called q -hyperconvex (or Isbell-convex)

provided that for each family (xi)i∈I of points in X and families (ri)i∈I and (si)i∈I of nonnegative real numbers

satisfying d(xi, xj) ≤ ri + sj whenever i, j ∈ I , the following condition holds:∩
i∈I

(Cd(xi, ri) ∩ Cd−1(xi, si)) ̸= ∅.

Example 1 Let r(a, b) = max{0, a−̇b} whenever a, b ∈ R . The diagonal △ of (R2, r × r−1) is isometric to

(R, rs) where we set N = r × r−1 , that is,

N(x, y) = (x1−̇y1) ∨ (y2−̇y1)

whenever x = (x1, x2), y = (y1, y2) ∈ R2 .

It is readily checked (R2, r × r−1) is a q -hyperconvex as product of q -hyperconvex spaces (see [7, Propo-

sition 2]).

Let (X, d) be a T0 -quasi-metric space. The function pair f = (f1, f2) where fi : X → [0,∞)(i = 1, 2)

is called ample provided that d(x, y) ≤ f2(x) + f1(y) whenever x, y ∈ X . We say that a pair f = (f1, f2) is

minimal or extremal (among the ample pairs) if it is ample and whenever g = (g1, g2) is ample on (X, d) and

for each x ∈ X, g1(x) ≤ f1(x) and g2(x) ≤ f2(x), then g1(x) = f1(x) and g2(x) = f2(x).

Let A(X, d) denote the class of all ample function pairs on (X, d). For each f = (f1, f2), g = (g1, g2) ∈
A(X, d) we set

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x)).

Then D is a T0 -quasi-metric on A(X, d). Note that if D maps to [0,∞] , then D is called an extended

T0 -quasi-metric on A(X, d).

By ϵq(X, d) we shall denote the class of all extremal ample function pairs on (X, d) equipped with the

restriction of D to ϵq(X, d) × ϵq(X, d), which we shall denote by N . Therefore, this N is a (real-valued)

T0 -quasi-metric on ϵq(X, d)× ϵq(X, d) (see [7, Remark 6]).

The necessary and sufficient condition for a function pair f = (f1, f2) to be extremal is that f must

satisfy the following equalities:

f1(x) = sup
y∈X

(d−1(x, y)−̇f2(y))

and

f2(x) = sup
y∈X

(d(x, y)−̇f1(y))

whenever x ∈ X (see [7, Lemma 6]).

For each x ∈ X , the function pair fx(y) = (d(x, y), d(y, x)) whenever y ∈ X is a minimal function pair

on (X, d). The map eX defined by x 7→ fx whenever x ∈ X defines an isometric embedding of (X, d) into

(ϵq(X, d), N) (see [7, Lemma 1]). The couple (ϵq(X, d), N) is called the q -hyperconvex hull of (X, d). Note

that the q -hyperconvex hull of a T0 -quasi-metric space is q -hyperconvex and it is unique up to isometry.

Note that N(fx, fy) = d(x, y) whenever x, y ∈ X . Moreover, N(f, fx) = f1(x) and N(fx, f) = f2(x)

whenever x ∈ X and f ∈ ϵq(X, d).
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Example 2 (compare [1, Example 5]) Let a, b ∈ (0,∞) and Y = [0, a]× [0, b] . We set

D((α1, α2), (β1, β1)) = (α1−̇β1) ∨ (α2−̇β2)

whenever (α1, α2), (β1, β2) ∈ Y . Then Y is identified with the q -hyperconvex hull of the subspace X =

{(a, 0), (0, b)} of Y .

The following definition can be compared with [3, Definition 1.2] and the definition in [4, p.322].

Definition 5 ([9, Definition 2]) Let (X, d) be a quasi-pseudometric space. The subset ⟨x, y⟩d of X is defined

by

⟨x, y⟩d = {z ∈ X : d(x, z) + d(z, y) = d(x, y)}.

Moreover ⟨x, y⟩d is called a quasi-pseudometric interval of (X, d) .

Lemma 1 Let (X, d) be a quasi-pseudometric space and x, y ∈ X . If z ∈ ⟨x, y⟩d , then ⟨x, z⟩d ⊆ ⟨x, y⟩d .
Furthermore, if z ∈ ⟨x, y⟩d , then ⟨z, y⟩d ⊆ ⟨x, y⟩d .

Proof Suppose that z ∈ ⟨x, y⟩d , then d(x, y) = d(x, z) + d(z, y). If t ∈ ⟨x, z⟩d then we have that

d(x, t) + d(t, z) = d(x, z).

Thus,

d(x, y) ≤ d(x, t) + d(t, y) ≤ d(x, t) + d(t, z) + d(z, y)

≤ d(x, z) + d(z, y) = d(x, y).

Therefore, d(x, y) = d(x, t) + d(t, y). Hence t ∈ ⟨x, y⟩d . The last statement follows by a similar argument. 2

Example 3 Consider the four point set X = {1, 2, 3, 4} . Let the T0 -quasi-metric q be defined by the distance

metric

M =


0 1 2 1
1 0 1 2
2 1 0 1
2 1 1 0


that is, qi,j = q(i, j) whenever i, j ∈ X . One can check easily that q is a T0 -quasi-metric on X .

Furthermore, it is readily checked that 2 ∈ ⟨1, 3⟩q , 2 ∈ ⟨3, 1⟩q , and 2 ∈ ⟨4, 1⟩q . Observe also that

2 ∈ ⟨3, 4⟩q but q(1, 2) + q(2, 3) + q(3, 4) ̸= q(1, 4) , since 3 /∈ ⟨1, 4⟩q . 2

Definition 6 We say that a quasi-pseudometric (X, d) is thready if for all v, w ∈ ⟨x, y⟩d one has

d(x, v) + d(v, w) + d(w, y) = d(x,w) + d(w, v) + d(v, y) = d(x, y)

whenever x, y ∈ X .
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3. Quasi-metric tree

The following definition was given in [9] (compare [2–4]).

Definition 7 Let (X, d) be a T0 -quasi-metric space. Then (X, d) is a (quasi-metric) tree or directed tree, if

it satisfies the following two conditions:

(QMT1) For any x, y ∈ X , there exists a unique function pair

φ = φxy = ((φxy)1, (φxy)2)

where

(φxy)1 : ([0, d(x, y)], r−1) −→ (X, d)

is an isometric embedding such that (φxy)1(0) = x and (φxy)1(d(x, y)) = y , and

(φxy)2 : ([0, d−1(x, y)], r) −→ (X, d−1)

is an isometric embedding such that (φxy)2(0) = y and (φxy)2(d
−1(x, y)) = x . With r(x, y) = max{x − y, 0}

whenever x, y ∈ R .

(QMT2) For any pair φ = (φ1, φ2) , where φi is an injective continuous function from [0, 1] into X ,

(i = 1, 2) such that

φi : [0, 1] −→ X : t 7→ xt

one has d(x0, xt) + d(xt, x1) = d(x0, x1) .

Lemma 2 If (X, d) is a quasi-metric tree and x, y, z ∈ X , then there exists a unique w ∈ X such that

⟨x, y⟩d ∩ ⟨z, x⟩d = ⟨x,w⟩d.

Proof Assume that (X, d) is a quasi-metric tree and x, y, z ∈ X . Let t0 = d−1(z, x) and

(φzx)2 : ([0, d−1(z, x)], r) −→ (X, d−1)

be the unique isometric embedding such that (φzx)2(0) = x and (φzx)2(t0) = z . Consider

u0 = sup{s ∈ [0, t0] : (φzx)2(s) ∈ ⟨x, y⟩d}

and by letting w = (φzx)2(u0), we have ⟨x,w⟩d = (φzx)2([0, u0]) and u0 is unique since (φzx)2 is bijective as

(X, d) is a quasi-metric tree.

Hence ⟨x,w⟩d = ⟨x, y⟩d ∩ ⟨z, x⟩d. 2

Corollary 1 If (X, d) is a quasi-metric tree and x, y, z ∈ X , then there exists a unique v ∈ X such that

⟨y, x⟩d ∩ ⟨x, z⟩d = ⟨v, x⟩d.
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Example 4 Let X = {0, 1} be equipped with its usual order ≤ and with its natural T0 -quasi-metric d . Then

d(x, y) = 0 if x ≤ y and d(x, y) = 1 if x > y .

For each x, y ∈ X , we define φxy = ((φxy)1, (φxy)2) as follows: (φ00)1(0) = 0, (φ01)1(0) = 0, (φ10)1(0) =

1, (φ11)1(0) = 1, (φ10)1(1) = 0 and (φ00)2(0) = 0, (φ01)2(0) = 1, (φ10)2(0) = 1 = (φ11)2(0), (φ01)2(1) = 0. It is

readily checked that these are isometric embeddings and satisfy (QMT1) and (QMT2). Therefore, (X, d) is a

T0 -quasi-metric tree.

The following proposition improves [9, Lemma 2].

Proposition 1 Let (X, d) be a quasi-metric tree. If z ∈ ⟨x, y⟩d , then

⟨x, z⟩d ∪ ⟨z, y⟩d = ⟨x, y⟩d.

Moreover,

⟨x, z⟩d ∩ ⟨z, y⟩d = {z}

whenever x, y, z ∈ X .

Proof Suppose that z ∈ ⟨x, y⟩d . Let a ∈ ⟨x, z⟩d ∪ ⟨z, y⟩d . We are going to prove that a ∈ ⟨x, y⟩d . We have

two cases.

Case 1. If a ∈ ⟨x, z⟩d , we have that d(x, z) = d(x, a) + d(a, z). Thus

d(x, y) ≤ d(x, a) + d(a, y) ≤ d(x, a) + d(a, z) + d(z, y)

≤ d(x, z)− d(a, z) + d(a, z) + d(z, y).

Furthermore, d(x, y) ≤ d(x, a) + d(a, y) ≤ d(x, z) + d(z, y) = d(x, y), since z ∈ ⟨x, z⟩d . Thus d(x, y) =

d(x, a) + d(a, y). Hence a ∈ ⟨x, y⟩d .
Case 2. If a ∈ ⟨z, y⟩d , then d(z, y) = d(z, a) + d(a, y). We have that

d(x, y) ≤ d(x, a) + d(a, y) ≤ d(x, z) + d(z, a) + d(a, y)

≤ d(x, z) + d(z, y)− d(a, y) + d(a, y).

Moreover, we have d(x, y) ≤ d(x, a) + d(a, y) ≤ d(x, z) + d(z, y) = d(x, y). Thus a ∈ ⟨x, y⟩d .
We now prove that if w ∈ ⟨x, y⟩d , then w ∈ ⟨x, z⟩d ∪ ⟨z, y⟩d . It is sufficient to prove that w ∈ ⟨x, z⟩d .

We have that d(x,w) + d(w, y) = d(x, y) since w ∈ ⟨x, y⟩d ; hence 0 ≤ d(x,w) ≤ d(x, y).

Since (X, d) is a quasi-metric tree, let φ = ((φxz)1, (φxz)2) be the unique function pair whose existence

is guaranteed by the definition of a quasi-metric tree.

From [9, Proposition 4], we have that (φxz)1([0, d(x,w)]) ⊆ ⟨x, z⟩d . We have that (φxz)1(d(x,w)) = w ∈
⟨x, z⟩d by taking w = z . One can prove that w ∈ ⟨z, y⟩d analogously by using (φxz)2 .

The second assertion follows from [9, Lemma 2 (a)]. 2

Definition 8 We say that a quasi-pseudometric (X, d) is median if it satisfies

⟨x, y⟩d ∩ ⟨y, z⟩d ∩ ⟨z, x⟩d ̸= ∅

whenever x, y, z ∈ X .
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Proposition 2 Any quasi-metric tree is median.

Proof Consider a quasi-metric tree (X, d) and let x, y, z ∈ X . We have to show that

⟨x, y⟩d ∩ ⟨y, z⟩d ∩ ⟨z, x⟩d ̸= ∅.

Suppose that y /∈ ⟨z, x⟩d and z /∈ ⟨x, y⟩d . Then by Lemma 2 there exists uzx,y = u such that ⟨x, y⟩d ∩ ⟨z, x⟩d =

⟨x, u⟩d . Consider the function pair φ = (φ1, φ2) with φi : ([0, 1], r
−1) → (X, d) (i = 1, 2) defined by

φ1(t) =

{
(φxy)1(d(x, y)− 2td(u, y)) if 0 ≤ t ≤ 1

2
(φzx)1(d(z, u) + (1− 2t)d(z, u)) if 1

2 ≤ t ≤ 1,

and

φ2(t) =

{
(φxy)2(d(y, u)− 2td(y, x)) if 0 ≤ t ≤ 1

2
(φxz)2(d(z, u) + (2t− 1)d(u, x)) if 1

2 ≤ t ≤ 1.

It follows that
φ1(0) = (φxy)1(d(x, y)) = y,

φ1(1) = (φzx)1(d(z, u)− d(z, u)) = (φzx)1(0) = z

and

φ1

(
1

2

)
= (φxy)1(d(x, y)− d(u, y)) = (φxy)1(d(x, u)) = u

or

φ1

(
1

2

)
= (φzx)1(d(z, u)) = u.

Thus φ1(
1
2 ) = (φzx)1d(x, u) = u = (φzx)1(d(z, u)). Then the function φ1 is well defined and continuous since

(φxy)1(d(x, y)− d(u, y)) = (φxy)1(d(x, u)) = u = (φxz)1(d(x, u)).

Similarly, one checks that the function φ2 is well defined and continuous. Moreover, since y ̸= u ̸= z and

φ1

([
0,

1

2

])
∩ φ1

([
1

2
, 1

])
= (φxy)1([d(x, u), d(x, y)]) ∩ (φxz)1([d(z, u), d(x, u)])

⊆ ⟨u, y⟩d ∩ ⟨u, z⟩d = {u}.

Thus φ1 is injective. Furthermore, we have

u = φ1(
1

2
) ∈ ⟨φ1(0), φ1(1)⟩d = ⟨y, z⟩d.

By a similar argument, one uses φ2 to show that u = φ2(
1
2 ) ∈ ⟨y, z⟩d . Thus

u ∈ ⟨x, y⟩d ∩ ⟨y, z⟩d ∩ ⟨z, x⟩d

Therefore (X, d) is median. 2
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4. Connections between a quasi-metric tree and its q -hyperconvex hull

In this section, we examine the relationship between a T0 -quasi-metric tree and its q -hyperconvex hull.

Theorem 1 If (X, d) is a q -hyperconvex T0 -quasi-metric tree, then its q -hyperconvex hull (ϵq(X, d), N) is a

T0 -quasi-metric tree too.

Proof It is well known that the q -hyperconvex hull of a T0 -quasi-metric space (X, d) is T0 . Suppose that

(ϵq(X, d), N) is the q -hyperconvex hull of (X, d). Let f, g ∈ ϵq(X, d). Then by [7, Corollary 4] there exist

x, y ∈ X such that f = fx and g = fy .

Since (X, d) satisfies (QMT1), then there exists a unique function pair φ = φxy = ((φxy)1, (φxy)2) where

(φxy)1 and (φxy)2 are isometric embeddings.

Then we define

ψ = ψfxfy = ((ψfxfy )1, (ψfxfy )2)

by

(ψfxfy )1 = eX ◦ (φxy)1 and (ψfxfy )2 = eX ◦ (φxy)2

where

(ψfxfy )1 : ([0, D(fx, fy)], r
−1) → (ϵq(X, d), D)

and

(ψfxfy )2 : ([0, D(fx, fy)], r) → (ϵq(X, d), D
−1).

Then (ψfxfy )1 and (ψfxfy )2 are isometric embeddings since they are composites of isometric embeddings.

Furthermore,

(ψfxfy )1(0) = (eX ◦ (φxy)1)(0) = eX((φxy)1(0)) = eX(x) = fx

and

(ψfxfy )2(N(fxfy)) = (eX ◦ (φxy)2)(N(fx, fy)) = eX((φxy)1(d(x, y))) = eX(y) = fy.

Thus (ϵq(X, d), N) satisfies (QMT1).

Let ψ = (ψ1, ψ2), where ψi is an injective continuous function from [0, 1] into ϵq(X, d) (i = 1, 2) such

that ψi : [0, 1] → ϵq(X, d) : t 7→ ft.

Since (X, d) satisfies (QMT2), it suffices to take ψi = eX ◦ φi . Then for ft ∈ ϵq(X, d), there exists

xt ∈ X such that ft = fxt . Then

N(f0, ft) +N(ft, f1) = N(fx0 , fxt) +N(fxt , fx1) = d(x0, xt) + d(Xt, x1) = d(x0, x1)

= N(fx0 , fx1) = N(f0, f1).

Hence (ϵq(X, d), N) satisfies (QMT2). Therefore (ϵq(X, d), N) is a T0 -quasi-metric tree. 2

In [1], Agyingi et al. proved that if a quasi-metric (X, d) is joincompact, that is, the topology τ(ds) is

compact, then each endpoint of (X, d) is an endpoint of its q -hyperconvex hull (ϵq(X, d), N). Our next result

extends this result and it can be compared to [3, Lemma 3.2].
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Corollary 2 If (X, d) is a quasi-metric tree and (ϵq(X, d), N) its q -hyperconvex hull, then

⟨x, y⟩d = ⟨x, y⟩N ,

where ⟨x, y⟩N = {h ∈ ϵq(X, d) : N(x, y) = N(x, h) +N(h, y)} .

Example 5 ([1, Example 4]) We equipped the set X = {0, 1} with the T0 -quasi-metric q defined by q(0, 1) = α

and q(1, 0) = β , where α, β ∈ [0,∞) such that α + β ̸= 0 . We denote this space by (Xαβ , q) . It is readily

checked that the q -hyperconvex hull (Qαβ , Dq) of (Xαβ , q) is identified with [0, α]× [0, β] , where

Dq((x1, y1), (x2, y2)) = max{x1−̇x2, y1−̇y2}

whenever (x1, y1), (x2, y2) ∈ [0, α]× [0, β] .

The minimal function pair (f1, f2) on (Xαβ , q) are obtained such that (f1(0), f1(1)) = (x1, y1) and

(f2(0), f2(1)) = (β − y1, α− x1) , where (x1, y1) ∈ [0, α]× [0, β] . Thus we identify the points of (Qαβ , Dq) with

the point of [0, α]× [0, β] .

Via the isometric embedding map e : (xαβ , q) → (Qαβ , Dq) we identity the point 0 of (Xαβ , q) with

(f0)1 = (0, β) on Xαβ and the point 1 of (Xαβ , q) with (f1)1 = (α, 0) on Xαβ .

It is noted that
(a, b) ∈ ⟨(α, 0), (0, β)⟩Dq

and
(a, b) ∈ ⟨(0, β), (α, 0)⟩Dq

whenever (a, b) ∈ [0, α]× [0, β] .

Moreover, it is readily checked that if a, b > 0 , then

(0, 0) ∈ ⟨(x1, y1), (0, y)⟩Dq
if x1 = y

and
(0, 0) ∈ ⟨(x1, y1), (y, 0)⟩Dq

if y1 = y.

Furthermore,

⟨(0, β), (α, 0)⟩q = ⟨(0, β), (α, 0)⟩Dq
.
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