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Abstract: This paper proposes a second-order Mehrotra-type predictor-corrector feasible interior-point algorithm for

semidefinite optimization problems. In each iteration, the algorithm computes the Newton search directions through a

new form of combination of the predictor and corrector directions. Using the Ai–Zhang wide neighborhood for linear

complementarity problems, it is shown that the complexity bound of the algorithm is O
(√

n log ε−1
)
for the Nesterov–

Todd search direction and O
(
n log ε−1

)
for the Helmberg–Kojima–Monteiro search directions.
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1. Introduction

The semidefinite optimization (SDO) problem is an important class of optimization problems in which a linear

function of a matrix variable X is minimized or maximized over an affine subspace of symmetric matrices.

The SDO problem arises in many scientific and engineering fields. For applications in system and control

theory, we refer to [3, 4], and for applications in statistics and combinatorial optimization to [2, 8, 10].

Among various approximations for solving SDO problems, interior-point methods (IPMs) are one of

the most efficient and applicable classes of iterative algorithms that solve SDO problems in polynomial time

complexity.

Due to the importance of this class of optimization problems, several authors have discussed and gener-

alized some IPMs for linear optimization (LO) problems to the context of SDO problems. Pioneering research

for this generalization was done by Nesterov and Nemirovskii [15], in which the SDO problems were solved

by the primal-dual interior-point algorithms with polynomial time complexity. After that, various primal-dual

interior-point algorithms were proposed for solving SDO problems by several authors such as Alizadeh [2], Van-

denberghe and Boyd [21], Helmberg et al. [6], Wolkowicz et al. [23], Klerk [7], Wang and Bai [22], Mansouri

and Ross [13], and Mansouri [12].

Although some of the above-mentioned interior-point algorithms theoretically have optimal iteration

complexity, they are not as efficient in practice as the predictor-corrector interior-point algorithms. Among

various types of predictor-corrector interior-point algorithms, the Mehrotra-type predictor-corrector (MPC)

algorithm is one of the most efficient interior-point algorithms and it is a more practical primal-dual method,

whose variants are the backbone of IPM software packages, such as SeDuMi [19] and SDPT3 [20]. However,
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the practical importance and the theoretical analysis of MPC algorithms motivated us to study and investigate

theoretically and algorithmically a special type of this algorithm for solving and finding an optimal solution of

SDO problems.

Although Zhang and Zhang [28] established convergence theory and complexity bounds of the MPC

algorithm, in spite of extensive use of this method, not much about its complexity was known before the paper

presented by Salahi et al. [18].

The small and wide neighborhoods are two popular neighborhoods that are frequently used in IPMs.

In theory, the iteration bound for wide-neighborhood IPMs (large-update IPMs) is worse than that proved for

small-neighborhood IPMs (small-update IPMs). In 2005, Ai and Zhang [1] introduced a new wide neighborhood

around the central path of linear complementarity problems (LCPs) and proposed the first wide-neighborhood

interior-point algorithm for LCPs [1], in which their algorithm enjoys the low iteration bound O (
√
nL). Later,

Li and Terlaky [9] generalized Ai and Zhang’s algorithm [1] for LCPs to SDO problems and proved that the

iteration complexity of their algorithm is the same as that of Ai and Zhang [1] for LCPs. Feng and Fang [5],

using Ai and Zhang’s wide neighborhood [1], suggested a wide-neighborhood interior-point algorithm for SDO

problems.

Liu and Liu [11] proposed the first wide-neighborhood second-order corrector interior-point algorithm

with the same complexity as small-neighborhood IPMs for SDO problems. Zhang [26] proposed a second-order

MPC interior-point algorithm for SDO problems, in which his algorithm is an extension of the second-order

MPC algorithm that was proposed by Salahi and Amiri [17] for LO. Yang et al. [24], based on an important

inequality and a new wide neighborhood, suggested a second-order MPC algorithm for SDO problems. Recently,

Pirhaji et al. [16] proposed a feasible interior-point algorithm for SDO problems in which their algorithm uses

the Ai–Zhang wide neighborhood [1] and terminates in at most O (
√
nL) iterations.

The main goal of this paper is to present a second-order MPC interior-point algorithm for SDO problems

in which a new scheme is used to obtain the search directions. More precisely, at each iteration of the algorithm

the search direction was obtained by a new form of combination of the predictor and corrector directions.

Our derived iteration-complexity bound is O
(√

n log ε−1
)
for the Nesterov–Todd (NT) search direction and

O
(
n log ε−1

)
for the Helmberg–Kojima–Monteiro (HKM) search directions that coincide with the currently

best iteration bound for this class of optimization problems.

The paper is organized as follows: in section 2, we introduce the SDO problem and review some basic tools

in IPMs that are required in solving the SDO problem. Section 3 presents the MPC interior-point algorithm for

SDO problems and describes the steps of the proposed algorithm in more detail. Some technical lemmas and

results are presented in Section 4.1. Then, in Section 4.3, we prove the polynomial complexity bound of the

proposed MPC algorithm for SDO problems. Finally, the paper ends with some concluding remarks in Section

5.

We will use the following notations in the paper. Rn denotes the space of vectors with n components.

The set of all m × n matrices with real entries is denoted by Rm×n . Moreover, Sn denotes the set of n × n

real symmetric matrices. Sn
++

(
Sn
+

)
denotes the set of all matrices in Sn that are positive definite (positive

semidefinite). For Q ∈ Sn , we write Q ≻ 0 (Q ⪰ 0) if Q is positive definite (positive semidefinite). The

Frobenius and the spectral norms are denoted respectively by ∥·∥F and ∥·∥ . For any matrix A ; ∥A∥ =(
ρ
(
ATA

)) 1
2 , λi(A) denotes the eigenvalues of A with λmin(A) (λmax(A)) as the smallest (largest) eigenvalues

and det(A) denotes its determinant whereas Tr(A) =
∑n

i=1 λi(A) denotes its trace.
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The symmetric positive definite square root matrix of any symmetric positive definite matrix X is denoted

by X
1
2 . If g(x) ≥ 0 is a real valued function of a real nonnegative variable, the notation g(x) = O(x) means

that g(x) ≤ c̄x for some positive constant c̄ . The notation A ∼ B ⇐⇒ A = SBS−1 for some invertible matrix

S means the similarity between A and B , and the identity matrix is denoted by I . For any p × q matrix

A , vec(A) denotes the pq -vector obtained by stacking the columns of A one by one from the first to the last

column. Assuming the matrix Q ∈ Sn , Q+ and Q− denote the positive and negative parts of Q as follows:

Q+ := UDiag
(
(λ1)

+, ..., (λn)
+
)
UT , Q− := UDiag

(
(λ1)

−, ..., (λn)
−)UT ,

where (λi)
+ = max{λi, 0} and (λi)

− = min{λi, 0} . Finally, the Kronecker product of two matrices A and B

is denoted by A⊗B (see [6] for the more details of the Kronecker product).

2. Semidefinte optimization and preliminaries

In this paper, we are concerned with the primal-dual interior-point algorithms for solving the primal SDO

problem

min
{
⟨C,X⟩ s.t. ⟨Ai, X⟩ = bi, i = 1, 2, ...,m, X ⪰ 0

}
, (1)

and its associated dual SDO problem

max
{
bT y s.t.

m∑
i=1

yiAi + S = C, S ⪰ 0
}
, (2)

where C,X,Ai ∈ Sn for i = 1, 2, ...,m and y ∈ Rm . We denote the feasible and interior feasible sets of

problems (1) and (2) respectively by

F :=

{
(X, y, S) ∈ Sn

+ × Rm × Sn
+ : ⟨Ai, X⟩ = bi,

m∑
i=1

yiAi + S = C, i = 1, 2, ...,m

}
,

and

F0 :=

{
(X, y, S) ∈ Sn

++ × Rm × Sn
++ : (X, y, S) ∈ F

}
.

We also assume, without loss of generality, that the relative interior set F0 is nonempty and all of the matrices

Ai are linearly independent. Under these assumptions both primal and dual problems are solvable and the

optimality conditions for problems (1) and (2) can be written as follows:

⟨Ai, X⟩ = bi, i = 1, 2, ...,m,

m∑
i=1

yiAi + S = C, (3)

XS = 0,

where the last equality is called the complementarity equation. The standard IPM replaces the complementarity

equation XS = 0 by the perturbed one XS = µI and tends µ to zero to obtain an ϵ-optimal solution of the
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SDO problem. However, the function defined by the left-hand side of system (3) is a map from Sn × Rm × Sn

into Rn×n ×Rm × Sn and therefore the Newton method cannot be straightforwardly applied. To remedy this,

Zhang [27] introduced a general symmetrization scheme based on using the operator HP : Rn×n −→ Sn defined
as

HP (M) :=
1

2

[
PMP−1 +

(
PMP−1

)T ]
, ∀M ∈ Rn×n,

where P ∈ Rn×n is a nonsingular matrix belonging to the specific class

C(X,S) := {P ∈ Sn
++| PXSP−1 ∈ Sn}. (4)

Thus, for any given matrix P ∈ C(X,S), system (3) can be written equivalently as the following nonlinear

system:

⟨Ai, X⟩ = bi, i = 1, 2, ...,m,

m∑
i=1

yiAi + S = C, (5)

HP (XS) = 0.

Applying the perturbed Newton method, system (5) leads to the following linear system for search direction

(∆X,∆y,∆S) ∈ Sn × Rm × Sn :

⟨Ai,∆X⟩ = 0, i = 1, 2, ...,m,

m∑
i=1

∆yiAi +∆S = 0, (6)

HP (X∆S +∆XS) = τµI −HP (XS),

where τ ∈ [0, 1] is the target parameter and µ = Tr(XS)
n is the normalized duality gap corresponding to

(X, y, S). Different choices of the matrix P ∈ C(X,S) lead to the different search directions. For instance, the

choice P := W
1
2 , where

W := X− 1
2

(
X

1
2SX

1
2

) 1
2

X− 1
2 = S

1
2

(
S

1
2XS

1
2

)− 1
2

S
1
2 , (7)

leads to the NT search direction while the choice of P := X− 1
2 and P := S

1
2 conclude HKM search directions.

Defining

X̂ := PXP, Ŝ := P−1SP−1, Âi := P−1AiP
−1, (8)

and applying the scaled search directions

∆X̂ := P∆XP, ∆Ŝ := P−1∆SP−1, (9)
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the Newton search direction system (6) can be written as follows:

⟨Âi,∆X̂⟩ = 0, i = 1, 2, ...,m,

m∑
i=1

∆yiÂi +∆Ŝ = 0, (10)

H(X̂∆Ŝ +∆X̂Ŝ) = τµI −H(X̂Ŝ),

where H(·) = HI(·). Due to (8) and the fact that PXSP−1 ∈ Sn , it readily follows that X̂Ŝ = ŜX̂ and

H(X̂Ŝ) = H(ŜX̂) = X̂Ŝ .

3. The Mehrotra-type predictor-corrector algorithm

In this section, we describe a second-order MPC interior-point algorithm for SDO problems, which is the subject

of our study in this paper. Most of the interior-point algorithms for SDO problems are based on the following

so-called small and negative infinity neighborhoods:

NF (β) :=
{
(X, y, S) ∈ F0 :

∥∥∥τµI −X
1
2SX

1
2

∥∥∥
F
≤ βτµ

}
,

N−
∞(γ) :=

{
(X, y, S) ∈ F0 : λmin(XS) ≥ γµ

}
,

where β, γ ∈ (0, 1). Motivated by Ai and Zhang [1], in this paper, our algorithm will restrict the iterates to the

wide neighborhood

N (τ, β) :=

{
(X, y, S) ∈ F0 :

∥∥∥∥(τµI −X
1
2SX

1
2

)+∥∥∥∥
F

≤ βτµ

}
, (11)

where the parameters τ and β are chosen appropriately such that all the iterates reside in the neighborhood

N (τ, β). Due to the definition of N (τ, β), if (X, y, S) ∈ N (τ, β), then λi

(
X

1
2SX

1
2

)
≥ (1− β)τµ .

We define R̂c :=
(
τµI −H

(
X̂Ŝ
))

=
(
τµI − X̂Ŝ

)
and decompose it to the positive and negative parts

as R̂c = R̂+
c + R̂−

c , where

R̂+
c :=

(
τµI −H

(
X̂Ŝ
))+

=
(
τµI − X̂Ŝ

)+
, (12)

R̂−
c :=

(
τµI −H

(
X̂Ŝ
))−

=
(
τµI − X̂Ŝ

)−
. (13)

The proposed MPC algorithm for SDO problems, in the predictor step, computes the affine scaling search

direction (∆X̂a,∆ya,∆Ŝa) by

⟨Âi,∆X̂a⟩ = 0, i = 1, 2, ...,m,

m∑
i=1

∆yai Âi +∆Ŝa = 0, (14)

H(X̂∆Ŝa +∆X̂aŜ) = R̂−
c +

√
nR̂+

c ,
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while the algorithm computes the scaled corrector search direction (∆X̂c,∆yc,∆Ŝc) by solving the following

system:

⟨Âi,∆X̂c⟩ = 0, i = 1, 2, ...,m,

m∑
i=1

∆yci Âi +∆Ŝc = 0, (15)

H(X̂∆Ŝc +∆X̂cŜ) = −H(∆X̂a∆Ŝa).

Inspired by [25], after calculating the predictor and corrector search directions, the new iterate is given by(
X̂(α), y(α), Ŝ(α)

)
:=
(
X̂, y, Ŝ

)
+ α

(
∆X̂a,∆ya,∆Ŝa

)
+ 2g(α)

(
∆X̂c,∆yc,∆Ŝc

)
, (16)

where g(α) := 1−
√
1− α2 and α ∈ (0, 1] is the step size that gives sufficient reduction of the duality gap and

ensures
(
X̂(α), y(α), Ŝ(α)

)
∈ N (τ, β). From (16), we have

X̂(α)Ŝ(α) = X̂Ŝ + α
(
X̂∆Ŝa +∆X̂aŜ

)
+ 2g(α)

(
X̂∆Ŝc +∆X̂cŜ

)
+α2∆X̂a∆Ŝa + 2αg(α)

(
∆X̂a∆Ŝc +∆X̂c∆Ŝa

)
+ 4g2(α)∆X̂c∆Ŝc.

(17)

This expression, together with the linearity of operator H(·) and the complementarity equations in systems

(14) and (15), implies that

H
(
X̂(α)Ŝ(α)

)
= X̂Ŝ + α

(
R̂−

c +
√
nR̂+

c

)
+H

(
∆X̂(α)∆Ŝ(α)

)
, (18)

where

H
(
∆X̂(α)∆Ŝ(α)

)
= −g2(α)H

(
∆X̂a∆Ŝa

)
+ 2αg(α)H

(
∆X̂a∆Ŝc +∆X̂c∆Ŝa

)
+4g2(α)H

(
∆X̂c∆Ŝc

)
. (19)

Similar to [14], the third equations in systems (14) and (15) in term of the Kronecker product respectively

become

Êvec
(
∆X̂a

)
+ F̂vec

(
∆Ŝa

)
= vec

(
R̂−

c

)
+
√
nvec

(
R̂+

c

)
, (20)

Êvec
(
∆X̂c

)
+ F̂vec

(
∆Ŝc

)
= −vec

(
H
(
∆X̂a∆Ŝa

))
, (21)

where

Ê ≡ 1

2

(
Ŝ ⊗ I + I ⊗ Ŝ

)
, F̂ ≡ 1

2

(
X̂ ⊗ I + I ⊗ X̂

)
. (22)

Below, we describe our algorithm in more detail.
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The MPC interior-point algorithm for SDO problems

• Input parameters: An accuracy parameter ε > 0, the neighborhood parameters β ∈ [0, 1
2 ] and

τ ∈ (0, 1
4 ] , and the initial feasible solution

(
X0, y0, S0

)
∈ N (τ, β) with µ0 =

Tr(X0S0)
n .

• Step 0: Set k := 0.

• Step 1: If nµk ≤ ε , then stop. Otherwise, go to step 2.

• Step 2: Compute the predictor and corrector search directions (∆X̂a,∆ya,∆Ŝa) and (∆X̂c,∆yc,∆Ŝc)

respectively by systems (14) and (15).

• Step 3: Calculate the largest step size ᾱk ∈ (0, 1] such that not only µ
(
ᾱk
)
≤ µ(α) for α ∈ [0, ᾱk]

but also
(
X̂(α), y(α), Ŝ(α)

)
∈ N (τ, β) for α ∈ [0, ᾱk] .

• Step 4: Compute the new iterate
(
X̂(ᾱk), y(ᾱk), Ŝ(ᾱk)

)
by (16) and then set (X̂k+1, yk+1, Ŝk+1) =(

X̂(ᾱk), y(ᾱk), Ŝ(ᾱk)
)
. Calculate µk+1 =

Tr(X̂k+1Ŝk+1)
n and go to step 1 .

4. Complexity analysis

4.1. Technical results

In this subsection, we present some technical lemmas that will be used frequently during the analysis of the

proposed algorithm in the previous section. From now on, we assume that λi for i = 1, 2, .., n are the eigenvalues

of the matrix X̂Ŝ . It should be noticed that the matrices X̂Ŝ, ŜX̂,XS, SX,X
1
2SX

1
2 , and S

1
2XS

1
2 have the

same eigenvalues, since they are all similar to each other. The following lemma is a direct result of similarity

between the matrices X
1
2SX

1
2 and X̂

1
2 ŜX̂

1
2 . For proof and more details see [5].

Lemma 4.1 If β, τ ∈ (0, 1) are given constants, then N (τ, β) is scaling invariant. That is, (X, y, S) is in the

neighborhood N (τ, β) if and only if
(
X̂, y, Ŝ

)
is.

Lemma 4.2 (Lemma 4.1 in [14]) Let u, v, r ∈ Rn and E,F ∈ Rn×n satisfy Eu+ Fv = r . If FET ∈ Sn
++ ,

then ∥∥∥(FET
)− 1

2 Eu
∥∥∥2 + ∥∥∥(FET

)− 1
2 Fv

∥∥∥2 + 2uT v =
∥∥∥(FET

)− 1
2 r
∥∥∥2 .

Lemma 4.3 (Lemma 4.6 in [14]) For any u, v ∈ Rn and G ∈ Sn
++ , we have

∥u∥ ∥v∥ ≤
√

cond(G)
∥∥∥G− 1

2u
∥∥∥ ∥∥∥G 1

2 v
∥∥∥ ≤ 1

2

√
cond(G)

(∥∥∥G− 1
2u
∥∥∥2 + ∥∥∥G 1

2 v
∥∥∥2) ,

where cond(G) = λmax(G)
λmin(G) .

The following lemma, which is proved in [14], plays an important rule in our analysis.

Lemma 4.4 Let Ê and F̂ be defined as in (22). Then, for any P ∈ C(X,S) , one has ρ

((
F̂ Ê
)−1

)
=

1

4λmin(X̂Ŝ)
.
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Lemma 4.5 Let the current iterate (X, y, S) ∈ N (τ, β) and the predictor and corrector search directions(
∆X̂a,∆ya,∆Ŝa

)
and

(
∆X̂c,∆yc,∆Ŝc

)
be respectively the solutions of systems (14) and (15). Then:

[
1− α (1− τ)

]
µ ≤ µ(α) ≤

[
1− α (1− βτ − τ)

]
µ. (23)

Proof Using (18) and the facts that Tr (H (M)) = Tr (M) for any matrix M ∈ Rn×n and Tr
(
H
(
∆X̂(α)∆Ŝ(α)

))
=

0, it follows that

µ(α) = µ̂(α) =
1

n
Tr
(
H
(
X̂(α)Ŝ(α)

))
=

1

n

[
Tr
(
X̂Ŝ
)
+ αTr

[
R̂−

c +
√
nR̂+

c

]
+Tr

(
H
(
∆X̂(α)∆Ŝ(α)

))]
= µ+

α

n
Tr
[
R̂c +

(√
n− 1

)
R̂+

c

]
= µ+ α

[
(τ − 1)µ+

√
n− 1

n
Tr
(
R̂+

c

)]
. (24)

Using the fact that Tr (M) ≤
√
n ∥M∥F for any matrix M ∈ Sn , we have

µ(α) ≤ µ+ α

[
(τ − 1)µ+

√
n− 1√
n

∥∥∥R̂+
c

∥∥∥
F

]

= µ+ α

[
(τ − 1)µ+

√
n− 1√
n

∥∥∥∥(τµI −X
1
2SX

1
2

)+∥∥∥∥
F

]
≤

[
1− α (1− βτ − τ)

]
µ,

where the equality is due to the similar property of the matrices X̂Ŝ and X
1
2SX

1
2 . The last inequality holds

because of (X, y, S) ∈ N (τ, β). This concludes the most right-hand side inequality in (23). Following in the

same way as the proof of the right-hand side inequality and using the fact Tr
(
R̂+

c

)
≥ 0, the most left-hand

side inequality in (23) is easily proved. This completes the proof. 2

Lemma 4.6 Let (X, y, S) ∈ N (τ, β) , R̂+
c , R̂

−
c , and Ê, F̂ be respectively defined as in (12), (13), and (22).

Then:

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂−

c

)∥∥∥∥2 ≤ nµ, (25)

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂+

c

)∥∥∥∥2 ≤ 1

4
βτµ. (26)
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Proof To prove inequality (25), we have

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂−

c

)∥∥∥∥2 =

∥∥∥∥(F̂ Ê
)− 1

2

vec

((
τµI − X̂Ŝ

)−)∥∥∥∥2

=

∥∥∥∥(F̂ Ê
)− 1

2

vec

((
X̂Ŝ − τµI

)+)∥∥∥∥2

≤
∥∥∥∥(F̂ Ê

)− 1
2

[
vec

((
X̂Ŝ
)+)

+ vec
(
(−τµI)

+
)]∥∥∥∥2 ,

where the inequality is due to lemma 3.1 in [9]. Then:

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂−

c

)∥∥∥∥2 ≤
∥∥∥∥(F̂ Ê

)− 1
2

vec

((
X̂Ŝ
)+)∥∥∥∥2

≤
∥∥∥∥(F̂ Ê

)− 1
2

vec
(
X̂Ŝ
)∥∥∥∥2

=
n∑

i=1

λ2
i

λi
=

n∑
i=1

λi = Tr
(
X̂Ŝ
)
= nµ.

This implies the first inequality in the lemma. To prove inequality (26), using Lemma 4.4, we derive that

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂+

c

)∥∥∥∥2 ≤
∥∥∥∥(F̂ Ê

)− 1
2

∥∥∥∥2 ∥∥∥vec(R̂+
c

)∥∥∥2
= ρ

((
F̂ Ê
)−1

)∥∥∥∥(τµI − X̂Ŝ
)+∥∥∥∥2

F

=
1

4λmin

(
X̂Ŝ
) ∥∥∥∥(τµI −X

1
2SX

1
2

)+∥∥∥∥2
F

≤ β2τ2µ2

4 (1− β) τµ
=

1

4
βτµ,

where the last inequality follows from (X, y, S) ∈ N (τ, β) and the last equality is due to β ∈ (0, 1
2 ] . This

implies the lemma. 2

Lemma 4.7 Let the current iterate (X, y, S) ∈ N (τ, β) and let
(
∆X̂a,∆ya,∆Ŝa

)
be the solution of (14).

Then:

∥∥∥vec(∆X̂a
)∥∥∥∥∥∥vec(∆Ŝa

)∥∥∥ ≤ 1

2

√
cond(G) (1 + βτ)nµ, (27)

where G = Ê−1F̂ .
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Proof Multiplying both sides of equation (20) by
(
F̂ Ê
)− 1

2

, taking the norm squared on both of its sides,

and using Lemma 4.6, we obtain

∥∥∥G− 1
2vec

(
∆X̂a

)
+G

1
2vec

(
∆Ŝa

)∥∥∥2 =

∥∥∥∥(F̂ Ê
)− 1

2

[
vec

(
R̂−

c

)
+
√
nvec

(
R̂+

c

)]∥∥∥∥2

=

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂−

c

)∥∥∥∥2 + n

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
R̂+

c

)∥∥∥∥2
≤ nµ+ nβτµ = (1 + βτ)nµ, (28)

where the second equality is due to the fact that (a−)
T
a+ = 0, for any vector a ∈ Rn . Now, using Lemma 4.3,

the fact that Tr
(
∆X̂a∆Ŝa

)
= 0, and (28), we conclude that

∥∥∥vec(∆X̂a
)∥∥∥∥∥∥vec(∆Ŝa

)∥∥∥
≤ 1

2

√
cond(G)

[ ∥∥∥G− 1
2vec

(
∆X̂a

)∥∥∥2 + ∥∥∥G 1
2vec

(
∆Ŝa

)∥∥∥2 ]
=

1

2

√
cond(G)

∥∥∥G− 1
2vec

(
∆X̂a

)
+G

1
2vec

(
∆Ŝa

)∥∥∥2
≤ 1

2

√
cond(G)(1 + βτ)nµ.

This proves the lemma. 2

The following corollary is a direct result of the above lemma.

Corollary 4.8 Let
(
∆X̂a,∆ya,∆Ŝa

)
be the solution of system (14). Then

∥∥∥G− 1
2 vec

(
∆X̂a

)∥∥∥ ≤
√
1 + βτ

√
nµ, (29)∥∥∥G 1

2 vec
(
∆Ŝa

)∥∥∥ ≤
√
1 + βτ

√
nµ. (30)

Corollary 4.9 Let
(
∆X̂a,∆ya,∆Ŝa

)
be the solution of system (14). Then

∥∥∥H (∆X̂a∆Ŝa
)∥∥∥

F
≤ 1

2

√
cond(G)(1 + βτ)nµ. (31)

Proof Due to the definition of the operator H(·), we have

∥∥∥H (∆X̂a∆Ŝa
)∥∥∥

F
=

∥∥∥∥∥∥∥
∆X̂a∆Ŝa +

(
∆X̂a∆Ŝa

)T
2

∥∥∥∥∥∥∥
F

≤
∥∥∥∆X̂a

∥∥∥
F

∥∥∥∆Ŝa
∥∥∥
F

=
∥∥∥vec(∆X̂a

)∥∥∥∥∥∥vec(∆Ŝa
)∥∥∥ ≤ 1

2

√
cond(G)(1 + βτ)nµ,

where the last inequality follows from Lemma 4.7. 2
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Lemma 4.10 Let the current iterate (X, y, S) ∈ N (τ, β) and
(
∆X̂c,∆yc,∆Ŝc

)
be the solution of (15). Then

∥∥∥vec(∆X̂c
)∥∥∥∥∥∥vec(∆Ŝc

)∥∥∥ ≤ 1

8τ
(cond(G))

3
2 (1 + βτ)

2
n2µ. (32)

Proof Multiplying both sides of equation (21) by
(
F̂ Ê
)− 1

2

, taking the norm squared on both of its sides,

and using Lemma 4.4 and Corollary 4.9, we derive that

∥∥∥G− 1
2vec

(
∆X̂c

)
+G

1
2vec

(
∆Ŝc

)∥∥∥2 =

∥∥∥∥(F̂ Ê
)− 1

2

vec
(
H
(
∆X̂a∆Ŝa

))∥∥∥∥2

≤
∥∥∥∥(F̂ Ê

)− 1
2

∥∥∥∥2 ∥∥∥vec(H (∆X̂a∆Ŝa
))∥∥∥2

= ρ

((
F̂ Ê
)−1

)∥∥∥vec(H (∆X̂a∆Ŝa
))∥∥∥2

=
1

4λmin

(
X̂Ŝ
) ∥∥∥H (∆X̂a∆Ŝa

)∥∥∥2
F

≤ 1

16 (1− β) τµ
cond(G) (1 + βτ)

2
n2µ2

=
1

8τ
cond(G) (1 + βτ)

2
n2µ. (33)

Now, using Lemma 4.3, (33), and the fact Tr
(
∆X̂c∆Ŝc

)
= 0, we have

∥∥∥vec(∆X̂c
)∥∥∥∥∥∥vec(∆Ŝc

)∥∥∥ ≤ 1

2

√
cond(G)

[ ∥∥∥G− 1
2vec

(
∆X̂c

)∥∥∥2
+
∥∥∥G 1

2vec
(
∆Ŝc

)∥∥∥2 ]
=

1

2

√
cond(G)

∥∥∥G− 1
2vec

(
∆X̂c

)
+G

1
2vec

(
∆Ŝc

)∥∥∥2
≤ 1

16τ
cond(G)

3
2 (1 + βτ)

2
n2µ,

which concludes the result. 2

The following corollary is the main result of Lemma 4.10.

Corollary 4.11 Let
(
∆X̂c,∆yc,∆Ŝc

)
be the solution of system (15). Then

∥∥∥G− 1
2 vec

(
∆X̂c

)∥∥∥ ≤ 1√
8τ

√
cond(G) (1 + βτ)n

√
µ, (34)

∥∥∥G 1
2 vec

(
∆Ŝc

)∥∥∥ ≤ 1√
8τ

√
cond(G) (1 + βτ)n

√
µ. (35)
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Corollary 4.12 Let
(
∆X̂c,∆yc,∆Ŝc

)
be the solution of system (15). Then

∥∥∥H (∆X̂c∆Ŝc
)∥∥∥

F
≤ 1

16τ
(cond(G))

3
2 (1 + βτ)2n2µ. (36)

Proof Using Lemma 4.10, in the same way as in the proof of Corollary 4.9, the result is proved. 2

Corollary 4.13 Let
(
∆X̂a,∆ya,∆Ŝa

)
and

(
∆X̂c,∆yc,∆Ŝc

)
respectively be the solution of systems (14) and

(15). Then ∥∥∥∆X̂a
∥∥∥
F

∥∥∥∆Ŝc
∥∥∥
F

≤ 1√
8τ

cond(G) (1 + βτ)
3
2 n

3
2µ, (37)

∥∥∥∆Ŝa
∥∥∥
F

∥∥∥∆X̂c
∥∥∥
F

≤ 1√
8τ

cond(G) (1 + βτ)
3
2 n

3
2µ. (38)

4.2. Step size selection

In this subsection, we investigate how to choose the step size α so that the convergence of the proposed MPC

interior-point algorithm in the previous section is reached. More precisely, our choice of the step size α should

be based on some considerations that the convergence of the algorithm is obtained. To this end, we obtain a

lower bound for the largest step size ᾱ such that it not only guarantees the sufficient reduction of the duality

gap µ(α) but also it ensures that the new iterate
(
X̂(α), y(α), Ŝ(α)

)
belongs to N (τ, β) for α ∈ [0, ᾱ] .

Let αg :=argmin{µ(α) : α ∈ [0, 1]} . The following lemma establishes αg = 1.

Lemma 4.14 Let (X, y, S) ∈ N (τ, β) , β ≤ 1
2 and τ ≤ 1

4 . Then µ(α) is strictly monotonically decreasing in

α ∈ [0, 1] .

Proof From (24) and the fact that Tr
(
R̂+

c

)
≤

√
n
∥∥∥R̂+

c

∥∥∥
F
, we have

µ′(α) =

[
(τ − 1)µ+

√
n− 1

n
Tr
(
R̂+

c

)]
≤

[
(τ − 1)µ+

√
n− 1√
n

∥∥∥R̂+
c

∥∥∥
F

]
≤ (−1 + τ + βτ)µ < 0,

where the second inequality is due to (X, y, S) ∈ N (τ, β) and the last one follows from β ≤ 1
2 and τ ≤ 1

4 . This

concludes that the duality gap µ(α) is decreasing in α ∈ [0, 1] and the lemma follows. 2

Due to the above lemma, the largest step size ᾱ will be computed as follows:

ᾱ = max
{
α :

(
X̂(α), y(α), Ŝ(α)

)
∈ N (τ, β), ∀α ∈ [0, 1]

}
. (39)

Lemma 4.15 Let (X, y, S) ∈ N (τ, β) . Then, if α ≥ 1√
n
, then

∥∥∥∥(τµ(α)I − X̂Ŝ − α
(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥
F

= 0, (40)
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and if α < 1√
n
, then

∥∥∥∥(τµ(α)I − X̂Ŝ − α
(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥
F

≤
(
1− α

√
n
)
βτµ. (41)

Proof Since µ(α) ≤ µ , Lemma 4.14 implies that

∥∥∥∥(τµ(α)I − X̂Ŝ − α
(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥
F

≤
∥∥∥∥(τµI − X̂Ŝ − α

(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥
F

=

∥∥∥∥∥
[
(1− α) R̂−

c +
(
1− α

√
n
)
R̂+

c

]+∥∥∥∥∥
F

≤
(
1− α

√
n
)+ ∥∥∥R̂+

c

∥∥∥
F

≤
(
1− α

√
n
)+

βτµ,

where the second inequality follows from Lemma 3.1 in [9]. If α ≥ 1√
n
, then 1 − α

√
n ≤ 0. Therefore, the

first claim is designed. On the other hand, if α < 1√
n
, then 1− α

√
n > 0 and therefore, using the definition of

N (τ, β), we derive the second claim. 2

To proceed, we show that ᾱ0 = βτ√
cond(G)

√
n

is a lower bound on the largest step size ᾱ , which is equivalent to

proving that for every α ∈ [0, ᾱ0] ,
(
X̂(α), y(α), Ŝ(α)

)
belongs to N (τ, β). The following lemma will be used

in the proof of Lemma 4.17.

Lemma 4.16 Let ᾱ0 = βτ√
cond(G)

√
n
. Then, for all α ∈ [0, ᾱ0] , we have

∥∥∥H (∆X̂(α)∆Ŝ(α)
)∥∥∥

F
≤ α

√
nβτµ

[
9β2τ2

16n
+

1√
2

(
9

8

) 3
2

β +
81

256
β2τ

]
.

Proof Using (19), the triangle inequality, and the fact that g(α) ≤ α2 , we have

∥∥∥H (∆X̂(α)∆Ŝ(α)
)∥∥∥

F
≤ α4

∥∥∥H (∆X̂a∆Ŝa
)∥∥∥

F
+ 2α3

∥∥∥H (∆X̂a∆Ŝc +∆X̂c∆Ŝa
)∥∥∥

F

+4α4
∥∥∥H (∆X̂c∆Ŝc

)∥∥∥
F
,
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from which, from Corollaries 4.9, 4.12, and 4.13, it follows that∥∥∥H (∆X̂(α)∆Ŝ(α)
)∥∥∥

F

≤ 1

2
α4
√

cond(G) (1 + βτ)nµ+

√
2

τ
α3cond(G) (1 + βτ)

3
2 n

3
2µ

+
1

4τ
α4 (cond(G))

3
2 (1 + βτ)

2
n2µ

≤ α
√
nµ

[
1

2
α3
√
cond(G) (1 + βτ)

√
n

+

√
2

τ
α2cond(G) (1 + βτ)

3
2 n+

1

4τ
α3 (cond(G))

3
2 (1 + βτ)

2
n

3
2

]
.

Therefore, for α ∈ [0, ᾱ0] with ᾱ0 = βτ√
cond(G)

√
n
, we may write

∥∥∥H (∆X̂(α)∆Ŝ(α)
)∥∥∥

F
≤ α

√
nβτµ

[
1

2

β2τ2

ncond(G)
(1 + βτ) +

√
2

τ
βτ (1 + βτ)

3
2

+
1

4τ
β2τ2 (1 + βτ)

2

]

≤ α
√
nβτµ

[9β2τ2

16n
+

1√
2

(
9

8

) 3
2

β +
81

256
β2τ

]
.

This completes the proof. 2

Lemma 4.17 Let ᾱ be defined as (39). Then ᾱ ≥ βτ√
cond(G)

√
n
.

Proof We have ᾱ ≥ 1√
n

or ᾱ < 1√
n
. If ᾱ ≥ 1√

n
, we immediately obtain the lower bound on ᾱ . Thus, we

only consider ᾱ < 1√
n
. Letting α = βτ√

cond(G)
√
n
, we conclude that (X(α), y(α), S(α)) ∈ N (τ, β) if X(α) and

S(α) are positive definite matrices and∥∥∥∥(τµ(α)I −X
1
2 (α)S(α)X

1
2 (α)

)+∥∥∥∥
F

≤ βτµ(α).

Using Lemmas 3.1 and 3.3 in [9], we have

∥∥∥∥(τµ(α)I −X
1
2 (α)S(α)X

1
2 (α)

)+∥∥∥∥
F

≤

∥∥∥∥∥
[
HP (τµ(α)I −X(α)S(α))

]+∥∥∥∥∥
F

=
∥∥∥(τµ(α)I −HP (X(α)S(α)))

+
∥∥∥
F

=

∥∥∥∥(τµ(α)I −H
(
X̂(α)Ŝ(α)

))+∥∥∥∥
F

.
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Using (18), we obtain∥∥∥∥(τµ(α)I −X
1
2 (α)S(α)X

1
2 (α)

)+∥∥∥∥
F

≤
∥∥∥∥(τµ(α)I −H

(
X̂(α)Ŝ(α)

))+∥∥∥∥
F

=

∥∥∥∥(τµ(α)I − X̂Ŝ − α
(
R̂−

c +
√
nR̂+

c

)
−H

(
∆X̂(α)∆Ŝ(α)

))+∥∥∥∥
F

≤
∥∥∥∥(τµ(α)I − X̂Ŝ − α

(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥+ ∥∥∥∥−H
(
∆X̂(α)∆Ŝ(α)

)+∥∥∥∥
F

≤
∥∥∥∥(τµ(α)I − X̂Ŝ − α

(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥+ ∥∥∥−H
(
∆X̂(α)∆Ŝ(α)

)∥∥∥
F
.

Therefore, from Lemmas 4.5, 4.15, and 4.16, we further conclude that∥∥∥∥(τµ(α)I − X̂Ŝ − α
(
R̂−

c +
√
nR̂+

c

))+∥∥∥∥+ ∥∥∥−H
(
∆X̂(α)∆Ŝ(α)

)∥∥∥
F
− βτµ(α)

≤
(
1− α

√
n
)
βτµ+ α

√
nβτµ

[
9β2τ2

16n
+

1√
2

(
9

8

) 3
2

β +
81

256
β2τ

]
−βτ

[
µ+ α (τ − 1)µ

]

= α
√
nβτµ

[
9β2τ2

16n
+

1√
2

(
9

8

) 3
2

β +
81

256
β2τ +

1− τ√
n

− 1

]
≤ 0,

which implies that

∥∥∥∥(τµ(α)I −X
1
2 (α)S(α)X

1
2 (α)

)+∥∥∥∥
F

≤ βτµ(α). On the other hand, due to the similarity of

matrices X(α)S(α) and X(α)
1
2S(α)X(α)

1
2 , we have

λi (X(α)S(α)) = λi

(
X(α)

1
2S(α)X(α)

1
2

)
≥ (1− β) τµ(α)

≥ (1− β) τ [1− α(1− τ)]µ > 0,

which reveals that X(α)S(α) is a nonsingular matrix and further implies that X(α) and S(α) are nonsin-

gular as well. Using continuity of the eigenvalues of a symmetric matrix, it follows that X(α) and S(α)

are positive definite matrices for all α ∈ [0, 1], since X,S are positive definite matrices. This implies that

(X(α), y(α), S(α)) ∈ N (τ, β). Thus, from the definition of ᾱ in (39), we have ᾱ ≥ βτ√
cond(G)

√
n
. This com-

pletes the proof. 2

4.3. Polynomial complexity

In this subsection, we present the main result of the paper. The following lemma gives an upper bound for the

number of iterations in which the algorithm terminates with an ε-approximate solution.

Lemma 4.18 Let
√
cond(G) ≤ κ for all iterations. Then the proposed MPC interior-point algorithm will

terminate with
(
Xk, yk, Sk

)
such that Tr

(
XkSk

)
≤ εTr

(
X0S0

)
in O

(
κ
√
n log ε−1

)
iterations.
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Proof Let ᾱ0 = βτ√
cond(G)

√
n
. Therefore, using Lemma 4.5 and the definition of ᾱ in (39), we obtain

µ(ᾱ) ≤ µ(ᾱ0) = (1− ϱᾱ0)µ,

where ϱ = (1− τ − βτ). Since the algorithm terminates when µ(ᾱ) ≤ εµ0 , it suffices to have

(
1− βτϱ√

cond(G)
√
n

)k

µ0 ≤
(
1− βτϱ

κ
√
n

)k

µ0 ≤ εµ0,

which implies that the algorithm stops after at most k ≥ 1
βτ

(
κ
√
n log ε−1

)
iterations. 2

In order to obtain an exact upper bound for the number of iterations, we need to recall the following key lemma

in [14].

Lemma 4.19 (Lemma 3.1 in [14]) For the NT search direction cond(G) = 1 , while if the HKM search

directions are used, then cond(G) ≤ n
1−β .

Now we are in a position to present the complexity bound of the proposed algorithm.

Corollary 4.20 If the NT search direction is used, the iteration complexity of the algorithm is O
(√

n log ε−1
)
.

If the HKM search directions are used, then the algorithm stops in at most O
(
n log ε−1

)
iterations.

5. Concluding remarks

In this paper, we proposed a second-order MPC feasible interior-point algorithm for SDO problems. The

algorithm computes the Newton search directions based on a new form of combination of the predictor and

corrector directions. Using the NT direction as the Newton search direction, we proved that the iteration-

complexity bound of the algorithm is O
(√

n log ε−1
)
, while for HKM search directions the proposed algorithm

terminates in at most O
(
n log ε−1

)
iterations.
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