

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2017) 41: 186 – 192 © TÜBİTAK doi:10.3906/mat-1512-40

Research Article

A note on dynamics in functional spaces

Liangxue PENG, Chong YANG*

College of Applied Science, Beijing University of Technology, Beijing, P.R. China

Received: 09.12.2015	•	Accepted/Published Online: 07.04.2016	•	Final Version: 16.01.2017
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this note, we study topologically transitive and hypercyclic composition operators on $C_p(X)$ or $C_k(X)$. We prove that if G is a semigroup of continuous self maps of a countable metric space X with the following properties: (1) every element of G is one-to-one on X, (2) the action of G is strongly run-away on X, then the action of \hat{G} on $C_p(X)$ is topologically transitive and hypercyclic. If G is the set of all one-to-one and continuous self maps of $\mathbb{R} \setminus \mathbb{Z}$, then the action of \hat{G} on $C_k(\mathbb{R} \setminus \mathbb{Z})$ is hypercyclic. We also show that the action of \hat{G} on $C_p(\omega_1)$ is not hypercyclic.

Key words: Topological transitivity, hypercyclicity, composition operators, semigroup actions

1. Introduction

Recall that a map T on a topological space X is called topologically transitive if for every pair of nonempty open subsets U, V of X, there exists some $n \ge 1$ such that $T^n(U) \cap V \ne \emptyset$. A map T on X is called hypercyclic if there exists $x \in X$ such that $\{T^n(x) : n \ge 1\}$ is dense in X. During the last decade hypercyclicity has been thoroughly investigated by several authors. We refer to the recent monograph [6].

If X is a Tychonoff space, then let C(X) denote the set of all continuous functions from X into \mathbb{R} , where \mathbb{R} is the set of real numbers with the natural topology. Any continuous self map $\phi: X \to X$ gives rise to a composition operator C_{ϕ} , defined by

$$C_{\phi}(f) = f \circ \phi, \ f \in C(X).$$

The topology under consideration on C(X) is the point-open topology or the compact-open topology. The space C(X) with the point-open topology is denoted by $C_p(X)$. Given a point x of X and an open subset U of \mathbb{R} , let [x, U] denote the set of all functions $f \in C(X)$ such that $f(x) \in U$. Then $\{[x, U] : x \in X \text{ and } U \text{ is open in } \mathbb{R}\}$ is a subbase for $C_p(X)$. The space C(X) with the compact-open topology is denoted by $C_k(X)$. If K is a compact subset of X and U is an open subset of \mathbb{R} , we let $[K, U] = \{f \in C(X) : f(K) \subset U\}$. Then $\{[K, U] : K$ is a compact subset of X and U is open in $\mathbb{R}\}$ is a subbase for $C_k(X)$. Use study topologically transitive and hypercyclic composition operators on $C_p(X)$ or $C_k(X)$. Let G be a semigroup acting as continuous functions on a topological space X. Let id_X denote the identity map of X, i.e. $id_X(x) = x$ for all $x \in X$. We say the action of G on X is topologically transitive, if for every pair of nonempty open subsets U, V of X, there exists

^{*}Correspondence: yangchong@emails.bjut.edu.cn

Research supported by the National Natural Science Foundation of China (Grant No.11271036) and supported by Beijing Nature Science Foundation (Grant No.1162001).

²⁰¹⁰ AMS Mathematics Subject Classification: 47B33, 54H20.

 $f \in G$ such that $f(U) \cap V \neq \emptyset$. Similarly, the action of G on X is hypercyclic, if there exists $x \in X$ such that the G-orbit of x, i.e. $\{f(x) : f \in G\}$ is dense in X [8].

Composition operators on different function spaces have been extensively investigated; see [1, 7, 9]. In [4, 5], composition operators on spaces of real analytic functions were studied. Dynamical properties of topological transitivity and hypercyclicity of a composition operator C_{ϕ} on certain subspaces of C(X) have also been extensively studied in connection with the topological properties of the underlying map ϕ ; see [2, 9].

In [3], Bonet and Domański characterized when composition operators $C_{\phi} : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ are topologically transitive, where $\mathcal{A}(\Omega)$ is the space of real analytic functions defined on an open subset Ω of \mathbb{R}^d . They proved that topological transitivity, hypercyclicity, and sequential hypercyclicity of $C_{\phi} : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ are equivalent when ϕ is a self map on a simply connected complex neighborhood U of \mathbb{R} , $U \neq \mathbb{R}$.

Recently, Javaheri in [8] proved that if X is a separable locally compact metric space, G is a semigroup of continuous self maps of X with the following properties: (i) every element of G is one-to-one on X, (ii) the action of G is run-away on X (G is called run-away on X if for every compact subset $K \subset X$, there exists some $\phi \in G$ such that $\phi(K) \cap K = \emptyset$), then the action of $\hat{G} = \{C_{\phi} : \phi \in G\}$ on $C_k(X)$ is topologically transitive and hypercyclic. We discuss characterizations of the action of \hat{G} on $C_p(X)$ or $C_k(X)$ under which X is not a locally compact space. We prove that if G is a semigroup of continuous self maps of a countable metric space X with the following properties: (1) every element of G is one-to-one on X, (2) the action of G is strongly run-away on X, then the action of \hat{G} on $C_p(X)$ is topologically transitive and hypercyclic. If G is the set of all one-to-one and continuous self maps of $\mathbb{R} \setminus \mathbb{Z}$, then the action of \hat{G} on $C_k(\mathbb{R} \setminus \mathbb{Z})$ is hypercyclic. We also show that the action of \hat{G} on $C_p(\omega_1)$ is not hypercyclic.

The sets of real, rational, and integer numbers will be denoted by \mathbb{R} , \mathbb{Q} , and \mathbb{Z} , respectively. \mathbb{N} denotes the set of positive integers. The set $\mathbb{N} \cup \{0\}$ is denoted by ω . In this note, we let (\mathbb{Q}, d) be a subspace of \mathbb{R} with the nature topology.

2. Main results

Inspired by the definition of run-away, we define a notion of strongly run-away.

Definition 1 Let (X,d) be a metric space. Suppose that G is a semigroup of continuous self maps of X, G is called strongly run-away if there exists some $\delta > 0$ such that for every compact subset K of X, there exists some $\phi \in G$ such that $d(\phi(K), K) \ge \delta$.

Remark 2 Let (\mathbb{Q}, d) be a topological space with the nature topology. If G is the semigroup of all one-to-one and continuous self maps of \mathbb{Q} , then the action of G on \mathbb{Q} is strongly run-away.

Proof Let $\delta > 0$. Then there is some $c \in \mathbb{Q}$ such that $c > \delta$. If K is a compact subset of \mathbb{Q} , then there exist $a, b \in \mathbb{Q}$ such that $K \subset (a, b)$. If $\phi : \mathbb{Q} \to \mathbb{Q}$ is a map such that $\phi(x) = x + (b - a) + c$ for each $x \in \mathbb{Q}$, then the map ϕ is one-to-one and continuous and $d(\phi(K), K) \ge c > \delta$.

The following theorem is a main result of this note.

Theorem 3 Let (X, d) be a countable metric space. Suppose that G is a semigroup of continuous self maps of X with the following properties:

(1) Every element of G is one-to-one on X.

(2) The action of G is strongly run-away on X.

Let \hat{G} be the semigroup of composition operators induced by the elements of G i.e. $\hat{G} = \{C_{\phi} : \phi \in G\}$, then the action of \hat{G} on $C_p(X)$ is topologically transitive and hypercyclic.

Proof Let V and W be open subsets of $C_p(X)$. Let $f \in V$. Then there exists a finite set $F_1 = \{x_1, x_2, \ldots, x_n\} \subset X$ and open subsets U_1, U_2, \ldots, U_n of \mathbb{R} such that $f \in [x_1, U_1] \cap \ldots \cap [x_n, U_n] \subset V$. Let $g \in W$. There exists a finite set $F_2 = \{y_1, y_2, \ldots, y_m\} \subset X$ and open subsets V_1, V_2, \ldots, V_m of \mathbb{R} such that $g \in [y_1, V_1] \cap \ldots \cap [y_m, V_m] \subset W$.

Since the action of G on X is strongly run-away, there exists some $\delta > 0$ such that for every compact subset K of X, there exists some $\phi \in G$ such that $d(\phi(K), K) \geq \delta$. Let $F = F_1 \cup F_2$. Then there exists some $\phi \in G$ such that $d(\phi(F), F) \geq \delta$.

Define $\hat{f}: F_1 \cup \phi(F_2) \to \mathbb{R}$ such that if $x \in F_1$ then $\hat{f}(x) = f(x)$. If $x \in \phi(F_2)$, $\hat{f}(x) = g(\phi^{-1}(x))$. Then \hat{f} is continuous on $F_1 \cup \phi(F_2)$. Since X is normal, there exists a continuous mapping \hat{f}^* such that $\hat{f}^*|_{F_1 \cup \phi(F_2)} = \hat{f}$. This implies $\hat{f}^* \in V$ and $\hat{f}^* \circ \phi \in W$. Thus $C_{\phi}(V) \cap W \neq \emptyset$. Thus the action of \hat{G} on $C_p(X)$ is topologically transitive.

Since X is countable, let $X = \{q_n : n \in \mathbb{N}\}$. If $F_m = \{q_1, q_2, \dots, q_m\}$, then $|F_m| < \omega$ and $F_m \subset F_{m+1}$ for each $m \in \mathbb{N}$. Let $\mathcal{F} = \{h : h : F \to \mathbb{Q} \text{ is a map}, F \subset X, 1 \leq |F| < \omega\}$. Since \mathcal{F} is countable, denote $\mathcal{F} = \{h_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$ there exists some $m_n \in \mathbb{N}$ such that $dom(h_n) \subset F_{m_n}$, and we assume that $m_n > m_l$ if n > l.

For n = 1, the set $dom(h_1) \subset F_{m_1}$. By (2), there exists a continuous and one-to-one map $\phi_1 \in G$ such that $d(\phi_1(F_{m_1}), F_{m_1}) \geq \delta$. Let $k_1 = m_1$. For n = 2, there exists some $k_2 > \max\{k_1, m_2\}$ such that $(dom(h_2) \cup \phi_1(F_{k_1})) \subset F_{k_2}$. By (2), there exists some continuous and one-to-one map $\phi_2 \in G$ such that $d(\phi_2(F_{k_2}), F_{k_2}) \geq \delta$.

By induction, there exists a sequence $\{\phi_n : n \in \mathbb{N}\} \subset G$ of continuous and one-to-one maps on X and an increasing sequence $\{k_i : i \in \mathbb{N}\}$ with $k_i > \max\{m_i, k_{i-1}\}$ if i > 1 such that $(dom(h_i) \cup \phi_{i-1}(F_{k_{i-1}})) \subset F_{k_i}$ and $d(\phi_i(F_{k_i}), F_{k_i}) \ge \delta$ for each $i \in \mathbb{N}$. Thus $d(\phi_i(F_{k_i}), \phi_j(F_{k_j})) \ge \delta$ if $i \ne j$. Thus $dom(h_n) \subset F_{m_n} \subset F_{k_n}$ and $\phi_n(dom(h_n)) \cap F_{k_n} = \emptyset$ for each n.

Since $\{\phi_n(dom(h_n)) : n \in \mathbb{N}\}$ is a family of finite sets of X and $d(\phi_n(dom(h_n)), \phi_m(dom(h_m))) \ge \delta$ if $n \neq m$, the set $D = \bigcup \{\phi_n(dom(h_n)) : n \in \mathbb{N}\}$ is closed and discrete in X.

Define $f: D \to \mathbb{R}$ such that if $x \in \phi_n(dom(h_n))$ for some $n \in \mathbb{N}$ then $f(x) = h_n(\phi_n^{-1}(x))$. Thus $f(\phi_n(x)) = h_n(x)$ if $x \in dom(h_n)$ for some n. Hence f is a continuous map on D. Since X is normal and D is closed discrete in X, there exists a continuous mapping $f^*: X \to \mathbb{R}$ such that $f^*|_D = f$.

Let g be an arbitrary element of $C_p(X)$, and let W be an arbitrary open neighborhood of g in $C_p(X)$. Then there exists a finite set $F' = \{z_1, z_2, \ldots, z_l\} \subset X$ and a number $k \in \mathbb{N}$ such that $\{g' : g' \in C_p(X), |g'(z_i) - g(z_i)| < \frac{1}{k}, 1 \leq i \leq l\} \subset W$.

For every $1 \leq i \leq l$, there exists some $b_i \in (g(z_i) - \frac{1}{k}, g(z_i) + \frac{1}{k}) \cap \mathbb{Q}$. Let $h' : F' \to \mathbb{Q}$ be a map such that $h'(z_i) = b_i$ for every $1 \leq i \leq l$. Then there exists some $n \in \mathbb{N}$ such that $h' = h_n$. Thus $dom(h_n) = F' \subset F_{m_n} \subset F_{k_n}$. For every $x \in dom(h_n)$, we have $f^*(\phi_n(x)) = h_n(x)$. Then for every $x \in F'$, $|C_{\phi_n}(f^*)(x) - g(x)| = |(f^* \circ \phi_n)(x) - g(x)| = |(f^*(\phi_n(x)) - g(x)| = |h_n(x) - g(x)| = |h'(x) - g(x)| < \frac{1}{k}$. Hence $C_{\phi_n}(f^*) \in W$. Thus $\{C_{\phi_n}(f^*) : n \in \mathbb{N}\}$ is dense in $C_p(X)$.

Let $n \in \mathbb{N}$ and C be a compact subset of \mathbb{Q}^n , where \mathbb{Q}^n is the *n*th power of (\mathbb{Q}, d) . Let d' be the natural metric on \mathbb{Q}^n . For each $1 \leq i \leq n$, the set $\pi_i(C)$ is compact in \mathbb{Q} , where $\pi_i : \mathbb{Q}^n \to \mathbb{Q}$ is the projection into the *i*th coordinate. By Remark 2, there exists some $\delta > 0$ and a map $\phi_i \in G$ such that $d(\phi_i(\pi_i(C)), \pi_i(C)) \geq \delta$ for each $i \leq n$, where G is the semigroup of one-to-one and continuous self maps of \mathbb{Q} . If $\phi = (\phi_1, \phi_2, \ldots, \phi_n)$ such that $\phi(x) = \langle \phi_1(x_1), \phi_2(x_2), \ldots, \phi_n(x_n) \rangle$ for each $x = \langle x_1, x_2, \ldots, x_n \rangle \in \mathbb{Q}^n$, then ϕ is a one-to-one and continuous self map of \mathbb{Q}^n . Since $C \subset \prod_{1 \leq i \leq n} \pi_i(C)$ and $d(\phi_i(\pi_i(C)), \pi_i(C)) \geq \delta$ for each $i \leq n$, then $d'(\phi(C), C) \geq \sqrt{n}\delta$. Thus the action of G^* is strongly run-away on \mathbb{Q}^n if G^* is the set of one-to-one and continuous self maps of \mathbb{Q}^n .

Corollary 4 Let $n \in \mathbb{N}$ and G be a semigroup of continuous self maps of \mathbb{Q}^n with the following properties:

- (1) Every element of G is one-to-one on \mathbb{Q}^n .
- (2) The action of G is strongly run-away on \mathbb{Q}^n .

Then the action of \hat{G} on $C_p(\mathbb{Q}^n)$ is topologically transitive and hypercyclic.

Remark 5 In Theorem 3, every element of G is one-to-one and continuous and the action of G on X is strongly run-away. By Remark 2, for every $\delta > 0$ and every compact subset F of \mathbb{Q} , there exists a one-to-one and continuous self map ϕ of \mathbb{Q} such that $d(\phi(F), F) \geq \delta$. Thus if G is the set of one-to-one and continuous self maps of \mathbb{Q} , then the action of \hat{G} on $C_p(\mathbb{Q})$ is topologically transitive and hypercyclic.

Corollary 6 Let $n \in \mathbb{N}$. If G is the semigroup of one-to-one and continuous self maps of \mathbb{Q}^n , then the action of \hat{G} on $C_p(\mathbb{Q}^n)$ is topologically transitive and hypercyclic.

Corollary 7 Let X be a countable discrete space. If G is the set of one-to-one and continuous self maps of X, then $C_p(X) = C_k(X)$ and the action of \hat{G} on $C_p(X)$ is topologically transitive and hypercyclic.

There exists a countable topological space X such that the action of \hat{G} on $C_p(X)$ is not hypercyclic.

Proposition 8 Let $X = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Suppose that G is the set of one-to-one and continuous self maps of X; then the action of \hat{G} on $C_p(X)$ is not hypercyclic.

Proof Let $\phi \in G$. Since ϕ is continuous and one-to-one, $\phi(0) = 0$. If $f \in C_p(X)$ and f(0) = b, then $C_{\phi}(f)(0) = (f \circ \phi)(0) = b$ for each $\phi \in G$. Then $\{f \circ \phi : \phi \in G\}$ is not dense in $C_p(X)$. Thus the action of \hat{G} on $C_p(X)$ is not hypercyclic.

If X is a finite topological space, then the set G of one-to-one and continuous self maps is finite. Thus for each $f \in C_p(X)$, the set $\{C_{\phi}(f) : \phi \in G\}$ is a finite subset of $C_p(X)$. Thus $\{C_{\phi}(f) : \phi \in G\}$ cannot be dense in $C_p(X)$. Therefore, we have

Proposition 9 Let X be a finite topological space. If G is the set of one-to-one and continuous self maps on X, then the action of \hat{G} on $C_p(X)$ is not hypercyclic.

Since (\mathbb{R}, d) is connected, every continuous function $f : \mathbb{R} \to \{0, 1\}$ is a constant map, where $\{0, 1\}$ is a discrete space. Thus we have

Proposition 10 Let (\mathbb{R}, d) be the real line with the nature topology. Suppose that G is the set of one-to-one and continuous self maps of \mathbb{R} ; then the action of \hat{G} on $C_p(\mathbb{R}, 2)$ is not hypercyclic, where $C_p(\mathbb{R}, 2) = \{f : f : \mathbb{R} \to \{0, 1\} \text{ is continuous}\}$.

Theorem 11 Let X and Y be homeomorphic topological spaces. If G_1 and G_2 are the sets of one-to-one and continuous self maps of X and Y, respectively, then the action of \hat{G}_1 on $C_k(X)$ is topologically transitive and hypercyclic if and only if the action of \hat{G}_2 on $C_k(Y)$ is topologically transitive and hypercyclic.

Proof Let $\theta: X \to Y$ be a homeomorphism. Define $\hat{\theta}: C_k(Y) \to C_k(X)$ by

$$\hat{\theta}(f) = f \circ \theta, \ f \in C_k(Y).$$

Now we prove that $\hat{\theta}$ is a homeomorphism from $C_k(Y)$ to $C_k(X)$. Obviously, $\hat{\theta}$ is a bijection.

For any set $[K, U] \subset C_k(X)$, where $K \subset X$ is compact and U is an open subset of \mathbb{R} . Since θ is a homeomorphism, $\theta(K)$ is a compact set in Y. Hence $\hat{\theta}^{-1}([K, U]) = [\theta(K), U]$ and $[\theta(K), U]$ is open in $C_k(Y)$. Thus the map $\hat{\theta}$ is continuous. Let $W = [K_1, U_1] \cap [K_2, U_2] \cap \ldots \cap [K_n, U_n]$ be an arbitrary element of the base of $C_k(Y)$, since θ is a homeomorphism, $\theta^{-1}(K_i)$ is compact in X for $1 \leq i \leq n$. Therefore, $\hat{\theta}(W) = [\theta^{-1}(K_1), U_1] \cap [\theta^{-1}(K_2), U_2] \cap \ldots \cap [\theta^{-1}(K_n), U_n]$ is open in $C_k(X)$. The map $\hat{\theta}$ is an open map. Thus $\hat{\theta}$ is a homeomorphism from $C_k(Y)$ to $C_k(X)$. Then the action of \hat{G}_1 on $C_k(X)$ is topologically transitive and hypercyclic if and only if the action of \hat{G}_2 on $C_k(Y)$ is topologically transitive and hypercyclic. \Box

Remark 12 Let G_1 be the set of one-to-one and continuous self maps of \mathbb{R} . By Theorem 1 in [8], the action of \hat{G}_1 on $C_k(\mathbb{R})$ is hypercyclic. Let G_2 be the set of all one-to-one and continuous self maps of (0,1). Since (0,1) and \mathbb{R} are homeomorphic, the action of \hat{G}_2 on $C_k((0,1))$ is hypercyclic.

Finally, we discuss some properties of hypercyclicity in functional spaces on sums of spaces.

Theorem 13 Let $X = \bigoplus_{i \in \mathbb{N}} X_i$. For each $i \in \mathbb{N}$, suppose that G_i is a semigroup of continuous self maps of X_i and \hat{G}_i is the semigroup of composition operators induced by elements of G_i . If the action of \hat{G}_i on $C_k(X_i)$ is hypercyclic, then there exists a semigroup G of continuous self maps of X such that the action of \hat{G} on $C_k(X)$ is hypercyclic.

Proof For each $i \in \mathbb{N}$, since \hat{G}_i on $C_k(X_i)$ is hypercyclic, there exists a continuous function $f_i \in C_k(X_i)$ and a countable set $A_i = \{\phi_{i,1}, \phi_{i,2}, \ldots\}$ of continuous self maps of X_i such that $\{C_{\phi_{i,j}}(f_i) : j \in \mathbb{N}\}$ is dense in $C_k(X_i)$.

We first construct a continuous function $f \in C_k(X)$. Let $f(x) = f_i(x)$ if $x \in X_i$ for each *i*. Then *f* is well-defined and continuous on *X*.

For each $n \in \mathbb{N}$, let $B_n = \{\phi : \phi : X \to X \text{ such that for each } i \leq n \text{ there exists some } j \in \mathbb{N} \text{ such that } \phi|_{X_i} = \phi_{i,j} \text{ and } \phi(x) = x \text{ for each } x \in X_i \text{ if } i > n \}$. Then $|B_n| \leq \omega$. If $B = \bigcup \{B_n : n \in \mathbb{N}\}$, then $|B| \leq \omega$ and B is a subfamily of the semigroup of continuous self maps of X.

Let $g \in C_k(X)$ be an arbitrary element. Let $K \subset X$ be an arbitrary compact set and ϵ be an arbitrary positive number. We prove that there exists $\phi \in G$ such that $|C_{\phi}(f)(x) - g(x)|_K < \epsilon$. Since $X = \bigoplus_{i \in \mathbb{N}} X_i$,

there exists a finite set $\{n_1, n_2, \ldots, n_s\} \subset \mathbb{N}$ such that $K \subset \bigcup \{X_{n_l} : 1 \leq l \leq s\}$ and $X_{n_l} \cap K \neq \emptyset$. Let $X_{n_l} \cap K = K_l$. For every $l \in \{1, 2, \ldots, s\}$, let $g_{n_l} = g|_{X_{n_l}}$; then g_{n_l} is continuous on X_{n_l} . Since $f|_{X_{n_l}} = f_{n_l}$ and $\{C_{\phi_{n_l,j}}(f_{n_l}) : j \in \mathbb{N}\}$ is dense in $C_k(X_{n_l})$, there exists $j_l \in \mathbb{N}$ such that $|C_{\phi_{n_l,j_l}}(f_{n_l})(x) - g_{n_l}(x)| < \epsilon$ for all $x \in K_l$. By the construction of B, there exists a $\phi \in B$ such that $\phi|_{X_{n_l}} = \phi_{n_l,j_l}$ for every $l \in \{1, 2, \ldots, s\}$. Thus we have $|C_{\phi}(f)(x) - g(x)| < \epsilon$ for all $x \in K$.

By Theorem 13 and Remark 12, we have the following corollary.

Corollary 14 Suppose that G is the set of one-to-one and continuous self maps of $\mathbb{R} \setminus \mathbb{Z}$; then the action of \hat{G} on $C_k(\mathbb{R} \setminus \mathbb{Z})$ is hypercyclic.

It is well known that if $f: \omega_1 \to \mathbb{R}$ is continuous, then there exists some $x_0 \in \omega_1$ such that $f(x) = f(x_0)$ for all $x \ge x_0$. In what follows, we prove that the action of \hat{G} on $C_p(\omega_1)$ is not hypercyclic. We need the following lemma.

Lemma 15 If $\phi : \omega_1 \to \omega_1$ is a one-to-one and continuous self map of ω_1 , then for every $\alpha \in \omega_1$ there exists an $a_\alpha \in \omega_1$ such that $\phi(\beta) > \alpha$ for every $\beta > a_\alpha$.

Proof Suppose that there exists some $\alpha \in \omega_1$ such that for every $a \in \omega_1$ there exists $\beta_a > a$ with $\phi(\beta_a) \leq \alpha$.

If $A = \{\beta_a : a \in \omega_1\}$, then A is unbounded in ω_1 . Since $\phi(A) \subset [0, \alpha]$ and $|A| = \omega_1$, there are $p, q \in A$ such that $p \neq q$ and $\phi(p) = \phi(q)$. This contradicts with ϕ being one-to-one.

Theorem 16 Let $X = \omega_1$. If G is the set of one-to-one and continuous self maps of X, then the action of \hat{G} on $C_p(X)$ is not hypercyclic.

Proof Let $f \in C_p(X)$. Then there exists an $\alpha_f \in \omega_1$ such that $f(\alpha) = f(\alpha_f)$ for every $\alpha > \alpha_f$. Let $\{\phi_n : n \in \mathbb{N}\} \subset G$ be any sequence. For each $n \in \mathbb{N}$ there is an $a_n \in \omega_1$ such that $\phi_n(\beta) > \alpha_f$ for every $\beta > a_n$ by Lemma 15.

If $\gamma = \sup\{a_n : n \in \mathbb{N}\}$, then $\gamma \in \omega_1$. For each $n \in \mathbb{N}$ and for every $\beta > \gamma$, $C_{\phi_n}(f)(\beta) = f(\phi_n(\beta)) = f(\alpha_f)$. Then the action of \hat{G} on $C_p(X)$ is not hypercyclic.

Acknowledgment

The authors would like to thank the referee for his (or her) many valuable remarks, corrections, and suggestions, which greatly improved the paper.

References

- Bernal-González L, Montes-Rodríguez A. Universal functions for composition operators. Complex Variables 1995; 27: 47-56.
- [2] Bès J. Dynamics of composition operators with holomorphic symbol. Rev R Acad Cienc Exactas Fís Nat, Ser A Math 2013; 107: 437-449.
- [3] Bonet J, Domański P. Hypercyclic composition operators on spaces of real analytic functions. Math Proc Camb Philos Soc 2012; 153: 489-503.

- [4] Domański P, Goliński M, Langenbruch M. A note on composition operators on spaces of real analytic functions. Ann Polon Math 2012; 103: 209-216.
- [5] Domański P, Langenbruch M. Coherent analytic sets and composition of real analytic functions. J Reine Angew Math 2005; 582: 41-59.
- [6] Grosse-Erdmann KG, Peris-Manguillot A. Linear Chaos. New York, NY, USA: Springer, 2011.
- [7] Grosse-Erdmann KG, Mortini R. Universal functions for composition operators with non-automorphic symbol. J Anal Math 2009; 107: 355-376.
- [8] Javaheri M. Hypercyclic and topologically transitive semigroups of composition operators. Topology Appl 2014; 164: 105-112.
- [9] Shapiro JH. Notes on the dynamics of linear operators. Lecture notes. http://www.mth.msu.edu//~shapiro, last visited: February 12, 2013.