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Abstract: It is shown that the curvature bounded above (resp. below) in the sense of Alexandrov is equivalent to the

curvature bounded above (resp. below) in the sense of Busemann if and only if the sum of adjacent average angles is at

least (resp. at most) π .
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1. Introduction

It is well known that the curvature bounded above (resp. below) in the sense of Alexandrov is stronger than

the curvature bounded above (resp. below) in the sense of Busemann (see, e.g., [7, p. 107] or [9, p. 57]). The

classical example that shows that the converse statement does not hold is the finite dimensional normed vector

space R2 equipped with one of the lp -norms defined for p > 2 or p < 2. In the case where p = 2 these two

kinds of curvatures coincide. Note also a theorem of Bridson and Haefliger [6, p. 173] saying that if the length

space X is a sufficiently smooth Riemannian manifold, then Alexandrov curvature is equivalent to Busemann

curvature. Little has been done, however, to detect the agreement of these two different notions of curvatures

in more general spaces, for instance, a geodesic length space. Spaces bounded by Alexandrov curvature have

been deeply studied by Burago, Gromov, Perel’man (see, e.g., [7, 8]), Berestovskii [2–5], etc. Many famous

conjectures and open problems have been solved on Alexandrov spaces. The paramount result is Perel’man’s

stability theorem, which plays a role in his work on the geometrization conjecture. In contrast, the study of

Busemann curvature, especially nonnegative curvature in the sense of Busemann, is surprisingly poised.

Here we strive to demonstrate a criterion to judge when those two curvatures are actually equivalent by

introducing an angle called an average angle. This term is explained in the next section. The following is the

main result.

Theorem (Main theorem). A geodesic length space X with curvature bounded above (resp. below) in the sense

of Alexandrov is equivalent to X with curvature bounded above (resp. below) in the sense of Busemann if and

only if the sum of adjacent average angles ≥ π (resp. ≤ π ).

This result might provide an initial step to generalize some theorems in terms of Alexandrov curvature

to ones in terms of Busemann curvature.

The strategy of the proof is greatly inspired by Theorem 4.3.5 [7, p. 116]. However, their strategy only

applies for spaces with curvature defined in the sense of Alexandrov. Therefore, for spaces with curvature
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defined in the sense of Busemann, we shall extend the idea of the comparison angle in Section 2 to produce the

triangle condition, the monotonicity property, and the angle property.

I would like to thank the referee for his/her thorough review and highly appreciated comments and

suggestions.

2. Basic concepts

Let (X, d) be a metric space. The symbol B(p, δp) is used to denote the metric ball of small radius δp > 0

centered at a point p ∈ X . We will denote by |·, ·| or d(·, ·) the distance function.

The metric space (X, d) is called an intrinsic metric space if for any x, y ∈ X , δ > 0, there exists a finite

sequence of points z0 = x, z1, . . . , zk = y such that |zizi+1| < δ (0 ≤ i ≤ k−1) and
∑k−1

i=0 |zizi+1| < |xy|+δ . A

geodesic is a curve whose length is equal to the distance between its ends. A collection of three points p, q, r ∈ X

and three geodesic pq, pr, qr is called a triangle in X and is denoted by ∆pqr .

Fix a real number k . A k -plane M2
k is a 2-dimensional complete simply-connected Riemannian manifold

of curvature k . Place a triad of points p, q, r in a space X with intrinsic metric. We associate a triangle ∆̃pqr

on M2
k with vertices p̃, q̃, r̃ and sides of lengths |p̃q̃| = |pq| , |p̃r̃| = |pr| and |q̃r̃| = |qr| . It is well known that

for k ≤ 0, the triangle ∆̃pqr always exists and is unique up to a rigid motion; for k > 0, it exists by assuming

that the perimeter of ∆pqr is less than 2π/
√
k . Let ∡̃pqr denote that angle (i.e. comparison angle) at the

vertex q̃ of the triangle ∆̃pqr .

Definition 2.1 (Alexandrov triangle condition). A geodesic length space (X, d) is said to be a space with

curvature bounded above in the sense of Alexandrov if in some neighborhood of each point the following holds:

For every ∆pqr and every point s ∈ qr , one has |ps| ≤ |p̃s̃| where s̃ is the point on the side q̃r̃ of a

comparison triangle ∆̃pqr such that |qs| = |q̃s̃| .
To define the curvature bounded below in the sense of Alexandrov, just reverse the inequality above.

Definition 2.2. A geodesic length space (X, d) is said to be a space with nonnegative curvature in the sense of

Busemann if for every p ∈ X there exists δp > 0 such that for all x, y, z ∈ B(p, δp) and for midpoints m and

n on the sides xy and xz , we have the inequality

d(m,n) ≥ 1

2
d(y, z).

In other words, for any two geodesics α : [0, a] → X and β : [0, b] → X with α(0) = β(0) = x ∈ B(p, δp)

and with endpoints α(a), β(b) ∈ B(p, δp) , we have

d

(
α
(a
2

)
, β

(
b

2

))
≥ 1

2
d(α(a), β(b)).

The space with nonpositive curvature in the sense of Busemann can be defined by just reversing the

inequalities.

Now we give an interpretation of Busemann curvature in view of the comparison triangle.

Definition 2.3 (Busemann triangle condition). Let ∆ be a geodesic triangle in a geodesic length space X that

consists of three points p, q, r ∈ X . Let k be a real number.∗ Let ∆̃ ⊂ M2
k be a comparison triangle for ∆ .

∗The perimeter of ∆ is less than 2π/
√
k when k > 0 .
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Then ∆ is said to have Busemann curvature ≤ k if for any two midpoints m,n on two sides of ∆ and the

corresponding points m̃, ñ on two sides of ∆̃ , the inequality

d(m,n) ≤ d(m̃, ñ)

holds.

For the definition of Busemann curvature ≥ k , just reverse the above inequality.

The angle is defined in terms of the law of cosines.

Definition 2.4. Given ϵ > 0 , let α : [0, ϵ) → X and β : [0, ϵ) → X be two paths in a length space X emanating

from the same point p = α(0) = β(0) . We define the angle ∠(α, p, β) between α and β as

∠(α, p, β) = lim
s,t→0

∠̃(α(s), p, β(t)),

if the limit exists, where

∠̃(α(s), p, β(t)) =: arccos
s2 + t2 − d(α(s), β(t))2

2st
.

It is well known that the following condition is equivalent to Definition 2.1.

Definition 2.5 (Alexandrov monotonicity condition). A geodesic length space X is said to be a space with

curvature bounded above (resp. below) in the sense of Alexandrov if it can be covered by neighborhoods such

that, for two any shortest segments α and β contained in the neighborhood (and starting from the same point

p), the corresponding function is nondecreasing (resp. nonincreasing) in each variable s and t .

Since the existence of angles between geodesics as defined in Definition 2.5 may not be valid with respect

to Busemann curvature, we introduce the following new angles based on the Busemann triangle condition.

Definition 2.6 (Average angle). Suppose X is a length space. Let α : [0, a] → X and β : [0, b] → X be

two geodesic segments with p = α(0) = β(0) . The average angle between α and β at p is defined to be

∡αpβ = lim
n→∞

Aα,β

(
a
2n ,

b
2n

)
if the limit of the sequence exists, where the comparison angle

∡̃αpβ = Aα,β(a, b) := arccos
a2 + b2 − d(α(a), β(b))2

2ab
.

Let q be an inner point of a shortest path pr and qs be a shortest path. The sum of adjacent average

angles is at least π means ∡pqs+ ∡sqr ≥ π .

3. Proof of the main theorem

The proof of the main theorem depends on two properties of average angles: the Busemann monotonicity

property and the Busemann angle property, which can be deduced from the Busemann triangle condition.

Lemma 3.1 (Busemann monotonicity property). The Busemann triangle condition implies the monotonicity

of the sequence of average angles, that is, if X is a geodesic length space with curvature bounded above (resp.

below) in the sense of Busemann, the corresponding sequence {Aα,β

(
a
2n ,

b
2n

)
}n∈N as defined in Definition 2.6

is nonincreasing (resp. nondecreasing) with a and b remaining fixed.
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Proof Without loss of generality, it suffices to prove the case with curvature bounded above. Assume the

Busemann triangle condition holds. Consider a hinge of two geodesics α : [0, a] → X and β : [0, b] → X starting

from the same point p ∈ X . Let m and n be the midpoints of α and β such that |p̃m̃| = a/2 and |p̃ñ| = b/2.

Then the triangle condition implies |mn| ≤ |m̃ñ| . This shows ∡̃mpn ≤ ∡̃αpβ . Arguing inductively, it follows

that the nonincreasing condition of the angles holds.

Corollary 3.1. Let X be a geodesic length space with the Busemann curvature bounded below (resp. above).

If a sequence of pairs of geodesics {piqi, piri} converge uniformly to the geodesics pq and pr , then

∡qpr ≤ lim
i→∞

inf ∡qipiri (resp.∡qpr ≥ lim
i→∞

sup∡qipiri).

Proof Let A and Ai be the angles ∡qpr and ∡qipiri . Let α, β be the corresponding geodesics such that

p = α(0) = β(0) and q = α(a), r = β(b). Pick a big natural number N , and let m ∈ pq, n ∈ pr and

m′ ∈ piqi, n
′ ∈ piri be the points at the distance a/2N and b/2N from p and pi respectively. Denote by

θ(N) and θi(N) the comparison angles ∡̃mpn and ∡̃m′pin
′ . By the uniform convergence of {piqi, piri} ,

θ(N) = lim
i→∞

θi(N) for fixed N . The definition of average angles implies A = lim
N→∞

θ(N) and Ai = lim
N→∞

θi(N).

Apply Lemma 3.1; the sequences θ(n) and θi(n) are nondecreasing. Therefore, θi(N) ≤ Ai for all N . It

follows that θ(N) = lim
i→∞

θi(N) ≤ lim
i→∞

inf Ai . Hence, ∡qpr = A = lim
N→∞

θ(N) ≤ lim
i→∞

inf Ai = lim
i→∞

inf qipiri .

If X is of the Busemann curvature bounded above, we can prove it in a similar manner by applying the

nonincreasing angular property.

Lemma 3.2 (Busemann angle property). If a geodesic length space X has curvature bounded above in the sense

of Busemann, then the following average angle property holds:

If every point for X has a neighborhood such that for every triangle ∆pqr contained in this neighborhood,

then average angles ∡qpr,∡rqp , and ∡pqr are well defined and satisfy the inequalities

∡qpr ≤ ∡̃qpr,∡rqp ≤ ∡̃rqp,∡pqr ≤ ∡̃pqr,

where ∡̃qpr, ∡̃rqp , and ∡̃pqr are comparison angles.

Likewise, if X has curvature bounded below in the sense of Busemann, then the above inequalities will be

reversed.

Proof Without loss of generality, we only prove the case with curvature bounded above. Let us consider a

triangle ∆pqr . Let the side pq, pr be the geodesics α, β with p = α(0) = β(0) and α(a) = q, β(b) = r . By the

monontonicity of average angles proved in Lemma 3.1,

∡qpr := ∡αpβ = lim
n→∞

Aα,β

(
a

2n
,
b

2n

)
≤ ∡̃αpβ.

Proof [Proof of the main theorem] Apply the Alexandrov monotonicity condition and Theorem 2.3.2 [9, p.

57]; the necessity is clear.

Let us show the sufficiency. Assume X is geodesic length space with curvature bounded above in the

sense of Busemann. Consider a triangle ∆pqr and a point s in its side pr . Note that the sum of adjacent

average angles is not less than π , i.e. ∡qsp+∡qsr ≥ π . Place the comparison triangles ∡̃psq and ∡̃rsq along

the side q̃s̃ . By Lemma 3.2, we have ∡̃psq + ∡̃rsq ≥ π . Consider a comparison triangle ∆̃p1q1r1 for ∆pqr
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such that |ps| = |p̃1s̃1| and |rs| = |r̃1s̃1| . Then apply Alexandrov’s lemma [1], and it follows that |q̃1s̃1| ≥ |qs| .
Hence, the Busemann triangle condition implies the triangle condition defined in the sense of Alexandrov.

To complete the proof for spaces with Busemann curvature bounded below, it suffices to reverse the

inequalities above and apply the second part of Lemma 3.2.

Corollary 3.2. Let X be a geodesic length space with curvature bounded below in the sense of Busemann. If

the sum of adjacent angles is at most π , and pa, pb, pc are geodesics, then ∡apb+ ∡bpc+ ∡cpa ≤ 2π.

Proof Let d ∈ ap . By the main theorem, ∡adb+∡adc+∡bdc ≤ (∡adb+∡bdp)+ (∡adc+∡cdp) ≤ 2π . Then

apply Corollary 3.1 when d → p if the geodesics pb, pc are unique. Otherwise, we replace the points b and c

with points in pb and pc and repeat the argument.
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