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Abstract: Let (X, d,⪯) be a partially ordered ultrametric space and f : X → X a single valued mapping. We obtain

sufficient conditions for the existence of a fixed point for the strongly contractive mapping f . We also investigate the

existence of a fixed point for strongly contractive mappings defined on partially ordered non-Archimedean normed spaces

under the same conditions. Finally, we give some examples to discuss the assumptions of the theorems.

Key words: Fixed point, spherically complete ultrametric space, non-Archimedean normed space, strongly contractive

mapping, partially ordered set

1. Introduction and preliminaries

Banach’s contraction principle [3] is a fundamental and useful tool in mathematics. A number of authors have

defined strongly contractive type mappings [8] on a complete metric space X that are generalizations of the

Banach’s contraction principle. Because of its simplicity it has been used in solving existence problems in many

branches of mathematics [12]. Ran and Reurings [7] initiated the trend of weakening the contraction condition

by considering single valued mappings on a partially ordered metric space.

In this paper, motivated by the work of Ran and Reurings[7], we introduce two new strongly contractive

conditions for mappings on spherically complete ultrametric spaces and non-Archimedean normed spaces and,

using these strongly contractive conditions, obtain some fixed point theorems. We first recall some basic notions

in ultrametric spaces and non-Archimedean normed spaces. For more details the reader is referred to [11].

Van Rooij [11] introduced the concept of an ultrametric space as follows:

Let (X, d) be a metric space. Then (X, d) is called an ultrametric space if the metric d satisfies the strong

triangle inequality, i.e. for all x, y, z ∈ X :

d(x, y) ≤ max{d(x, z), d(y, z)}.

In this case, d is called ultrametric. An ultrametric space (X, d) is said to be spherically complete if every

shrinking collection of balls in X has a nonempty intersection. A non-Archimedean valued field is a field

K equipped with a function (valuation) | · | from K into [0,∞) such that |x| = 0 if and only if x = 0,

|x+ y| ≤ max{|x|, |y|} and |xy| = |x||y| for all x, y ∈ K . Clearly, |1| = | − 1| = 1 and |n.1K| ≤ 1 for all n ∈ N .
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An example of a non-Archimedean valuation is the mapping | · | taking each point of an arbitrary field

but 0 into 1 and |0| = 0. This valuation is called trivial. The set {|x| : x ∈ K, x ̸= 0} is a subgroup of the

multiplicative group (0,+∞) and it is called the value group of the valuation. The valuation is called trivial,

discrete, or dense accordingly as its value group is {1} , a discrete subset of (0,+∞), or a dense subset of

(0,∞), respectively.

Definition 1 ([11]) Let K be a non-Archimedean valued field. A norm on a vector space X over K is a map

∥.∥ from X into [0,∞) with the following properties:

1) ∥x∥ ̸= 0 if x ∈ E \ {0} ;

2) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} (x, y ∈ X) ;

3) ∥αx∥ = |α|∥x∥ (α ∈ K, x ∈ X).

Since every ultrametric space is a metric space, all of the proved theorems in metric fixed point theory are

established. If f : X → X , then f is said to be strongly contractive if whenever x and y are distinct points in

X ,

d(fx, fy) < d(x, y).

It is known that a strongly contractive mapping in a complete metric space need not have a fixed point. For

more details the reader is referred to [1, 6]. Generally to prove fixed point theorems in metric spaces, for maps

satisfying strongly contractive conditions, one has to assume the continuity of maps and compactness of spaces.

However, in spherically complete ultrametric spaces, the continuity of maps are not necessary to obtain fixed

points. In 2001, Gajic [2] proved the following fixed point theorem for a class of generalized strongly contractive

mapping on ultrametric spaces.

Theorem 1 ([2]) Let (X, d) be a spherically complete ultrametric space. If f : X → X is a mapping such that

d(fx, fy) < max{d(x, y), d(x, fx), d(y, fy)} (x, y ∈ X,x ̸= y),

then f has a unique fixed point in X .

Theorem 1 was proved in [2] using Zorn’s Lemma. Kirk and Shahzad [4] give a constructive proof that seems

to be more illuminating. Specifically, the conclusion holds in every ball of the form B(x, d(x, fx)).

Theorem 2 ([4]) Suppose (X, d) is a spherically complete ultrametric space and suppose f : X → X is strongly

contractive. Then every ball of the form B(x, d(x, fx)) contains a fixed point of f .

In 1993, Petalas and Vidales [5] proved that every strongly contractive mapping on a spherically complete

non-Archimedean normed space has a unique fixed point.

A very different and unexpected application of ultrametric dynamics is found in the determination of

solutions of the famous Fermat equation in square matrices with entries in a p-adic field [9]. Moreover, methods

of ultrametric dynamics find applications in the study of differential equations over rings of power series, as in

the work of van der Hoeven, for example see his lecture notes [10]. Thus it is quite natural to consider various

results of fixed point in order to address the needs of these applied sciences.
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2. Main results

In this section, first we begin with the following theorem that gives the existence of a fixed point (not necessarily

unique) in partially ordered ultrametric spaces for the single valued strongly contractive mappings, where a

partial order on a nonempty set X is a binary relation ⪯ over X satisfying the following conditions:

1) x ⪯ x for all x ∈ X (reflexivity);

2) x ⪯ y and y ⪯ x imply x = y for all x, y ∈ X (antisymmetry);

3) x ⪯ y and y ⪯ z imply x ⪯ z for all x, y, z ∈ X (transitivity).

The set X with a partial order ⪯ is called a partially ordered set and it is denoted by the pair (X,⪯). If

(X,⪯) is a partially ordered set and x, y ∈ X , then x and y are said to be comparable elements of X if either

x ⪯ y or y ⪯ x .

Definition 2 Suppose (X, d,⪯) is a partially ordered ultrametric space and f : X → X a mapping. We would

say that the B(x, r) is partially f -invariant if for any u ∈ B that u is comparable with x (with respect to ⪯),

fu ∈ B(x, r).

Theorem 3 Let (X, d,⪯) be a partially ordered ultrametric space, and f : X → X satisfying the following

conditions:

(H1) If x, y ∈ X and x ⪯ y , then fx ⪯ fy ;

(H2) d(fx, fy) < d(x, y) , for all x, y ∈ X,x ⪯ y, x ̸= y ;

(H3) The quadruple (X, f, d,⪯) has the following property:

If {xn} is a nondecreasing sequence in X and
{
B(xn, rn)} a nonincreasing sequence of closed balls in

X, then there is a subsequence {xnk
} of {xn} and an upper bound z ∈ X of the sequence {xnk

} in∩∞
k=1 B(xnk

, rnk
) such that z ⪯ fz .

Then for any x ∈ X with x ⪯ fx , the closed ball B(x, d(x, fx)) contains a fixed point of f .

Proof We first assert that for all z ∈ X , the ball B(z, d(z, fz)) is partially f - invariant. To see this, let

z ∈ X , r = d(z, fz) and let u ∈ B(z, r) such that u and z are comparable with respect to ⪯ ; then

d(fu, z) ≤ max{d(fu, fz), d(z, fz)}

≤ max{d(u, z), d(z, fz)}

= r.

Now let x0 ∈ X and x0 ⪯ fx0 . We shall show that B(x0, d(x0, fx0)) contains a fixed point of f . Assume that

f has no fixed point in B(x0, d(x0, fx0)). Let x1 = x0 , r1 = d(x1, fx1), and

λ1 = inf{d(x, fx) | x ∈ B(x1, r1) and x1 ⪯ x ⪯ fx}.
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fnx1 belongs to B(x1, r1) and fnx1 ⪯ fn+1x1 for all n ∈ N , and so d(fnx1, f
n+1x1) < r1 . Thus λ1 < r1 .

Now let εn be a sequence of positive numbers such that limn→∞ εn = 0. We can choose x2 ∈ B(x1, r1) such

that

x1 ⪯ x2 ⪯ fx2, r2 := d(x2, fx2) < min{r1, λ1 + ε1}.

Let

λ2 = inf{d(x, fx) | x ∈ B(x2, r2) and x2 ⪯ x ⪯ fx}.

As seen above, we have λ2 < r2 , and select x3 ∈ B(x2, r2) with

x2 ⪯ x3 ⪯ fx3, r3 := d(x3, fx3) < min{r2, λ2 + ε2}.

Having defined xn ∈ X , let

λn = inf{d(x, fx) | x ∈ B(xn, rn) and xn ⪯ x ⪯ fx};

since we assumed that f has no fixed point in B(x, d(x, fx)), we have λn < rn , and select xn+1 ∈ B(xn, rn)

with

xn ⪯ xn+1 ⪯ fxn+1, rn+1 := d(xn+1, fxn+1) < min{rn, λn + εn}.

The sequence {xn} is nondecreasing and {B(xn, rn} is a descending sequence of balls. Thus there exists a

subsequence {xnk
} of {xn} and z ∈

∩∞
k=1 B(xnk

, rnk
) such that z ⪯ Tz and xnk

⪯ z for all k ∈ N . Now

since {rn} is decreasing, r := limn→∞ rn exists. Furthermore, λn is nondecreasing and bounded above, and so

λ := limn→∞ λn also exists. Then for each n ,

d(z, fz) ≤ max{d(z, xnk
), d(xnk

, fz)} ≤ rnk
.

Moreover,

λnk
≤ d(z, fz) ≤ r ≤ rnk+1

≤ λnk
+ εnk

, (k ∈ N).

Letting k → ∞ , we see that d(z, fz) = λ = r . Set

a = inf{d(x, fx) | x ∈ B(z, d(z, fz)) : z ⪯ x ⪯ fx}.

Since z ∈ B(xnk
, rnk

) and xnk
⪯ z for all k ∈ N , we conclude that if x ∈ B(z, d(z, fz)) and z ⪯ x ⪯ fx , then

d(x, fx) ≤ d(z, fz) ≤ rnk
;

hence, a ≤ rnk
. Moreover, λnk

≤ a since every closed ball in X is partially f -invariant. Thus

a = inf{d(x, fx) | x ∈ B(z, d(z, fz)) : z ⪯ x ⪯ fx} = r = d(z, fz).

Now fnz belongs to B(z, d(z, fz)) and fnx ⪯ fn+1x for all n ∈ N . Thus

d(fnz, fn+1z) < d(z, fz), ∀n ∈ N

this is contradiction. Hence, f has a fixed point in B(z, d(z, fz)). 2
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Theorem 4 Suppose (X, ∥ · ∥) is a non-Archimedean vector space over a non-Archimedean valued field K and

f : X → X is a mapping such that the conditions (H1,H2,H3) in Theorem 3 hold. Then for every x ∈ X with

x ⪯ fx , the ball B(x, ∥x− fx∥) contains a fixed point of f .

Proof The proof of this theorem is similar to the proof of Theorem 3. 2

We will give an example to show this fact where the property (H3) in Theorem 3 and 4 is necessary.

Example 1 Let N be the set of all positive integers, and d be an ultrametric on N defined by

d(m,n) :=

{
0, m = n,
max{1 + 1

m , 1 + 1
n}, m ̸= n,

and consider an order relation ⪯ defined by

x ⪯ y ⇔ ((x and y are odd and x ≤ y) ∨ (x is even and y = x)).

Let k be an even positive integer and define f : N → N by

fn :=

{
n+ k, n is odd,
1, n is even.

Then f is a nondecreasing strongly contractive mapping with respect to the defined order on N and it is not

difficult to show that f has the property (H1, H2) and does not satisfy the property (H3). Moreover, f has no

fixed points in N .

Definition 3 Let X be the space ℓ∞ over a non-Archimedean valued field K and x, y ∈ X . We say that y is

a sub-member of x if y = (0, 0, . . . , 0, xn, 0, . . . , 0, xm, . . .) , where x = (x1, x2, . . .) . If y is a submember of x ,

then we write y ⊂ x .

Example 2 Let X be the space c0 over a non-Archimedean valued field K with the valuation of K discrete and

π ∈ K with |π| > 1. Let z ∈ B(0, 1) be such that for each n ∈ N , zπn ⊂ zπ , where zπn = ( z1
πn+1 ,

z2
πn+2 ,

z3
πn+3 , . . .).

Define
x ⪯ y ⇐⇒ {(x, y ∈ B(0, 1), xπ ⊂ yπ ⊂ zπ}

and for each n ∈ N ,

{(xπn ⊂ xπ, yπn ⊂ yπ) ∨ (x = y)}.

Suppose f : c0 → c0 is the mapping defined by

f(x) =

{
(x1

π , x2

π2 ,
x3

π3 , . . .), x ∈ B(0, 1),
2x, otherwise.

f has fixed point 0. We want to show that properties H1 , H2 , and H3 hold. Obviously H1 and H2 hold;

we show that H3 holds also. Let {xn} be a sequence of nondecreasing points in X and {B(xn, rn)} be a

nonincreasing sequence of closed balls. If for each n ∈ N , xn = xn+1 , then we are finished. Without loss of

generality, we may assume that for each n ∈ N , xn ̸= xn+1 . Let i ∈ N be arbitrary. If there exist n ∈ N ,

such that xn
i ̸= 0, set vi = xn

i , otherwise set vi = 0, and put v = (v1, v2, v3, . . .). For each n ≤ m ∈ N ,

∥xn − xm∥ ≤ rn , because {B(xn, rn)} is a family of descending balls. We claim that ∥xn − v∥ ≤ rn . Suppose
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there exists n ∈ N such that ∥xn − v∥ > rn . Therefore, there exists i ∈ N such that |xn
i − vi| > rn . By

definition of v there exists m > n such that vi = xm
i . Thus |xn

i − xm
i | > rn ; this is a contradiction, because

∥xn−xm∥ ≤ rn . Therefore, v ∈ ∩B(xn, rn). Because for each n ∈ N , xn ⊂ xn
π ⊂ zπ and therefore v ⊂ vπ ⊂ zπ

and since xn
πm ⊂ xn for each m,n ∈ N , and so v ⊂ vπm , for each m ∈ N , and so v ⪯ fv and H3 holds.
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