On the attached prime ideals of local cohomology modules defined by a pair of ideals

Zohreh HABIBI ${ }^{1, *}$, Maryam JAHANGIRI ${ }^{2}$, Khadijeh AHMADI AMOLI ${ }^{1}$
${ }^{1}$ Payame Noor University, Tehran, Iran
${ }^{2}$ Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

| Received: 12.03 .2015 | Accepted/Published Online: 14.04 .2016 | • | Final Version: 16.01 .2017 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

Let I and J be two ideals of a commutative Noetherian ring R and M be an R-module of dimension d. For each $i \in \mathbb{N}_{0}$ let $H_{I, J}^{i}(-)$ denote the i-th right derived functor of $\Gamma_{I, J}(-)$, where $\Gamma_{I, J}(M):=\left\{x \in M: I^{n} x \subseteq\right.$ $J x$ for $n \gg 1\}$. If R is a complete local ring and M is finite, then attached prime ideals of $\mathrm{H}_{I, J}^{d-1}(M)$ are computed by means of the concept of co-localization. Moreover, we illustrate the attached prime ideals of $\mathrm{H}_{I, J}^{t}(M)$ on a nonlocal ring R, for $t=\operatorname{dim} M$ and $t=\operatorname{cd}(I, J, M)$, where $\operatorname{cd}(I, J, M)$ is the last nonvanishing level of $\mathrm{H}_{I, J}^{i}(M)$.

Key words: Local cohomology modules with respect to a pair of ideals, attached prime ideals, co-localization

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring and M an R-module and I and J stand for two ideals of R. For all $i \in \mathbb{N}_{0}$ the i-th local cohomology functor with respect to (I, J), denoted by $\mathrm{H}_{I, J}^{i}(-)$, is defined by Takahashi et al. in [11] as the i-th right derived functor of the (I, J)-torsion functor $\Gamma_{I, J}(-)$, where

$$
\Gamma_{I, J}(M):=\left\{x \in M: I^{n} x \subseteq J x \text { for } n \gg 1\right\}
$$

This notion coincides with the ordinary local cohomology functor $\mathrm{H}_{I}^{i}(-)$ when $J=0$ (see [3]).
The main motivation for this generalization comes from the study of a dual of ordinary local cohomology modules $\mathrm{H}_{I}^{i}(M)([10])$. Basic facts and more information about local cohomology defined by a pair of ideals can be obtained from $[4,5,11]$.

The second section of this paper is devoted to studying the attached prime ideals of local cohomology modules with respect to a pair of ideals by means of co-localization. The concept of co-localization was introduced by Richardson in [9].

Let (R, \mathfrak{m}) be local and M be a finite R-module of dimension d. If c is a nonnegative integer such that $\mathrm{H}_{I, J}^{i}(R)=0$ for all $i>c$ and $\mathrm{H}_{I, J}^{c}(R)$ is representable, then we illustrate the attached prime ideals of ${ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{c}(M)$ (see Theorem 2.6). In addition, if R is complete, then we make use of Theorem 2.6 to prove that in a special case

$$
\operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M)\right) \subseteq T \cup \operatorname{Assh}(M) \text { and } T \subseteq \operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M)\right)
$$

[^0]
HABIBI et al./Turk J Math

where

$$
T=\{\mathfrak{p} \in \operatorname{Supp}(M): \operatorname{dim} M / \mathfrak{p} M=d-1, J \subseteq \mathfrak{p} \text { and } \sqrt{I+\mathfrak{p}}=\mathfrak{m}\}
$$

(see Theorem 2.8).
In [4, Theorem 2.1] the set of attached prime ideals of $\mathrm{H}_{I, J}^{\operatorname{dim} M}(M)$ was computed on a local ring. We generalize this theorem to the nonlocal case (see Proposition 2.13). The authors in [6, 2.4] specified a subset of attached prime ideals of ordinary top local cohomology module $\mathrm{H}_{I}^{\mathrm{cd}(I, M)}(M)$. We improve it for $\mathrm{H}_{I, J}^{\mathrm{cd}(I, J, M)}(M)$ over a not necessarily local ring, where $\operatorname{cd}(I, J, M)=\sup \left\{i \in \mathbb{N}_{0}: \mathrm{H}_{I, J}^{i}(M) \neq 0\right\}$ with the convention that $\operatorname{cd}(I, M)=\operatorname{cd}(I, 0, M)$ (see Theorem 2.15).

2. Attached prime ideals

In this section we study the set of attached prime ideals of local cohomology modules with respect to a pair of ideals.

Remark 2.1 Following [9], for a multiplicatively closed subset S of the local ring (R, \mathfrak{m}), the co-localization of the R-module M relative to S is defined to be the $S^{-1} R$-module $S_{-1}(M):=D_{S^{-1} R}\left(S^{-1} D_{R}(M)\right)$, where $D_{R}(-)$ is the Matlis dual functor $\operatorname{Hom}_{R}\left(-, \mathrm{E}_{R}(R / \mathfrak{m})\right)$. If $S=R \backslash \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$ we write ${ }^{\mathfrak{p}} M$ for $S_{-1}(M)$.

Richardson in [9, 2.2] proved that if M is a representable R-module, then so is $S_{-1}(M)$ and $\operatorname{Att}\left(S_{-1} M\right)=$ $\left\{S^{-1} \mathfrak{p}: \mathfrak{p} \in \operatorname{Att}(M), \mathfrak{p} \cap S=\emptyset\right\}$. Therefore, in order to get some results about attached prime ideals of a module, it is convenient to study the attached prime ideals of the co-localization of it.

Lemma 2.2 Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R, and $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\mathfrak{a} \subseteq \mathfrak{p}$. Let $R^{\prime}=R / \mathfrak{a}$ and $\mathfrak{p}^{\prime}=\mathfrak{p} / \mathfrak{a}$. Then for any R^{\prime}-module X and $R_{\mathfrak{p}^{\prime}}^{\prime}$-module Y, the following isomorphisms hold:
(i) $D_{R}(X) \cong D_{R^{\prime}}(X)$ as R-modules.
(ii) $D_{R}(X)_{\mathfrak{p}} \cong D_{R^{\prime}}(X)_{\mathfrak{p}^{\prime}}$ as $R_{\mathfrak{p}}$-modules.
(iii) $D_{R_{\mathfrak{p}}}(Y) \cong D_{R_{p^{\prime}}^{\prime}}(Y)$ as $R_{\mathfrak{p}}$-modules.

Proof (i) By using [3, Lemma 10.1.15], we get

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(X, \mathrm{E}_{R}(R / \mathfrak{m})\right) & \cong \operatorname{Hom}_{R}\left(X \otimes_{R^{\prime}} R^{\prime}, \mathrm{E}_{R}(R / \mathfrak{m})\right) \\
& \cong \operatorname{Hom}_{R^{\prime}}\left(X, \operatorname{Hom}_{R}\left(R^{\prime}, \mathrm{E}_{R}(R / \mathfrak{m})\right)\right) \\
& \cong \operatorname{Hom}_{R^{\prime}}\left(X,\left(0:_{\mathrm{E}_{R}(R / \mathfrak{m})} \mathfrak{a}\right)\right) \\
& \cong \operatorname{Hom}_{R^{\prime}}\left(X, \mathrm{E}_{R^{\prime}}(R / \mathfrak{m})\right)
\end{aligned}
$$

(ii) It is clear, by (i).
(iii) It is enough to apply (i), by substituting R and X with $R_{\mathfrak{p}}$ and Y, respectively.

The following lemmas will be used in the rest of the paper.

Lemma 2.3 Let T be an R-linear covariant right exact functor on the category of R-modules and R homomorphisms. Then there is a natural equivalence of functors, $T(-) \cong T(R) \otimes_{R}-$ on the category of finite R-modules.

Proof See [3, 6.1.8].

Lemma 2.4 Let (R, \mathfrak{m}) be a local ring and M be a nonzero finite R-module of dimension d. Then the following statements are equivalent:
(i) $H_{I, J}^{d}(M)=0$,
(ii) $\operatorname{dim} \hat{R} /(I \hat{R}+\mathfrak{p})>0$, for any prime ideal \mathfrak{p} of $\operatorname{Supp}{ }_{\hat{R}}\left(\hat{R} \otimes_{R} M / J M\right)$ satisfying $\operatorname{dim} \hat{R} / \mathfrak{p}=d$, where \hat{R} denotes the $\mathfrak{m}-$ adic completion of R.
Proof See [4, Theorem 2.4].

Lemma 2.5 Let M and N be two R-modules such that M has a secondary representation. Then $M \otimes_{R} N$ has a secondary representation and $\operatorname{Att}_{R}\left(M \otimes_{R} N\right) \subseteq \operatorname{Att}_{R}(M) \cap \operatorname{Supp}{ }_{R}(N)$.
Proof See [12, 3.1].
In [8, 2.1 and 2.2] the following theorems have been proved for the attached prime ideals of $\mathrm{H}_{I}^{d}(R)$ and $\mathrm{H}_{I}^{d-1}(R)$, where $d=\operatorname{dim} R$. Here we generalize these theorems for the local cohomology modules of M with respect to a pair of ideals when M is a finite R-module with $\operatorname{dim} M=d$.

Theorem 2.6 Let (R, \mathfrak{m}) be a local ring, M be a finite R-module, and $\mathfrak{p} \in \operatorname{Spec}(R)$. Assume that $c=$ $\operatorname{cd}(I, J, R)$ and $H_{I, J}^{c}(R)$ is representable. Then

1. Att $R_{\mathfrak{p}}\left({ }^{\mathfrak{p}} H_{I, J}^{c}(M)\right) \subseteq\left\{\mathfrak{q} R_{\mathfrak{p}}: \operatorname{dim} M / \mathfrak{q} M \geq c, \mathfrak{q} \subseteq \mathfrak{p}\right.$, and $\left.\mathfrak{q} \in \operatorname{Spec}(R)\right\}$.
2. If R is complete, then

$$
\begin{aligned}
\operatorname{Att} R_{\mathfrak{p}}\left({ }^{\mathfrak{p}} H_{I, J}^{\operatorname{dim} M}(M)\right)=\{ & \mathfrak{q} R_{\mathfrak{p}}: \mathfrak{q} \in \operatorname{Supp}(M), \operatorname{dim} M / \mathfrak{q} M=\operatorname{dim} M, J \subseteq \mathfrak{q} \subseteq \mathfrak{p} \\
& \text { and } \sqrt{I+\mathfrak{q}}=\mathfrak{m}\}
\end{aligned}
$$

Proof

(1) Let $\mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{c}(M)\right)$. By Lemma 2.5 and Remark 2.1, we have $\mathrm{H}_{I, J}^{c}(M)$ is representable and $\operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{c}(M)\right)=\left\{\mathfrak{q} R_{\mathfrak{p}}: \mathfrak{q} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{c}(M)\right)\right.$ and $\left.\mathfrak{q} \subseteq \mathfrak{p}\right\}$. Moreover, using Lemma 2.3 and [1, 2.11]

$$
\operatorname{Att}\left(\mathrm{H}_{I, J}^{c}(M / \mathfrak{q} M)\right)=\operatorname{Att}\left(\mathrm{H}_{I, J}^{c}(M)\right) \cap \operatorname{Supp}(R / \mathfrak{q})
$$

This implies that $\mathrm{H}_{I, J}^{c}(M / \mathfrak{q} M) \neq 0$ and consequently $\operatorname{dim} M / \mathfrak{q} M \geq c$.
(2) Let $\mathfrak{p} \in \operatorname{Supp}(M)$. Put $d:=\operatorname{dim} M, \bar{R}=R / \operatorname{Ann}{ }_{R} M$, and

$$
T:=\left\{\mathfrak{q} R_{\mathfrak{p}}: \mathfrak{q} \in \operatorname{Supp}(M), \operatorname{dim} M / \mathfrak{q} M=d, J \subseteq \mathfrak{q} \subseteq \mathfrak{p} \text { and } \sqrt{I+\mathfrak{q}}=\mathfrak{m}\right\}
$$

Since $\operatorname{dim} \bar{R} M=\operatorname{dim}{ }_{R} M,[11,2.7]$ and Lemma 2.2 imply that ${ }^{\bar{p}} \mathrm{H}_{I \bar{R}, J \bar{R}}^{d}(M) \cong{ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d}(M)$, as $R_{\mathfrak{p}}$-modules. Therefore, by $[3,8.2 .5], \mathfrak{q} \in \operatorname{Att}{\overline{R_{\overline{\mathfrak{p}}}}}\left(\overline{\mathfrak{P}} \mathrm{H}_{I \bar{R}, J \bar{R}}^{d}(M)\right)$ if and only if

$$
\mathfrak{q} \cap R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}\left({ }^{\overline{\mathfrak{p}}} \mathrm{H}_{I \bar{R}, J \bar{R}}^{d}(M)\right)=\operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d}(M)\right) .
$$

Now, without loss of generality, we may assume that M is faithful and $\operatorname{dim} R=d$. If $\mathrm{H}_{I, J}^{d}(M)=0$, then Att ${ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d}(M)\right)=\emptyset$. Assume that $T \neq \emptyset$ and $\mathfrak{q} R_{\mathfrak{p}} \in T$. Since $\operatorname{dim} M / \mathfrak{q} M=\operatorname{dim} R$, we have $\operatorname{dim} R / \mathfrak{q}=d$. On the other hand, $\mathfrak{q} \in \operatorname{Supp}(M / J M)$. Thus, by Lemma 2.4, $\operatorname{dim} R /(I+\mathfrak{q})>0$, which contradicts $\sqrt{I+\mathfrak{q}}=\mathfrak{m}$. Hence $T=\emptyset$.

Now we assume that $\mathrm{H}_{I, J}^{d}(M) \neq 0$.
\supseteq : Let $\mathfrak{q} R_{\mathfrak{p}} \in T$. Since $\mathrm{H}_{I, J}^{d}(M)$ is an Artinian R-module (see [5, 2.1]), by Remark 2.1, it is enough to show that $\mathfrak{q} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d}(M)\right)$. As $M / \mathfrak{q} M$ is J-torsion with dimension d and $\sqrt{I+\mathfrak{q}}=\mathfrak{m}$, by [3, 4.2.1 and 6.1.4],

$$
\mathrm{H}_{I, J}^{d}(M / \mathfrak{q} M) \cong \mathrm{H}_{I}^{d}(M / \mathfrak{q} M) \cong \mathrm{H}_{I(R / \mathfrak{q})}^{d}(M / \mathfrak{q} M) \cong \mathrm{H}_{\mathfrak{m} / \mathfrak{q}}^{d}(M / \mathfrak{q} M) \neq 0
$$

Hence Lemma 2.3 and $[1,2.11]$ imply that $\emptyset \neq \operatorname{Att}\left(H_{I, J}^{d}(M / \mathfrak{q} M)\right)=\operatorname{Att}\left(\mathrm{H}_{I, J}^{d}(M)\right) \cap \operatorname{Supp}(R / \mathfrak{q})$. Let $\mathfrak{q}_{0} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d}(M)\right)$ be such that $\mathfrak{q} \subset \mathfrak{q}_{0}$. Thus $\operatorname{dim} M / \mathfrak{q}_{0} M<d$. On the other hand, by Remark 2.1, $\mathfrak{q}_{0} R_{\mathfrak{q}_{0}} \in \operatorname{Att}_{R_{\mathfrak{q}_{0}}}\left({ }^{\mathfrak{q}_{0}} H_{I, J}^{d}(M)\right)$ and this implies that $\operatorname{dim} M / \mathfrak{q}_{0} M \geq d$, which is a contradiction. Therefore, $\mathfrak{q}=\mathfrak{q}_{0}$.
$\subseteq:$ Let $\mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d}(M)\right)$. As we have seen in the proof of $\operatorname{part}(1), \operatorname{dim} M / \mathfrak{q} M=d$ and $\mathfrak{q} \subseteq \mathfrak{p}$. Thus, by [11, 2.7],

$$
\mathrm{H}_{I R / \mathfrak{q}, J R / \mathfrak{q}}^{d}(M / \mathfrak{q} M) \cong \mathrm{H}_{I, J}^{d}(M / \mathfrak{q} M) \neq 0
$$

Now, by Lemma 2.4, there exists $\mathfrak{r} / \mathfrak{q} \in \operatorname{Supp}\left(R / \mathfrak{q} \otimes_{R / \mathfrak{q}} \frac{M / \mathfrak{q} M}{(J R / \mathfrak{q})(M / \mathfrak{q} M)}\right)$ such that $\operatorname{dim} \frac{R / \mathfrak{q}}{\mathfrak{r} / \mathfrak{q}}=d$ and $\operatorname{dim} \frac{R / \mathfrak{q}}{I R / \mathfrak{q}+\mathfrak{r} / \mathfrak{q}}=0$. Since $\mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d}(M)\right)$, we have $\mathfrak{q} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d}(M)\right)$ and so $\mathfrak{q} \in \operatorname{Supp}(M) \cap V(J)$. Hence $\mathfrak{q} / \mathfrak{q} \in \operatorname{Supp}_{R / \mathfrak{q}}(M / \mathfrak{q} M)$ and then

$$
\operatorname{dim} R / \mathfrak{q}=\operatorname{dim} M / \mathfrak{q} M=d=\operatorname{dim} \frac{R / \mathfrak{q}}{\mathfrak{r} / \mathfrak{q}}=\operatorname{dim} R / \mathfrak{r}
$$

Therefore, $\operatorname{dim} R / \mathfrak{q}=\operatorname{dim} R / \mathfrak{r}$, which shows that $\mathfrak{q}=\mathfrak{r}$. Thus $\sqrt{I+\mathfrak{q}}=\mathfrak{m}$.

Remark 2.7 The inclusion in Theorem 2.6(1) is not an equality in general. Let the assumption be as in Theorem 2.6. Assume that $H_{I, J}^{d}(M)=0, \mathfrak{p} \in \operatorname{Min}(M)$, and $\operatorname{dim} M / \mathfrak{p} M=d$. Then $\operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} H_{I, J}^{d}(M)\right)=\emptyset$. However,

$$
\left\{\mathfrak{q} R_{\mathfrak{p}}: \operatorname{dim} M / \mathfrak{q} M=d, \mathfrak{q} \subseteq \mathfrak{p} \text { and } \mathfrak{q} \in \operatorname{Supp}(M)\right\}=\left\{\mathfrak{p} R_{\mathfrak{p}}\right\}
$$

Theorem 2.8 Let (R, \mathfrak{m}) be a complete local ring and M be a finite R-module with dimension d. Assume that $H_{I, J}^{i}(R)=0$ for all $i>d-1$ and $H_{I, J}^{d-1}(R)$ is representable. Then
1.

$$
\begin{aligned}
\operatorname{Att}_{R}\left(H_{I, J}^{d-1}(M)\right) \subseteq\{ & \mathfrak{p} \in \operatorname{Supp}(M): \operatorname{dim} M / \mathfrak{p} M=d-1, J \subseteq \mathfrak{p} \text { and } \sqrt{I+\mathfrak{p}}=\mathfrak{m}\} \\
& \cup \operatorname{Assh}(M)
\end{aligned}
$$

2.

$$
\{\mathfrak{p} \in \operatorname{Supp}(M): \operatorname{dim} M / \mathfrak{p} M=d-1, J \subseteq \mathfrak{p} \text { and } \sqrt{I+\mathfrak{p}}=\mathfrak{m}\} \subseteq \operatorname{Att}\left(H_{I, J}^{d-1}(M)\right)
$$

Proof (1) In the case where $\mathrm{H}_{I, J}^{d-1}(M)=0$ there is nothing to say. Therefore, we assume that $\mathrm{H}_{I, J}^{d-1}(M) \neq 0$. Note that, by [11, 4.8] and Lemma 2.5, $\mathrm{H}_{I, J}^{d-1}(M)$ is representable and $\operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M)\right) \subseteq \operatorname{Supp}(M)$. Now let $\mathfrak{p} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M)\right)$. Since $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d-1}(M)\right)$, by Theorem $2.6(1), \operatorname{dim} M / \mathfrak{p} M \geq d-1$.

If $\operatorname{dim} M / \mathfrak{p} M=d$, then $\operatorname{dim} R / \mathfrak{p}=d$ and so $\mathfrak{p} \in \operatorname{Assh}(M)$.
Now assume that $\operatorname{dim} M / \mathfrak{p} M=d-1$. Since $\mathfrak{p} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M)\right), \mathrm{H}_{I R / \mathfrak{p}, J R / \mathfrak{p}}^{d-1}(M / \mathfrak{p} M) \cong \mathrm{H}_{I, J}^{d-1}(M / \mathfrak{p} M) \neq$ 0. Thus, by Lemma 2.4, there exists $\mathfrak{r} / \mathfrak{p} \in \operatorname{Supp}\left(\frac{M / \mathfrak{p} M}{(J R / \mathfrak{p})(M / \mathfrak{p} M)}\right)$ such that $\operatorname{dim} \frac{R}{\mathfrak{r}}=d-1$ and $\operatorname{dim} \frac{R}{I+\mathfrak{r}}=0$. Hence $\mathfrak{r}=\mathfrak{p}, J \subseteq \mathfrak{p}$, and $\sqrt{I+\mathfrak{p}}=\mathfrak{m}$.
(2) Let $\mathfrak{p} \in \operatorname{Supp}(M), J \subseteq \mathfrak{p}, \operatorname{dim} M / \mathfrak{p} M=d-1$, and $\sqrt{I+\mathfrak{p}}=\mathfrak{m}$. Then, by Lemma 2.5 and Theorem $2.6(2), \mathrm{H}_{I, J}^{d-1}(M)$ is representable, $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Att}{ }_{R_{\mathfrak{p}}}\left({ }^{\mathfrak{p}} \mathrm{H}_{I, J}^{d-1}(M / \mathfrak{p} M)\right)$, and so $\mathfrak{p} \in \operatorname{Att}\left(\mathrm{H}_{I, J}^{d-1}(M / \mathfrak{p} M)\right)$. Now the proof is completed by considering the epimorphism $\mathrm{H}_{I, J}^{d-1}(M) \rightarrow \mathrm{H}_{I, J}^{d-1}(M / \mathfrak{p} M)$.

In the rest of the paper, following [11], we use the notation

$$
W(I, J):=\left\{\mathfrak{p} \in \operatorname{Spec}(R): I^{n} \subseteq \mathfrak{p}+J \text { for an integer } n \geq 1\right\}
$$

and

$$
\widetilde{W}(I, J):=\left\{\mathfrak{a}: \mathfrak{a} \text { is an ideal of } R ; I^{n} \subseteq \mathfrak{a}+J \text { for an integer } n \geq 1\right\}
$$

The following lemma can be proved using [11, 3.2].
Lemma 2.9 For any nonnegative integer i and R-module M,
(i) $\operatorname{Supp}\left(H_{I, J}^{i}(M)\right) \subseteq \underset{\mathfrak{a} \in \widetilde{W}(I, J)}{\bigcup} \operatorname{Supp}\left(H_{\mathfrak{a}}^{i}(M)\right)$.
(ii) $\operatorname{Supp}\left(H_{I, J}^{i}(M)\right) \subseteq \operatorname{Supp}(M) \cap W(I, J)$.

Proof

(ii) $\operatorname{By}(i), \operatorname{Supp}\left(\mathrm{H}_{I, J}^{i}(M)\right) \subseteq \operatorname{Supp}(M) \cap V(I) \subseteq \operatorname{Supp}(M) \cap W(I, J)$.

Corollary 2.10 Let M be an R-module and $c=\operatorname{cd}(I, J, R)$. Assume that M is representable or $H_{I, J}^{c}(R)$ is finite. Then

$$
\operatorname{Att}\left(H_{I, J}^{c}(M)\right) \subseteq \operatorname{Att}(M) \cap W(I, J)
$$

Proof

By [11, 4.8], [1, 2.11], Lemma 2.5, and Lemma 2.9 (ii), we have

$$
\begin{aligned}
\operatorname{Att}\left(\mathrm{H}_{I, J}^{c}(M)\right)=\operatorname{Att}\left(M \otimes \mathrm{H}_{I, J}^{c}(R)\right) & \subseteq \operatorname{Att}(M) \cap \operatorname{Supp}\left(H_{I, J}^{c}(R)\right) \\
& \subseteq \operatorname{Att}(M) \cap W(I, J)
\end{aligned}
$$

Applying the set of attached prime ideals of the top local cohomology module in [4, Theorem 2.1], we obtain another presentation for it.

HABIBI et al./Turk J Math

Proposition 2.11 Let (R, \mathfrak{m}) be a local ring and \hat{R} denotes the \mathfrak{m}-adic completion of R. Suppose that M is a finite R-module of dimension d. Then

$$
\begin{aligned}
& \operatorname{Att}_{R}\left(H_{I, J}^{d}(M)\right)=\{ \mathfrak{q} \cap R: \mathfrak{q} \in \operatorname{Supp} \\
& \hat{R} \\
&\left(\hat{R} \otimes_{R} M / J M\right), \operatorname{dim}(\hat{R} / \mathfrak{q})=d \\
&\text { and } \operatorname{dim} \hat{R} /(I \hat{R}+\mathfrak{q})=0\}
\end{aligned}
$$

Proof Denote the set on the right-hand side of the desired equality by T. It is clear that by Lemma 2.4, $\mathrm{H}_{I, J}^{d}(M)=0$ if and only if $T=\emptyset$. Assume that $\mathrm{H}_{I, J}^{d}(M) \neq 0$ and $\mathfrak{p} \in \operatorname{Supp}(M / J M)$ with the property that $\operatorname{cd}(I, R / \mathfrak{p})=d$. Let $\mathfrak{q} \in \operatorname{Ass}(M / J M)$ be such that $\mathfrak{q} \subseteq \mathfrak{p}$. Then

$$
d=\operatorname{cd}(I, R / \mathfrak{p}) \leq \operatorname{cd}(I, R / \mathfrak{q}) \leq \operatorname{dim} R / \mathfrak{q} \leq \operatorname{dim} M / J M \leq \operatorname{dim} M=d
$$

implies that $\mathfrak{p}=\mathfrak{q} \in \operatorname{Ass}(M / J M)$ and $\operatorname{dim} M / J M=d$. Now the claim follows from [12, 3.10] and [4, Theorem 2.1].

The following lemma, which can be proved by using an argument similar to the proof of [11, 4.3], will be applied in the rest of the paper.

Lemma 2.12 Let M be a finite R-module. Suppose that $J \subseteq J(R)$, where $J(R)$ denotes the Jacobson radical of R, and let $d=\operatorname{dim} M / J M$. Then $H_{I, J}^{i}(M)=0$ for all $i>d$.

Using Lemma 2.12, we can compute $\operatorname{Att}\left(H_{I, J}^{\operatorname{dim}}{ }^{M}(M)\right)$ in the nonlocal case as a generalization of $[7,2.5]$.

Proposition 2.13 Let M be a finite R-module of dimension d and $J \subseteq J(R)$. Then $H_{I, J}^{d}(M)$ is an Artinian R-module and

$$
\begin{aligned}
\operatorname{Att}\left(H_{I, J}^{d}(M)\right) & =\operatorname{Att}\left(H_{I}^{d}(M / J M)\right) \\
& =\{\mathfrak{p} \in \operatorname{Ass}(M) \cap V(J): \operatorname{cd}(I, R / \mathfrak{p})=d\}
\end{aligned}
$$

Proof In view of Lemma 2.12, [11, 4.3] holds for the nonlocal case. Now the assertion follows by applying the same method of the proofs of [5, 2.1] and [4, Theorem 2.1 and Proposition 2.1].

Corollary 2.14 Suppose that $J \subseteq J(R)$ and M is a finite R-module such that $\operatorname{dim} M=d$. Then

$$
\operatorname{Att}\left(\frac{H_{I, J}^{d}(M)}{J H_{I, J}^{d}(M)}\right)=\{\mathfrak{p} \in \operatorname{Supp}(M) \cap V(J): \operatorname{cd}(I, R / \mathfrak{p})=d\}
$$

Proof Let $\bar{R}=R / \operatorname{Ann}{ }_{R} M$. Using [11, 2.7], $\mathrm{H}_{I, J}^{d}(M) \cong \mathrm{H}_{I \bar{R}, J \bar{R}}^{d}(M)$ and also for a prime $\mathfrak{p} \in \operatorname{Supp}(M) \cap$ $V(J), \operatorname{cd}(I \bar{R}, \bar{R} / \mathfrak{p})=\operatorname{cd}(I, R / \mathfrak{p})$. Thus we may assume that M is faithful and so $\operatorname{dim} R=d$. By virtue of Lemma 2.3, $\mathrm{H}_{I}^{d}(M / J M) \cong \mathrm{H}_{I, J}^{d}(M / J M) \cong \frac{\mathrm{H}_{I, J}^{d}(M)}{J \mathrm{H}_{I, J}^{d}(M)}$. Now the assertion follows by Proposition 2.13 .

The final result of this section is a generalization of [6, 2.4] in the nonlocal case for local cohomology modules with respect to a pair of ideals. Since this reference is unpublished, we provide the proof of [6, 2.4] here (with the needed changes) for the reader's convenience.

Theorem 2.15 Let $J \subseteq J(R)$ and M be a finite R-module. Then

$$
\{\mathfrak{p} \in \operatorname{Ass}(M) \cap V(J): \operatorname{cd}(I, R / \mathfrak{p})=\operatorname{dim} R / \mathfrak{p}=\operatorname{cd}(I, J, M)\} \subseteq \operatorname{Att}\left(H_{I, J}^{\operatorname{cd}(I, J, M)}(M)\right)
$$

Equality holds if $\operatorname{cd}(I, J, M)=\operatorname{dim} M$.
Proof Let T be the set on the left-hand side of the desired inclusion. Suppose that $S:=\{\mathfrak{p} \in \operatorname{Ass}(M) \cap V(J)$: $\operatorname{dim}(R / \mathfrak{p})=\operatorname{cd}(I, J, M)\}$ is nonempty. By [2, page 263, Proposition 4], there exists a submodule N of M with $\operatorname{Ass}(N)=\operatorname{Ass}(M) \backslash S$ and $\operatorname{Ass}(M / N)=S$. Since $\operatorname{Supp}(N) \subseteq \operatorname{Supp}(M)$, by virtue of [5, 3.2], we have $\operatorname{cd}(I, J, N) \leq \operatorname{cd}(I, J, M)$, and so there is an exact sequence

$$
\mathrm{H}_{I, J}^{\operatorname{cd}(I, J, M)}(N) \rightarrow \mathrm{H}_{I, J}^{\mathrm{cd}(I, J, M)}(M) \rightarrow \mathrm{H}_{I, J}^{\mathrm{cd}(I, J, M)}(M / N) \rightarrow 0
$$

It follows that $\operatorname{Att}\left(\mathrm{H}_{I, J}^{\operatorname{cd}(I, J, M)}(M / N)\right) \subseteq \operatorname{Att}\left(\mathrm{H}_{I, J}^{\operatorname{cd}(I, J, M)}(M)\right)$. Therefore, it is sufficient to show that $T=$ $\operatorname{Att}\left(\mathrm{H}_{I, J}^{\operatorname{cd}(I, J, M)}(M / N)\right)$. Note that $\operatorname{dim} R / \mathfrak{p}=\operatorname{cd}(I, J, M)$ for all $\mathfrak{p} \in \operatorname{Ass}(M / N)$. Thus, $\operatorname{cd}(I, J, M)=$ $\operatorname{dim} M / N$, and hence $\mathrm{H}_{I, J}^{\mathrm{cd}(I, J, M)}(M / N)=\mathrm{H}_{I, J}^{\operatorname{dim} M / N}(M / N)$ is an Artinian R-module and $\operatorname{Att}\left(\mathrm{H}_{I, J}^{\mathrm{cd}(I, J, M)}(M / N)\right)=$ T, by Proposition 2.13.

For the special case, $\operatorname{cd}(I, J, M)=\operatorname{dim} M$, again see Proposition 2.13.

Acknowledgments

The authors would like to thank the referee for his/her valuable comments.

References

[1] Aghapournahr M, Melkersson L. Cofiniteness and coassociated primes of local cohomology modules. Math Scand 2009; 105: 161-170.
[2] Bourbaki N. Commutative Algebra. Translated from the French, Paris, France: Hermann, 1972.
[3] Brodmann MP, Sharp RY. Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge, UK: Cambridge University Press, 1998.
[4] Chu L. Top local cohomology modules with respect to a pair of ideals. P Am Math Soc 2011; 139: 777-782.
[5] Chu L, Wang Q. Some results on local cohomology modules defined by a pair of ideals. J Math Kyoto U 2009; 49: 193-200.
[6] Dibaei MT, Yassemi S. Attached primes of the top local cohomology modules with respect to an ideal(II). arXiv: math/0501063v1 [math. AC] 2005.
[7] Divvani-Aazar K. Vanishing of the top local cohomology modules over Noetherian rings. P Indian A S-Math Sci 2009; 119: 23-35.
[8] Eghbali M. A note on some top local cohomology modules. arXiv:1212.0245v1 [math. AC] 2 Dec 2012.
[9] Richardson AS. Co-localization, co-support and local cohomology. Rocky Mt J Math 2006; 36: 1679-1703.
[10] Schenzel P. Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem. Manuscripta Math 1993; 78: 57-68.
[11] Takahashi R, Yoshino Y, Yoshizawa T. Local cohomology based on a nonclosed support defined by a pair of ideals. J Pure Appl Algebra 2009; 213: 582-600.
[12] Tehranian A, Tousi M, Yassemi S. Attached primes of local cohomology for modules finite over a ring homomorphism. Algebr Colloq 2011; 18: 759-768.

[^0]: *Correspondence: z_habibi@pnu.ac.ir
 2010 AMS Mathematics Subject Classification: 13D45; Secondary: 13E05, 13E10.

