

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

On the attached prime ideals of local cohomology modules defined by a pair of ideals

Zohreh HABIBI^{1,*}, Maryam JAHANGIRI², Khadijeh AHMADI AMOLI¹

¹Payame Noor University, Tehran, Iran

²Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

Received: 12.03.2015	•	Accepted/Published Online: 14.04.2016	•	Final Version: 16.01.2017

Abstract: Let I and J be two ideals of a commutative Noetherian ring R and M be an R-module of dimension d. For each $i \in \mathbb{N}_0$ let $\mathrm{H}^i_{I,J}(-)$ denote the *i*-th right derived functor of $\Gamma_{I,J}(-)$, where $\Gamma_{I,J}(M) := \{x \in M : I^n x \subseteq Jx \text{ for } n \gg 1\}$. If R is a complete local ring and M is finite, then attached prime ideals of $\mathrm{H}^{d-1}_{I,J}(M)$ are computed by means of the concept of co-localization. Moreover, we illustrate the attached prime ideals of $\mathrm{H}^t_{I,J}(M)$ on a nonlocal ring R, for $t = \dim M$ and $t = \mathrm{cd}(I, J, M)$, where $\mathrm{cd}(I, J, M)$ is the last nonvanishing level of $\mathrm{H}^i_{I,J}(M)$.

Key words: Local cohomology modules with respect to a pair of ideals, attached prime ideals, co-localization

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring and M an R-module and I and J stand for two ideals of R. For all $i \in \mathbb{N}_0$ the *i*-th local cohomology functor with respect to (I, J), denoted by $\mathrm{H}^i_{I,J}(-)$, is defined by Takahashi et al. in [11] as the *i*-th right derived functor of the (I, J)-torsion functor $\Gamma_{I,J}(-)$, where

$$\Gamma_{I,J}(M) := \{ x \in M : I^n x \subseteq Jx \text{ for } n \gg 1 \}.$$

This notion coincides with the ordinary local cohomology functor $H_I^i(-)$ when J = 0 (see [3]).

The main motivation for this generalization comes from the study of a dual of ordinary local cohomology modules $H_I^i(M)$ ([10]). Basic facts and more information about local cohomology defined by a pair of ideals can be obtained from [4, 5, 11].

The second section of this paper is devoted to studying the attached prime ideals of local cohomology modules with respect to a pair of ideals by means of co-localization. The concept of co-localization was introduced by Richardson in [9].

Let (R, \mathfrak{m}) be local and M be a finite R-module of dimension d. If c is a nonnegative integer such that $\mathrm{H}^{i}_{I,J}(R) = 0$ for all i > c and $\mathrm{H}^{c}_{I,J}(R)$ is representable, then we illustrate the attached prime ideals of ${}^{\mathfrak{p}}\mathrm{H}^{c}_{I,J}(M)$ (see Theorem 2.6). In addition, if R is complete, then we make use of Theorem 2.6 to prove that in a special case

 $\operatorname{Att}\left(\operatorname{H}^{d-1}_{I,J}(M)\right)\subseteq T\cup\operatorname{Assh}\left(M\right) \ \text{ and } \ T\subseteq\operatorname{Att}\left(\operatorname{H}^{d-1}_{I,J}(M)\right),$

^{*}Correspondence: z_habibi@pnu.ac.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 13D45; Secondary: 13E05, 13E10.

where

$$T = \{ \mathfrak{p} \in \mathrm{Supp}\,(M) : \dim M/\mathfrak{p}M = d-1, J \subseteq \mathfrak{p} \text{ and } \sqrt{I} + \mathfrak{p} = \mathfrak{m} \},\$$

(see Theorem 2.8).

In [4, Theorem 2.1] the set of attached prime ideals of $\operatorname{H}_{I,J}^{\dim M}(M)$ was computed on a local ring. We generalize this theorem to the nonlocal case (see Proposition 2.13). The authors in [6, 2.4] specified a subset of attached prime ideals of ordinary top local cohomology module $\operatorname{H}_{I}^{\operatorname{cd}(I,M)}(M)$. We improve it for $\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M)$ over a not necessarily local ring, where $\operatorname{cd}(I,J,M) = \sup\{i \in \mathbb{N}_0 : \operatorname{H}_{I,J}^i(M) \neq 0\}$ with the convention that $\operatorname{cd}(I,M) = \operatorname{cd}(I,0,M)$ (see Theorem 2.15).

2. Attached prime ideals

In this section we study the set of attached prime ideals of local cohomology modules with respect to a pair of ideals.

Remark 2.1 Following [9], for a multiplicatively closed subset S of the local ring (R, \mathfrak{m}) , the co-localization of the R-module M relative to S is defined to be the $S^{-1}R$ -module $S_{-1}(M) := D_{S^{-1}R}(S^{-1}D_R(M))$, where $D_R(-)$ is the Matlis dual functor Hom $_R(-, \mathbb{E}_R(R/\mathfrak{m}))$. If $S = R \setminus \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$ we write $\mathfrak{p}M$ for $S_{-1}(M)$.

Richardson in [9, 2.2] proved that if M is a representable R-module, then so is $S_{-1}(M)$ and $\operatorname{Att}(S_{-1}M) = \{S^{-1}\mathfrak{p} : \mathfrak{p} \in \operatorname{Att}(M), \mathfrak{p} \cap S = \emptyset\}$. Therefore, in order to get some results about attached prime ideals of a module, it is convenient to study the attached prime ideals of the co-localization of it.

Lemma 2.2 Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R, and $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\mathfrak{a} \subseteq \mathfrak{p}$. Let $R' = R/\mathfrak{a}$ and $\mathfrak{p}' = \mathfrak{p}/\mathfrak{a}$. Then for any R'-module X and $R'_{\mathfrak{p}'}$ -module Y, the following isomorphisms hold:

- (i) $D_R(X) \cong D_{R'}(X)$ as *R*-modules.
- (ii) $D_R(X)_{\mathfrak{p}} \cong D_{R'}(X)_{\mathfrak{p}'}$ as $R_{\mathfrak{p}}$ -modules.
- (iii) $D_{R_{\mathfrak{p}}}(Y) \cong D_{R'_{\mathfrak{p}'}}(Y)$ as $R_{\mathfrak{p}}$ -modules.

Proof (i) By using [3, Lemma 10.1.15], we get

Hom
$$_{R}(X, \mathbb{E}_{R}(R/\mathfrak{m})) \cong \operatorname{Hom}_{R}(X \otimes_{R'} R', \mathbb{E}_{R}(R/\mathfrak{m}))$$

 $\cong \operatorname{Hom}_{R'}(X, \operatorname{Hom}_{R}(R', \mathbb{E}_{R}(R/\mathfrak{m})))$
 $\cong \operatorname{Hom}_{R'}(X, (0:_{\mathbb{E}_{R}(R/\mathfrak{m})}\mathfrak{a}))$
 $\cong \operatorname{Hom}_{R'}(X, \mathbb{E}_{R'}(R/\mathfrak{m})).$

- (ii) It is clear, by (i).
- (*iii*) It is enough to apply (*i*), by substituting R and X with $R_{\mathfrak{p}}$ and Y, respectively.

The following lemmas will be used in the rest of the paper.

Lemma 2.3 Let T be an R-linear covariant right exact functor on the category of R-modules and Rhomomorphisms. Then there is a natural equivalence of functors, $T(-) \cong T(R) \otimes_R -$ on the category of finite R-modules.

Proof See [3, 6.1.8].

Lemma 2.4 Let (R, \mathfrak{m}) be a local ring and M be a nonzero finite R-module of dimension d. Then the following statements are equivalent:

(i) $H^d_{I,J}(M) = 0$,

(ii) dim $\hat{R}/(I\hat{R}+\mathfrak{p}) > 0$, for any prime ideal \mathfrak{p} of Supp $_{\hat{R}}(\hat{R} \otimes_R M/JM)$ satisfying dim $\hat{R}/\mathfrak{p} = d$, where \hat{R} denotes the \mathfrak{m} -adic completion of R.

Proof See [4, Theorem 2.4].

Lemma 2.5 Let M and N be two R-modules such that M has a secondary representation. Then $M \otimes_R N$ has a secondary representation and Att $_R(M \otimes_R N) \subseteq$ Att $_R(M) \cap$ Supp $_R(N)$.

Proof See
$$[12, 3.1]$$
.

In [8, 2.1 and 2.2] the following theorems have been proved for the attached prime ideals of $H_I^d(R)$ and $H_I^{d-1}(R)$, where $d = \dim R$. Here we generalize these theorems for the local cohomology modules of M with respect to a pair of ideals when M is a finite R-module with dim M = d.

Theorem 2.6 Let (R, \mathfrak{m}) be a local ring, M be a finite R-module, and $\mathfrak{p} \in \operatorname{Spec}(R)$. Assume that $c = \operatorname{cd}(I, J, R)$ and $H^c_{I,J}(R)$ is representable. Then

- 1. Att $_{R_{\mathfrak{p}}}(\mathfrak{p}H^{c}_{I,J}(M)) \subseteq \{\mathfrak{q}R_{\mathfrak{p}} : \dim M/\mathfrak{q}M \geq c, \ \mathfrak{q} \subseteq \mathfrak{p}, \ and \ \mathfrak{q} \in \operatorname{Spec}(R)\}.$
- 2. If R is complete, then

Att
$$_{R_{\mathfrak{p}}}(\mathfrak{p}H_{I,J}^{\dim M}(M)) = \{ \mathfrak{q}R_{\mathfrak{p}} : \mathfrak{q} \in \mathrm{Supp}(M), \dim M/\mathfrak{q}M = \dim M, J \subseteq \mathfrak{q} \subseteq \mathfrak{p},$$

and $\sqrt{I+\mathfrak{q}} = \mathfrak{m}\}.$

Proof

(1) Let $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}({}^{\mathfrak{p}}\operatorname{H}^{c}_{I,J}(M))$. By Lemma 2.5 and Remark 2.1, we have $\operatorname{H}^{c}_{I,J}(M)$ is representable and Att $_{R_{\mathfrak{p}}}({}^{\mathfrak{p}}\operatorname{H}^{c}_{I,J}(M)) = \{\mathfrak{q}R_{\mathfrak{p}} : \mathfrak{q} \in \operatorname{Att}(\operatorname{H}^{c}_{I,J}(M)) \text{ and } \mathfrak{q} \subseteq \mathfrak{p}\}$. Moreover, using Lemma 2.3 and [1, 2.11]

Att
$$(\mathrm{H}_{I,J}^{c}(M/\mathfrak{q}M)) = \mathrm{Att}(\mathrm{H}_{I,J}^{c}(M)) \cap \mathrm{Supp}(R/\mathfrak{q}).$$

This implies that $\mathrm{H}_{I,J}^{c}(M/\mathfrak{q}M) \neq 0$ and consequently dim $M/\mathfrak{q}M \geq c$.

(2) Let $\mathfrak{p} \in \text{Supp}(M)$. Put $d := \dim M$, $\overline{R} = R / \text{Ann}_R M$, and

$$T := \{\mathfrak{q}R_\mathfrak{p} : \mathfrak{q} \in \mathrm{Supp}\,(M), \dim M/\mathfrak{q}M = d, J \subseteq \mathfrak{q} \subseteq \mathfrak{p} \text{ and } \sqrt{I + \mathfrak{q}} = \mathfrak{m}\}.$$

Since dim $_{\overline{R}}M = \dim_{R}M$, [11, 2.7] and Lemma 2.2 imply that $^{\overline{\mathfrak{p}}}\mathrm{H}^{d}_{I\overline{R},J\overline{R}}(M) \cong {}^{\mathfrak{p}}\mathrm{H}^{d}_{I,J}(M)$, as $R_{\mathfrak{p}}$ -modules. Therefore, by [3, 8.2.5], $\mathfrak{q} \in \mathrm{Att}_{\overline{R}_{\overline{\mathfrak{p}}}}(^{\overline{\mathfrak{p}}}\mathrm{H}^{d}_{I\overline{R},J\overline{R}}(M))$ if and only if

$$\mathfrak{q} \cap R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}(\overline{}^{\mathfrak{p}}\operatorname{H}^{d}_{I\overline{R},J\overline{R}}(M)) = \operatorname{Att}_{R_{\mathfrak{p}}}({}^{\mathfrak{p}}\operatorname{H}^{d}_{I,J}(M)).$$

Now, without loss of generality, we may assume that M is faithful and dim R = d. If $\operatorname{H}^{d}_{I,J}(M) = 0$, then Att $_{R_{\mathfrak{p}}}({}^{\mathfrak{p}}\operatorname{H}^{d}_{I,J}(M)) = \emptyset$. Assume that $T \neq \emptyset$ and $\mathfrak{q}R_{\mathfrak{p}} \in T$. Since dim $M/\mathfrak{q}M = \dim R$, we have dim $R/\mathfrak{q} = d$. On the other hand, $\mathfrak{q} \in \operatorname{Supp}(M/JM)$. Thus, by Lemma 2.4, dim $R/(I + \mathfrak{q}) > 0$, which contradicts $\sqrt{I + \mathfrak{q}} = \mathfrak{m}$. Hence $T = \emptyset$.

Now we assume that $\operatorname{H}^{d}_{I,J}(M) \neq 0$.

⊇: Let $\mathfrak{q}R_{\mathfrak{p}} \in T$. Since $\mathrm{H}^{d}_{I,J}(M)$ is an Artinian *R*-module (see [5, 2.1]), by Remark 2.1, it is enough to show that $\mathfrak{q} \in \mathrm{Att}(\mathrm{H}^{d}_{I,J}(M))$. As $M/\mathfrak{q}M$ is *J*-torsion with dimension *d* and $\sqrt{I+\mathfrak{q}} = \mathfrak{m}$, by [3, 4.2.1 and 6.1.4],

$$\mathrm{H}^{d}_{I,J}(M/\mathfrak{q}M) \cong \mathrm{H}^{d}_{I}(M/\mathfrak{q}M) \cong \mathrm{H}^{d}_{I(R/\mathfrak{q})}(M/\mathfrak{q}M) \cong \mathrm{H}^{d}_{\mathfrak{m}/\mathfrak{q}}(M/\mathfrak{q}M) \neq 0.$$

Hence Lemma 2.3 and [1, 2.11] imply that $\emptyset \neq \operatorname{Att}(H^d_{I,J}(M/\mathfrak{q}M)) = \operatorname{Att}(\operatorname{H}^d_{I,J}(M)) \cap \operatorname{Supp}(R/\mathfrak{q})$. Let $\mathfrak{q}_0 \in \operatorname{Att}(\operatorname{H}^d_{I,J}(M))$ be such that $\mathfrak{q} \subset \mathfrak{q}_0$. Thus dim $M/\mathfrak{q}_0 M < d$. On the other hand, by Remark 2.1, $\mathfrak{q}_0 R_{\mathfrak{q}_0} \in \operatorname{Att}_{R_{\mathfrak{q}_0}}(\mathfrak{q}_0 \operatorname{H}^d_{I,J}(M))$ and this implies that dim $M/\mathfrak{q}_0 M \geq d$, which is a contradiction. Therefore, $\mathfrak{q} = \mathfrak{q}_0$.

 \subseteq : Let $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}(\mathfrak{p}H^{d}_{I,J}(M))$. As we have seen in the proof of part(1), dim $M/\mathfrak{q}M = d$ and $\mathfrak{q} \subseteq \mathfrak{p}$. Thus, by [11, 2.7],

$$\operatorname{H}^{d}_{IR/\mathfrak{q},JR/\mathfrak{q}}(M/\mathfrak{q}M) \cong \operatorname{H}^{d}_{I,J}(M/\mathfrak{q}M) \neq 0$$

Now, by Lemma 2.4, there exists $\mathfrak{r}/\mathfrak{q} \in \operatorname{Supp}\left(R/\mathfrak{q} \otimes_{R/\mathfrak{q}} \frac{M/\mathfrak{q}M}{(JR/\mathfrak{q})(M/\mathfrak{q}M)}\right)$ such that dim $\frac{R/\mathfrak{q}}{\mathfrak{r}/\mathfrak{q}} = d$ and dim $\frac{R/\mathfrak{q}}{IR/\mathfrak{q}+\mathfrak{r}/\mathfrak{q}} = 0$. Since $\mathfrak{q}R_\mathfrak{p} \in \operatorname{Att}_{R_\mathfrak{p}}(\mathfrak{p}\operatorname{H}^d_{I,J}(M))$, we have $\mathfrak{q} \in \operatorname{Att}\left(\operatorname{H}^d_{I,J}(M)\right)$ and so $\mathfrak{q} \in \operatorname{Supp}\left(M\right) \cap V(J)$. Hence $\mathfrak{q}/\mathfrak{q} \in \operatorname{Supp}_{R/\mathfrak{q}}(M/\mathfrak{q}M)$ and then

dim
$$R/\mathfrak{q} = \dim M/\mathfrak{q}M = d = \dim \frac{R/\mathfrak{q}}{\mathfrak{r}/\mathfrak{q}} = \dim R/\mathfrak{r}.$$

Therefore, dim $R/\mathfrak{q} = \dim R/\mathfrak{r}$, which shows that $\mathfrak{q} = \mathfrak{r}$. Thus $\sqrt{I + \mathfrak{q}} = \mathfrak{m}$.

Remark 2.7 The inclusion in Theorem 2.6(1) is not an equality in general. Let the assumption be as in Theorem 2.6. Assume that $H^d_{I,J}(M) = 0$, $\mathfrak{p} \in Min(M)$, and dim $M/\mathfrak{p}M = d$. Then Att $_{R_\mathfrak{p}}(\mathfrak{p} H^d_{I,J}(M)) = \emptyset$. However,

$$\{\mathfrak{q}R_{\mathfrak{p}}: \dim M/\mathfrak{q}M = d, \mathfrak{q} \subseteq \mathfrak{p} \text{ and } \mathfrak{q} \in \mathrm{Supp}\,(M)\} = \{\mathfrak{p}R_{\mathfrak{p}}\}.$$

Theorem 2.8 Let (R, \mathfrak{m}) be a complete local ring and M be a finite R-module with dimension d. Assume that $H^i_{I,J}(R) = 0$ for all i > d-1 and $H^{d-1}_{I,J}(R)$ is representable. Then

1.

Att
$$_{R}(H^{d-1}_{I,J}(M)) \subseteq \{ \mathfrak{p} \in \mathrm{Supp}(M) : \dim M/\mathfrak{p}M = d-1, J \subseteq \mathfrak{p} \text{ and } \sqrt{I+\mathfrak{p}} = \mathfrak{m} \} \cup \mathrm{Assh}(M).$$

2.

$$\{\mathfrak{p} \in \mathrm{Supp}\,(M) : \dim M/\mathfrak{p}M = d-1, J \subseteq \mathfrak{p} \text{ and } \sqrt{I+\mathfrak{p}} = \mathfrak{m}\} \subseteq \mathrm{Att}\,(H^{d-1}_{I,J}(M))$$

Proof (1) In the case where $\mathrm{H}_{I,J}^{d-1}(M) = 0$ there is nothing to say. Therefore, we assume that $\mathrm{H}_{I,J}^{d-1}(M) \neq 0$. Note that, by [11, 4.8] and Lemma 2.5, $\mathrm{H}_{I,J}^{d-1}(M)$ is representable and $\mathrm{Att}(\mathrm{H}_{I,J}^{d-1}(M)) \subseteq \mathrm{Supp}(M)$. Now let $\mathfrak{p} \in \mathrm{Att}(\mathrm{H}_{I,J}^{d-1}(M))$. Since $\mathfrak{p}R_{\mathfrak{p}} \in \mathrm{Att}_{R_{\mathfrak{p}}}(\mathfrak{p}\mathrm{H}_{I,J}^{d-1}(M))$, by Theorem 2.6 (1), dim $M/\mathfrak{p}M \geq d-1$.

If dim $M/\mathfrak{p}M = d$, then dim $R/\mathfrak{p} = d$ and so $\mathfrak{p} \in Assh(M)$.

Now assume that dim $M/\mathfrak{p}M = d-1$. Since $\mathfrak{p} \in \operatorname{Att}(\operatorname{H}^{d-1}_{I,J}(M))$, $\operatorname{H}^{d-1}_{IR/\mathfrak{p},JR/\mathfrak{p}}(M/\mathfrak{p}M) \cong \operatorname{H}^{d-1}_{I,J}(M/\mathfrak{p}M) \neq 0$. Thus, by Lemma 2.4, there exists $\mathfrak{r}/\mathfrak{p} \in \operatorname{Supp}(\frac{M/\mathfrak{p}M}{(JR/\mathfrak{p})(M/\mathfrak{p}M)})$ such that dim $\frac{R}{\mathfrak{r}} = d-1$ and dim $\frac{R}{I+\mathfrak{r}} = 0$. Hence $\mathfrak{r} = \mathfrak{p}, J \subseteq \mathfrak{p}$, and $\sqrt{I+\mathfrak{p}} = \mathfrak{m}$.

(2) Let $\mathfrak{p} \in \text{Supp}(M)$, $J \subseteq \mathfrak{p}$, dim $M/\mathfrak{p}M = d-1$, and $\sqrt{I + \mathfrak{p}} = \mathfrak{m}$. Then, by Lemma 2.5 and Theorem 2.6 (2), $H_{I,J}^{d-1}(M)$ is representable, $\mathfrak{p}R_{\mathfrak{p}} \in \text{Att}_{R_{\mathfrak{p}}}(\mathfrak{p}H_{I,J}^{d-1}(M/\mathfrak{p}M))$, and so $\mathfrak{p} \in \text{Att}(H_{I,J}^{d-1}(M/\mathfrak{p}M))$. Now the proof is completed by considering the epimorphism $H_{I,J}^{d-1}(M) \to H_{I,J}^{d-1}(M/\mathfrak{p}M)$.

In the rest of the paper, following [11], we use the notation

$$W(I,J) := \{ \mathfrak{p} \in Spec(R) : I^n \subseteq \mathfrak{p} + J \text{ for an integer } n \ge 1 \}$$

and

$$W(I,J) := \{ \mathfrak{a} : \mathfrak{a} \text{ is an ideal of } R; I^n \subseteq \mathfrak{a} + J \text{ for an integer } n \geq 1 \}.$$

The following lemma can be proved using [11, 3.2].

Lemma 2.9 For any nonnegative integer i and R-module M,

(i)
$$\operatorname{Supp}(H^{i}_{I,J}(M)) \subseteq \bigcup_{\mathfrak{a}\in \widetilde{W}(I,J)} \operatorname{Supp}(H^{i}_{\mathfrak{a}}(M)).$$

(ii) $\operatorname{Supp}(H^{i}_{I,J}(M)) \subseteq \operatorname{Supp}(M) \cap W(I,J).$

Proof

(*ii*) By (*i*), Supp
$$(\mathrm{H}^{i}_{I,J}(M)) \subseteq$$
 Supp $(M) \cap V(I) \subseteq$ Supp $(M) \cap W(I,J)$.

Corollary 2.10 Let M be an R-module and c = cd(I, J, R). Assume that M is representable or $H^{c}_{I,J}(R)$ is finite. Then

Att
$$(H_{I,J}^c(M)) \subseteq$$
 Att $(M) \cap W(I,J)$.

Proof

By [11, 4.8], [1, 2.11], Lemma 2.5, and Lemma 2.9(ii), we have

$$\begin{array}{ll} \operatorname{Att}\left(\operatorname{H}^{c}_{I,J}(M)\right) &= \operatorname{Att}\left(M \otimes \operatorname{H}^{c}_{I,J}(R)\right) &\subseteq \operatorname{Att}\left(M\right) \cap \operatorname{Supp}\left(H^{c}_{I,J}(R)\right) \\ &\subseteq \operatorname{Att}\left(M\right) \cap W(I,J). \end{array}$$

Applying the set of attached prime ideals of the top local cohomology module in [4, Theorem 2.1], we obtain another presentation for it.

220

Proposition 2.11 Let (R, \mathfrak{m}) be a local ring and \hat{R} denotes the \mathfrak{m} -adic completion of R. Suppose that M is a finite R-module of dimension d. Then

Att
$$_{R}(H^{d}_{I,J}(M)) = \{ \mathfrak{q} \cap R : \mathfrak{q} \in \text{Supp }_{\hat{R}}(\hat{R} \otimes_{R} M/JM), \dim(\hat{R}/\mathfrak{q}) = d \}$$

and $\dim \hat{R}/(I\hat{R}+\mathfrak{q}) = 0 \}.$

Proof Denote the set on the right-hand side of the desired equality by T. It is clear that by Lemma 2.4, $\mathrm{H}^{d}_{I,J}(M) = 0$ if and only if $T = \emptyset$. Assume that $\mathrm{H}^{d}_{I,J}(M) \neq 0$ and $\mathfrak{p} \in \mathrm{Supp}(M/JM)$ with the property that $\mathrm{cd}(I, R/\mathfrak{p}) = d$. Let $\mathfrak{q} \in \mathrm{Ass}(M/JM)$ be such that $\mathfrak{q} \subseteq \mathfrak{p}$. Then

$$d = \operatorname{cd}\left(I, R/\mathfrak{p}\right) \le \operatorname{cd}\left(I, R/\mathfrak{q}\right) \le \dim R/\mathfrak{q} \le \dim M/JM \le \dim M = d$$

implies that $\mathfrak{p} = \mathfrak{q} \in \operatorname{Ass}(M/JM)$ and dim M/JM = d. Now the claim follows from [12, 3.10] and [4, Theorem 2.1].

The following lemma, which can be proved by using an argument similar to the proof of [11, 4.3], will be applied in the rest of the paper.

Lemma 2.12 Let M be a finite R-module. Suppose that $J \subseteq J(R)$, where J(R) denotes the Jacobson radical of R, and let $d = \dim M/JM$. Then $H^i_{I,J}(M) = 0$ for all i > d.

Using Lemma 2.12, we can compute Att $(H_{L,I}^{\dim M}(M))$ in the nonlocal case as a generalization of [7, 2.5].

Proposition 2.13 Let M be a finite R-module of dimension d and $J \subseteq J(R)$. Then $H^d_{I,J}(M)$ is an Artinian R-module and

$$\operatorname{Att} (H^d_{I,J}(M)) = \operatorname{Att} (H^d_I(M/JM)) = \{ \mathfrak{p} \in \operatorname{Ass}(M) \cap V(J) : \operatorname{cd} (I, R/\mathfrak{p}) = d \}.$$

Proof In view of Lemma 2.12, [11, 4.3] holds for the nonlocal case. Now the assertion follows by applying the same method of the proofs of [5, 2.1] and [4, Theorem 2.1 and Proposition 2.1]. \Box

Corollary 2.14 Suppose that $J \subseteq J(R)$ and M is a finite R-module such that dim M = d. Then

$$\operatorname{Att}\big(\frac{H^d_{I,J}(M)}{JH^d_{I,J}(M)}\big) = \{\mathfrak{p} \in \operatorname{Supp}\,(M) \cap V(J) : \operatorname{cd}\,(I,R/\mathfrak{p}) = d\}.$$

Proof Let $\overline{R} = R/\operatorname{Ann}_R M$. Using [11, 2.7], $\operatorname{H}^d_{I,J}(M) \cong \operatorname{H}^d_{I\overline{R},J\overline{R}}(M)$ and also for a prime $\mathfrak{p} \in \operatorname{Supp}(M) \cap V(J)$, $\operatorname{cd}(I\overline{R},\overline{R}/\mathfrak{p}) = \operatorname{cd}(I,R/\mathfrak{p})$. Thus we may assume that M is faithful and so dim R = d. By virtue of Lemma 2.3, $\operatorname{H}^d_I(M/JM) \cong \operatorname{H}^d_{I,J}(M/JM) \cong \frac{\operatorname{H}^d_{I,J}(M)}{J\operatorname{H}^d_{I,J}(M)}$. Now the assertion follows by Proposition 2.13.

The final result of this section is a generalization of [6, 2.4] in the nonlocal case for local cohomology modules with respect to a pair of ideals. Since this reference is unpublished, we provide the proof of [6, 2.4]here (with the needed changes) for the reader's convenience.

Theorem 2.15 Let $J \subseteq J(R)$ and M be a finite R-module. Then

$$\{\mathfrak{p} \in \operatorname{Ass}(M) \cap V(J) : \operatorname{cd}(I, R/\mathfrak{p}) = \dim R/\mathfrak{p} = \operatorname{cd}(I, J, M)\} \subseteq \operatorname{Att}(H_{I, J}^{\operatorname{cd}(I, J, M)}(M))$$

Equality holds if cd(I, J, M) = dim M.

Proof Let T be the set on the left-hand side of the desired inclusion. Suppose that $S := \{\mathfrak{p} \in \operatorname{Ass}(M) \cap V(J) : \dim(R/\mathfrak{p}) = \operatorname{cd}(I, J, M)\}$ is nonempty. By [2, page 263, Proposition 4], there exists a submodule N of M with $\operatorname{Ass}(N) = \operatorname{Ass}(M) \setminus S$ and $\operatorname{Ass}(M/N) = S$. Since $\operatorname{Supp}(N) \subseteq \operatorname{Supp}(M)$, by virtue of [5, 3.2], we have $\operatorname{cd}(I, J, N) \leq \operatorname{cd}(I, J, M)$, and so there is an exact sequence

$$\mathrm{H}^{\mathrm{cd}\,(I,J,M)}_{I,J}(N) \to \mathrm{H}^{\mathrm{cd}\,(I,J,M)}_{I,J}(M) \to \mathrm{H}^{\mathrm{cd}\,(I,J,M)}_{I,J}(M/N) \to 0.$$

It follows that Att $(\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M/N)) \subseteq \operatorname{Att}(\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M))$. Therefore, it is sufficient to show that $T = \operatorname{Att}(\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M/N))$. Note that dim $R/\mathfrak{p} = \operatorname{cd}(I,J,M)$ for all $\mathfrak{p} \in \operatorname{Ass}(M/N)$. Thus, $\operatorname{cd}(I,J,M) = \operatorname{dim} M/N$, and hence $\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M/N) = \operatorname{H}_{I,J}^{\operatorname{dim} M/N}(M/N)$ is an Artinian *R*-module and Att $(\operatorname{H}_{I,J}^{\operatorname{cd}(I,J,M)}(M/N)) = T$, by Proposition 2.13.

For the special case, cd(I, J, M) = dim M, again see Proposition 2.13.

Acknowledgments

The authors would like to thank the referee for his/her valuable comments.

References

- Aghapournahr M, Melkersson L. Cofiniteness and coassociated primes of local cohomology modules. Math Scand 2009; 105: 161-170.
- [2] Bourbaki N. Commutative Algebra. Translated from the French, Paris, France: Hermann, 1972.
- Brodmann MP, Sharp RY. Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge, UK: Cambridge University Press, 1998.
- [4] Chu L. Top local cohomology modules with respect to a pair of ideals. P Am Math Soc 2011; 139: 777-782.
- [5] Chu L, Wang Q. Some results on local cohomology modules defined by a pair of ideals. J Math Kyoto U 2009; 49: 193-200.
- [6] Dibaei MT, Yassemi S. Attached primes of the top local cohomology modules with respect to an ideal(II). arXiv: math/0501063v1 [math. AC] 2005.
- [7] Divvani-Aazar K. Vanishing of the top local cohomology modules over Noetherian rings. P Indian A S-Math Sci 2009; 119: 23-35.
- [8] Eghbali M. A note on some top local cohomology modules. arXiv:1212.0245v1 [math. AC] 2 Dec 2012.
- [9] Richardson AS. Co-localization, co-support and local cohomology. Rocky Mt J Math 2006; 36: 1679-1703.
- Schenzel P. Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem. Manuscripta Math 1993; 78: 57-68.
- Takahashi R, Yoshino Y, Yoshizawa T. Local cohomology based on a nonclosed support defined by a pair of ideals. J Pure Appl Algebra 2009; 213: 582-600.
- [12] Tehranian A, Tousi M, Yassemi S. Attached primes of local cohomology for modules finite over a ring homomorphism. Algebr Colloq 2011; 18: 759-768.