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Department of Mathematics, Ankara University, Ankara, Turkey

Received: 14.10.2014 • Accepted/Published Online: 01.03.2016 • Final Version: 16.01.2017

Abstract: An associative ring with identity is called quasipolar provided that for each a ∈ R there exists an idempotent

p ∈ R such that p ∈ comm2(a) , a + p ∈ U(R) and ap ∈ Rqnil . In this article, we introduce the notion of quasipolar

general rings (with or without identity). Some properties of quasipolar general rings are investigated. We prove that a

general ring I is quasipolar if and only if every element a ∈ I can be written in the form a = s+ q where s is strongly

regular, s ∈ comm2(a) , q is quasinilpotent, and sq = qs = 0. It is shown that every ideal of a quasipolar general ring

is quasipolar. Particularly, we show that R is pseudopolar if and only if R is strongly π -rad clean and quasipolar.

Key words: Quasipolar general rings, strongly clean general rings, strongly π -regular general rings, (generalized) Drazin

inverse, pseudopolar rings

1. Introduction

Throughout this paper, a ring means an associative ring with identity and a general ring means an associative

ring with or without identity. For clarity, R and S will always denote rings, and I and A denote general

rings. The notation U(R) denotes the group of units of R , J(I) denotes the Jacobson radical of I , and Nil(I)

denotes the set of all nilpotent elements of I . The commutant and double commutant of an element a in a ring

R are defined by commR(a) = {x ∈ R | xa = ax} , comm2
R(a) = {x ∈ R | xy = yx for all y ∈ commR(a)} ,

respectively. If there is no ambiguity, we simply use comm(a) and comm2(a). Let Rqnil = {a ∈ R | 1 + ax ∈
U(R) for every x ∈ comm(a)} . If a ∈ Rqnil , then a is said to be quasinilpotent [9]. Set J#(R) = {x ∈
R | ∃ n ∈ N such that xn ∈ J(R)} . Clearly, J(R) ⊆ J#(R) ⊆ Rqnil .

An element a ∈ R is called quasipolar provided that there exists an idempotent p ∈ comm2(a) such that

a + p ∈ U(R) and ap ∈ Rqnil . A ring R is quasipolar in case every element in R is quasipolar. This concept

ensues from Banach algebra. Indeed, for a Banach algebra R (see [8, page 251]),

a ∈ Rqnil ⇔ lim
n→∞

∥ an ∥ 1
n= 0.

Quasipolar rings were studied in [6,8–12,21].

Ara [1] defined and investigated the notion of an exchange ring without identity. Chen and Chen [3]

introduced the concept of strongly π -regular general rings. In [14], Nicholson and Zhou defined the notion of a

clean general ring and they extended some of the basic results about clean rings to general rings. In [17], Wang
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and Chen defined the concept of a strongly clean general ring, and some properties about strongly clean rings

were extended. These works motivate us to define quasipolar general rings. In this paper we see that every

strongly π -regular general ring is a quasipolar general ring and any quasipolar general ring is a strongly clean

general ring. We also see that every (two-sided) ideal of a quasipolar ring is a quasipolar general ring, but there

exist quasipolar general rings that are not ideals of quasipolar rings (Example 3.3). In particular, we prove that

a ∈ R is strongly π -regular if and only if there exists a strongly regular element s ∈ R and n ∈ Nil(R) such

that a = s+ n and sn = ns = 0 (Theorem 2.14), and a ∈ R is quasipolar if and only if there exists a strongly

regular element s ∈ comm2(a) and q ∈ Rqnil such that a = s+ q and sq = qs = 0 (Corollary 2.17).

An element a of R is (generalized) Drazin invertible (see [6, 11, 12]) if there is an element b ∈ R satisfying

ab2 = b , b ∈ comm2(a) and (a2b− a ∈ Rqnil ) a2b− a ∈ Nil(R). Such a b , if it exists, is unique; it is called the

(generalized) Drazin inverse of a . Koliha [11] showed that an element a ∈ R is Drazin invertible if and only if

a is strongly π -regular [11, Lemma 2.1]. Koliha and Patricio [12] proved that an element a ∈ R is generalized

Drazin invertible if and only if a is quasipolar [12, Theorem 4.2]. With this in mind, we show that, for a general

ring I , a ∈ I is quasipolar if and only if there is an element b ∈ I satisfying ab2 = b , b ∈ comm2(a) and

a2b − a ∈ QN(I) (Theorem 2.8), and a ∈ I is strongly π -regular if and only if there is an element b ∈ I

satisfying ab2 = b , b ∈ comm2(a) and a2b− a ∈ Nil(I) (Theorem 2.10).

Finally, we characterize a pseudopolar element of a ring, and we address the relations among quasipolarity,

strong π -rad cleanness, and pseudopolarity. It is shown that R is pseudopolar if and only if R is strongly π -rad

clean and quasipolar (Theorem 4.4).

2. Quasipolar general rings

Let I be a general ring with p, q ∈ I . We write p ∗ q = p+ q − pq . Let

Q(I) = {q ∈ I | p ∗ q = 0 = q ∗ p for some p ∈ I}.

Note that J(I) ⊆ Q(I). We define a set

QN(I) = {q ∈ I | qx ∈ Q(I) for every x ∈ comm(q)}.

Clearly, J(I) ⊆ Q(I) and Nil(I) ⊆ QN(I). If R has an identity, then we have Q(R) = {q ∈ R | 1− q ∈ U(R)}
and QN(R) = Rqnil . Further, if a ∈ QN(I), then a is also said to be quasinilpotent.

Lemma 2.1 The following conditions are equivalent for a ring R :

(1) R is quasipolar.

(2) For each a ∈ R , there exists p2 = p ∈ comm2(a) such that a+ p ∈ Q(R) and a− ap ∈ QN(R) .

Proof (1) ⇒ (2) Let a ∈ R . Since R is quasipolar, there exists an idempotent 1 − p ∈ R such that

1 − p ∈ comm2(a), −a + 1 − p = u ∈ U(R), and a(1 − p) = a − ap ∈ Rqnil . Then a + p = q , p ∈ comm2(a)

where q = 1− u and q ∗ r = 0 = r ∗ q with r = 1− u−1 . As Rqnil = QN(R), a− ap ∈ QN(R).

(2) ⇒ (1) If −a+p = q where p2 = p ∈ comm2(a), q ∈ Q(R), and a−ap ∈ QN(R), then a+1−p = 1−q

where (1− p)2 = 1− p ∈ comm2(a), 1− q ∈ U(R) and a(1− p) ∈ Rqnil . 2
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Definition 2.2 An element a in a general ring I is called a quasipolar element if there exists p2 = p ∈
comm2(a) such that a + p ∈ Q(I) and a − ap ∈ QN(I), and I is called a quasipolar general ring if every

element is quasipolar.

Remark 2.3 If I is isomorphic to a general ring K by f , then a ∈ I is quasipolar if and only if f(a) is

quasipolar in K .

Example 2.4 Idempotents, nilpotents, quasinilpotents, and quasiregular elements are all quasipolar.

Recall that an element a in a general ring I is called a strongly clean element if it is the sum of an

idempotent and an element of Q(I) that commute, and I is called a strongly clean general ring if every element

is strongly clean [17]. Hence, by Definition 2.2, quasipolar elements (general rings) are strongly clean.

We need the following useful lemma.

Lemma 2.5 Let a, b, c be elements of a general ring I . If a ∈ Q(I) ∩ comm(b) and a ∗ c = 0 = c ∗ a , then

c ∈ comm(b) .

Proof Let a∗c = 0 = c∗a and ba = ab . Then a+c = ac = ca . This implies that ba+bc−bca = 0 = ab+cb−cab ,

and so

bc− bca = cb− cab. (2.1)

Multiplying (2.1) by c from the right yields

bcc− bcac = cbc− cabc.

This gives bca = cba = cab because c− ac = −a . This shows that bc = cb and so c ∈ comm(b). 2

Lemma 2.6 Let I be a general ring. If a ∗ b = 0 and c ∗ a = 0 , then b = c .

Proof Suppose that a ∗ b = 0 and c ∗ a for a, b, c ∈ I . This gives b = 0 ∗ b = (c ∗ a) ∗ b = c ∗ (a ∗ b) = c ∗ 0 = c ,

as desired. 2

Lemma 2.7 Let I be a general ring and assume that a ∈ I is quasinilpotent. Then a,−a ∈ Q(I) and −a ∈ I

is quasinilpotent. Further, QN(I) ⊆ Q(I) .

Proof Since a ∈ QN(I) and a ∈ comm(a), we get a2 ∈ Q(I). That is, there exists b ∈ R such that

a2 ∗ b = a2 + b− a2b = 0 = b+ a2 − ba2 = b ∗ a2 . This implies that 0 = a2 ∗ b = [a ∗ (−a)] ∗ b = a ∗ [(−a) ∗ b] and
0 = b ∗ a2 = b ∗ [(−a) ∗ a] = [b ∗ (−a)] ∗ a , and so we have a ∈ Q(I) by Lemma 2.6. Similarly, it can be shown

that −a ∈ Q(I). On the other hand, we check easily that −a ∈ QN(I). If a ∈ QN(I), then a ∈ Q(I). Hence,

QN(I) ⊆ Q(I). The proof is completed. 2

The next result was proved in [12, Theorem 4.2] for a in any ring R .

Theorem 2.8 The following are equivalent for a ∈ I :

(1) a is quasipolar in I .

17
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(2) There exists b ∈ comm2(a) such that ab2 = b and a2b− a ∈ QN(I) .

In this case, b is unique.

Proof (1) ⇒ (2) Write a+p = q ∈ Q(I) where p2 = p ∈ comm2(a) and a−ap ∈ QN(I), say q ∗r = r ∗q = 0

where r ∈ I . Then r + q = rq = qr . In view of Lemma 2.5, rp = pr because q ∈ Q(I) and q ∈ comm(p).

Set b = rp − p . It is easy to verify that p = ab . Let ax = xa for some x ∈ I . Since p ∈ comm2(a), we have

xp = px and so xq = qx . Moreover, as r + q = rq = qr , we see that

xr − xrq = rx− rxq. (2.2)

Multiplying (2.2) by r from the right yields

xrr − xrqr = rxr − rxqr and so xrq = rxq = rqx.

This shows that rx = xr . That is, r ∈ comm2(a). Hence, we conclude that b ∈ comm2(a). Now we show that

ab2 = b and a2b− a ∈ QN(I). We have

ab2 = (q − p)(rp− p)(rp− p) = (q − p)(r2p− rp− rp+ p)
= qr2p− qrp− qrp+ qp− r2p+ rp+ rp− p
= qr2p− rp− qp− rp− qp+ qp− r2p+ rp+ rp− p
= qr2p− r2p− p− qp
= (qr2 − r2 − p− q)p
= (r2 + rq − r2 − p− q)p
= (r − p)p
= b.

Moreover,

a2b− a = (q − p)(q − p)(rp− p)− (q − p)
= (q2 − qp− qp+ p)(rp− p)− q + p
= q2rp− q2p− qrp+ qp− qrp+ qp+ rp− p− q + p
= q2rp− q2p− rp− qp+ qp− rp− qp+ qp+ rp− q
= q2rp− q2p− rp− q
= qpr + q2p− q2p− rp− q
= rp+ qp− rp− q
= qp− q
= ap− a ∈ QN(I).

Thus (2) holds, as required.

(2) ⇒ (1) Set p = ab . Then p ∈ comm2(a), and p2 = abab = a2b2 = a(ab2) = ab = p . Since a − ap =

a−aab = a−a2b and a2b−a ∈ QN(I), we have a−ap ∈ QN(I). Now we show that a+p = a+ab ∈ Q(I). We

observe that (a+ab)∗ (b+ab) = a+ab+ b+ab− (a+ab)(b+ab) = a+ab+ b+ab−ab−a2b− b−ab = a−a2b .

As a−a2b ∈ QN(I), (a−a2b)∗x = x∗ (a−a2b) = 0 for some x ∈ I . This implies that (a+ab)∗ (b+ab)∗x = 0

and x ∗ (b+ ab) ∗ (a+ ab) = 0. Further, (b+ ab) ∗ x = 0 ∗ (b+ ab) ∗ x =
(
x ∗ (b+ ab) ∗ (a+ ab)

)
∗ (b+ ab) ∗ x =(

x∗(b+ab)
)
∗
(
(a+ab)∗(b+ab)∗x

)
= x∗(b+ab)∗0 = x∗(b+ab). Then (b+ab)∗x∗(a+ab) = x∗(b+ab)∗(a+ab) = 0,

so we have a+ ab = a+ p = q ∈ Q(I). Hence, a ∈ I is quasipolar. Moreover, as q ∈ Q(I), there exists r ∈ I

such that q ∗ r = 0 = r ∗ q , and so r+ q = rq = qr . As in the preceding discussion, we see that r ∈ comm2(a).

Thus, r ∗ (q ∗ (b + p)) = (r ∗ q) ∗ (b + p) = 0 ∗ (b + p) = b + p = r ∗ (a − ap) = r + a − ap − ra + rap =

r + q − p− pq + p− rq + rpq = rpq − pq = rp . Therefore, b = rp− p .
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To prove the uniqueness of b , assume that c ∈ comm2(a) so that ac2 = c and a2c− a ∈ QN(I). Then

ac− acab = ac− a2cb = a2c2 − a2cb = (a2b− a)(b− c). Since a2b− a ∈ QN(I) and b− c ∈ comm(a2b− a), we

have ac− a2cb ∈ Q(I). This gives that ac = a2cb . Similarly, we show that ab = a2cb , and so ab = ac . Thus,

b = rp− p = rab− ab = rac− ac = c ; that is, b is unique. Note that b is unique if and only if p is unique. We

complete the proof. 2

Corollary 2.9 Let I be a general ring. If a ∈ I is quasipolar, then −a is quasipolar.

Proof It is clear from Theorem 2.8. 2

Recall that an element a in a general ring I is called strongly π -regular if there exist n ∈ N and x ∈ I

such that an = an+1x and x ∈ comm(a) (see [2, 3, 17]). The next result is known if a is in a ring R (see [11,

Lemma 2.1] and [12, Proposition 4.9]).

Theorem 2.10 The following are equivalent for a ∈ I :

(1) a is strongly π -regular in I .

(2) There exists p2 = p ∈ comm2(a) such that a− ap ∈ Nil(I) and a+ p ∈ Q(I) .

(3) There exists p2 = p ∈ comm(a) such that a− ap ∈ Nil(I) and a+ p ∈ Q(I) .

(4) There exists b ∈ comm2(a) such that ab2 = b and a2b− a ∈ Nil(I) .

(5) There exists b ∈ comm(a) such that ab2 = b and a2b− a ∈ Nil(I) .

Proof (1) ⇒ (2) Assume that a ∈ I is strongly π -regular. Then there exist n ∈ N and x ∈ I such that

an = an+1x and ax = xa . It is easy to check that anxn = xnan = p = p2 ∈ I . Since an = anxnan , we have

(a− ap)n = 0, and so a− ap ∈ Nil(I).

Claim 1. p ∈ comm2(a).

Proof. Let ay = ya . This implies that py−pyp = anxny−anxnyp = anxny−xnyanp = anxny−xnyan =

anxny − anxny = 0 because ax = xa and anxn = xnan , so py = pyp . Similarly, we see that yp = pyp . Then

py = yp and so p ∈ comm2(a).

The remaining proof is to show that q = a+p is a quasiregular element of I . Set t = a+a2+a3+· · ·+an−1

and r = tp− t+ an−1xnp+ p . Hence,

q ∗ r = a+ p+ tp− t+ an−1xnp+ p−
atp− at− p− ap− an−1xnp− p
= a+ p+ ap− a− anp+ anp− p− ap
= 0.

Analogously, we have r ∗ q = 0. Thus (2) holds.

(2) ⇒ (3) Clear by comm2(a) ⊆ comm(a).

(3) ⇒ (4) Assume that a + p = q ∈ Q(I) where p2 = p ∈ comm(a) and a − ap ∈ Nil(I), say

q ∗ r = r ∗ q = 0 and (a − ap)k = ak − akp = 0 where r ∈ I and k ∈ N . By Lemma 2.5, rp = pr because

q ∈ Q(I) and q ∈ comm(p). Set b = rp − p and let ax = xa for some x ∈ I . Then we have ab = p = ba ,

and so xp − pxp = xakbk − pxakbk = akxbk − pakxbk = (ak − pak)xbk = 0. That is, xp = pxp . Analogously,
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we see that px = pxp . This gives xp = px , so p ∈ comm2(a). Therefore, an argument similar to the proof of

Theorem 2.8 shows that b ∈ comm2(a), ab2 = b , and a2b− a = ap− a ∈ Nil(I).

(4) ⇒ (5) It is obvious.

(5) ⇒ (1) Let ab = p . Since ab2 = b , we have p = p2 . As a2b − a ∈ Nil(I), there exists k ∈ N such

that (a2b − a)k = 0. This implies that (a2b − a)k = akp − ak = 0. Then ak = akp = akab = ak+1b and

b ∈ comm(a). Hence, a ∈ I is strongly π -regular, and so (1) holds. 2

Remark 2.11 If an element a of a general ring I is strongly π -regular, then b and p in Theorem 2.10 are

unique (indeed, as in the proof of Theorem 2.8, we see that b and p are unique).

By Theorem 2.10, the following result is immediate.

Corollary 2.12 Any strongly π -regular element in a general ring is strongly clean.

Recall that an element a of a general ring I is strongly regular if a = aba and b ∈ comm(a) for some

b ∈ I . I is strongly regular if every element in I is strongly regular.

Lemma 2.13 Let I be a general ring and a ∈ I . Then the following are equivalent:

(1) a is strongly regular in I .

(2) There exists b ∈ comm2(a) such that a = a2b .

Proof It is similar to the proof of [2, Lemma 1]. 2

Theorem 2.14 was proved for a in any ring R in [15].

Theorem 2.14 For an element a in a general ring I , the following are equivalent:

(1) a is strongly π -regular in I .

(2) a ∈ I can be written in the form a = s+ n where s is strongly regular, n is nilpotent, and sn = ns = 0 .

Proof (1) ⇒ (2) Suppose that a ∈ I is strongly π -regular. It is well known that a is strongly π -regular

if and only if a is pseudoinvertible; that is, there exist c ∈ I and m ∈ N such that ac = ca , am = am+1c ,

and c = c2a (see [6, Theorem 4]). Set s = aca and n = a − aca . Then sn = ns = aca(a − aca) = 0 because

ac = ca and ac is idempotent in I . It is easy to check that s = s2c and so s is strongly regular in I . Write

ca = ac = e = e2 ∈ I . Hence, (a − aca)m = (a − ae)m = am − ame = am − amac = am − am+1c = 0. Thus,

n ∈ I is nilpotent and so (2) holds.

(2) ⇒ (1) Assume that a = s+ n where s is strongly regular, n is nilpotent, and sn = ns = 0. Since n

is nilpotent, there exists k ∈ N such that nk = 0. As s is strongly regular, there exists x ∈ I such that s = s2x

and x ∈ comm2(s) by Lemma 2.13. Then it is easy to see that ak = (s+n)k = sk and ak+1 = (s+n)k = sk+1

because sn = ns = 0. This gives that ak = sk = sk−1s = sk−1s2x = sk+1x = ak+1x . Further, as as = sa and

x ∈ comm2(s), we have ax = xa . Hence, a is strongly π -regular in I . 2

The following result is well known for a ring (see [2]).
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Corollary 2.15 If an element a in a general ring I is strongly π -regular, then ak is strongly regular for some

k ∈ N .

A new characterization of a quasipolar element in a general ring is given as follows.

Theorem 2.16 For an element a in a general ring I , the following are equivalent:

(1) a is quasipolar in I .

(2) a ∈ I can be written in the form a = s+ q where s is strongly regular, s ∈ comm2(a) , q ∈ QN(I) , and

sq = qs = 0 .

Proof (1) ⇒ (2) Assume that a ∈ I is quasipolar. By Theorem 2.8, there exists b ∈ comm2(a) such

that ab2 = b and a2b − a ∈ QN(I). Set s = a2b and q = a − a2b . Further, we have s ∈ comm2(a) and

sq = qs = a2b(a− a2b) = 0 because ab = ba and ab is idempotent in I . It is easy to see that s = s2b and so

s ∈ I is strongly regular.

(2) ⇒ (1) Suppose that a = s + q where s is strongly regular, s ∈ comm2(a), q ∈ QN(I), and

sq = qs = 0. Since s is strongly regular, there exists y ∈ comm2(s) such that s = s2y by Lemma 2.13. Then

we have that sy = ys is an idempotent and yq = qy . Hence, a+sy = s+sy+ q = (s+sy)∗ q = q ∗ (s+sy) and

(s+ sy) ∗ (y2s+ sy) = (y2s+ sy) ∗ (s+ sy) = 0. This implies that (a+ sy) ∗ (y2s+ sy) = (y2s+ sy) ∗ (a+ sy) =

(s + sy) ∗ q ∗ (y2s + sy) = (y2s + sy) ∗ (s + sy) ∗ q = q . As q ∈ Q(I), it can be checked that a + sy ∈ Q(I).

Further, a− asy = s+ q − s2y − qsy = q ∈ QN(I) and sy ∈ comm2(a). Thus, a ∈ I is quasipolar, and so (1)

holds. 2

The following result is a direct consequence of Theorem 2.16.

Corollary 2.17 Let R be a ring and let a ∈ R . Then the following are equivalent:

(1) a is quasipolar.

(2) a = s+ q where s is strongly regular, s ∈ comm2(a) , q ∈ Rqnil , and sq = qs = 0 .

Proposition 2.18 A general ring I is strongly regular if and only if I is quasipolar and QN(I) = 0 .

Proof Assume that I is strongly regular. Then I is strongly π -regular and so I is quasipolar by Theo-

rem 2.10. Let a ∈ QN(I). By hypothesis, a = aba and b ∈ comm(a) for some b ∈ I . Since ab = ba , we

have ab ∈ Q(I). This implies that ab = 0 and so a = 0. Hence, QN(I) = 0. Conversely, let a ∈ I . Since

QN(I) = 0, a is strongly regular by Theorem 2.16. 2

The following result follows from Proposition 2.18.

Corollary 2.19 [4, Theorem 2.4] Let R be a ring. Then R is strongly regular if and only if R is quasipolar

and Rqnil = 0.

Remark 2.20 (1) In Proposition 2.18, it was proved that if a ∈ QN(I) and a is strongly regular, then a = 0.

(2) If a is strongly regular, then ak is strongly regular for any k ∈ N .

(3) If a ∈ QN(I) and ak is strongly regular for some k ∈ N , then a ∈ Nil(I).
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Proposition 2.21 A general ring I is strongly π -regular if and only if I is quasipolar and QN(I) ⊆ Nil(I) .

Proof Assume that I is strongly π -regular. Then, by Theorem 2.10, I is quasipolar because Nil(I) ⊆ QN(I).

Let a ∈ QN(I). As I is strongly π -regular, by Theorem 2.14, a = s + n where s is strongly regular, n is

nilpotent, and sn = ns = 0. Since n is nilpotent, there exists k ∈ N such that nk = 0. Hence, we have ak = sk .

As sk is strongly regular and a ∈ QN(I), by Remark 2.20, we see that a ∈ Nil(I). Thus, QN(I) ⊆ Nil(I).

Conversely, suppose that I is quasipolar and QN(I) ⊆ Nil(I). In view of Theorem 2.16 and Theorem 2.14, I

is strongly π -regular. 2

The following result is a direct consequence of Proposition 2.21.

Corollary 2.22 [4, Theorem 2.6] Let R be a ring. Then R is strongly π -regular if and only if R is quasipolar

and Rqnil ⊆ Nil(R).

An element a of a ring R is called semiregular if there exists b ∈ R with bab = b and a− aba ∈ J(R).

A ring is a semiregular ring if each of its elements is semiregular ([13, Proposition 2.2]).

We give a different proof of [19, Theorem 3.2].

Theorem 2.23 Let R be a ring. If R is quasipolar and Rqnil ⊆ J(R) , then R is semiregular. The converse

holds if R is abelian.

Proof Assume that R is a quasipolar ring and Rqnil ⊆ J(R). Then we have J(R) = Rqnil . In view

of Corollary 2.17, R/J(R) is strongly regular. As R is quasipolar, R is strongly clean and so idempotents

lift modulo J(R). Then R is semiregular by [13, Theorem 2.9]. Conversely, let a ∈ R . Then there exists

b ∈ R with bab = b and a − aba ∈ J(R). Write a = aba + (a − aba), say s = aba and q = a − aba . Since

a− aba ∈ J(R) ⊆ Rqnil and R is abelian, we see that s ∈ comm2(a), q ∈ Rqnil , s = aba = (aba)2b = s2b , and

sq = qs = aba(a − aba) = a2ba − a2ba = 0. By Corollary 2.17, a is quasipolar, and so R is quasipolar. Take

x ∈ Rqnil . By assumption, there exists y ∈ R with yxy = y and x − xyx ∈ J(R). Note that x · 0 = 0 and

x2 · 0− x = −x ∈ Rqnil . By Theorem 2.8, we get y = 0. This gives that x ∈ J(R). 2

3. Extensions of quasipolar general rings

Let S be a ring and I an (S, S)-bimodule, which is a general ring in which (vw)s = v(ws), (vs)w = v(sw),

and (sv)w = s(vw) hold for all v, w ∈ I and s ∈ S . Then the ideal-extension (it is also called the Dorroh

extension) I(S; I) of S by I is defined to be the additive abelian group E(S; I) = S ⊕ I with multiplication

(s, v)(r, w) = (sr, sw + vr + vw). In this case, I � E(S; I), and E(S; I)/I ∼= S . In particular, E(Z; I) is the

standard unitization of the general ring I .

Clean general ideal-extensions were considered in [14, Proposition 7]. Now we deal with quasipolar general

ideal-extensions.

Proposition 3.1 The following are equivalent for a general ring I :

(1) I is quasipolar.

(2) (0, a) is quasipolar in E(Z; I) for all a ∈ I .
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(3) There exists a ring S such that I =S IS and (0, a) is quasipolar in E(S; I) for all a ∈ I .

Proof (1) ⇒ (2) Let a ∈ I and R = E(Z; I). By Theorem 2.16, we have −a = s + q where s ∈ I is

strongly regular, q ∈ QN(I), and sq = qs = 0. Write (0, a) = (0,−s) + (0,−q). Since s is strongly regular,

there exists y ∈ comm2(s) such that s = s2y by Lemma 2.13. This implies that (0,−s) = (0,−s)2(0,−y)

and (0,−y) ∈ comm2
(
(0,−s)

)
, and so, by Lemma 2.13, (0,−s) is strongly regular in R . Assume that

(x, y) ∈ comm
(
(0, q)

)
. Then we have x+ y ∈ comm(q) and so (x+ y)q ∈ Q(I) because q ∈ QN(I). This gives

(1, 0) + (x, y)(0,−q) =
(
1,−(x + y)q

)
∈ U(R) (the inverse is (1,−t) where (x + y)q ∗ t = 0 = t ∗ (x + y)q ).

Hence, (0,−q) ∈ Rqnil . As sq = qs = 0, we see that (0,−s)(0,−q) = (0,−q)(0,−s) = (0, 0), and so (0, a) ∈ R

is quasipolar by Corollary 2.17.

(2) ⇒ (3) It is clear with S = Z .

(3) ⇒ (1) Let a ∈ I and R = E(S; I). By (3), (0,−a) + (e, p) = (e, p − a) where (e, p)2 = (e, p) ∈
comm2

(
(0,−a)

)
, (e, p− a) ∈ U(R), and (0,−a)(e, p) =

(
0,−a(e+ p)

)
∈ Rqnil . Since (e, p)2 = (e, p), we have

e2 = e and p = ep+pe+p2 . This gives that e = 1S because (e, p−a) ∈ U(R), so −p is an idempotent in I . As

(−1, a−p) ∈ U(R), there exists q ∈ I such that q ∗ (a−p) = 0 = (a−p)∗q . This implies that a+(−p) ∈ Q(I).

If ax = xa , then we have (0, x) ∈ comm
(
(0,−a)

)
and so xp = px because (1, p) ∈ comm2

(
(0,−a)

)
. Hence,

−p ∈ comm2(a). Now we show that a+ ap ∈ QN(I). Let x(a+ ap) = (a+ ap)x . As
(
0,−a(1S + p)

)
∈ Rqnil ,

it follows that x(a+ ap) ∈ Q(I), so a ∈ I is quasipolar. The proof is completed. 2

Theorem 3.2 Let I be a quasipolar general ring and A� I . Then A is quasipolar.

Proof Let R = E(Z; I) and a ∈ A . By Theorem 2.16, we have −a = s+ q where s ∈ I is strongly regular,

s ∈ comm2(a), q ∈ QN(I), and sq = qs = 0. Write (0, a) = (0,−s) + (0,−q). Since s is strongly regular,

there exists y ∈ comm2(s) such that s = s2y by Lemma 2.13. This implies that (0,−s) = (0,−s)2(0,−y)

and (0,−y) ∈ comm2
(
(0,−s)

)
, and so, by Lemma 2.13, (0,−s) is strongly regular in R . Assume that

(m,n) ∈ comm
(
(0, q)

)
. Then we have x+y ∈ comm(q) and so (m+n)q ∈ Q(I) because q ∈ QN(I). This gives

(1, 0) + (m,n)(0,−q) =
(
1,−(m+ n)q

)
∈ U(R) (the inverse is (1,−t) where (m+ n)q ∗ t = 0 = t ∗ (m+ n)q ).

Hence, (0,−q) ∈ Rqnil . As sq = qs = 0, we see that (0,−s)(0,−q) = (0,−q)(0,−s) = (0, 0). Let

(u, v)(0, a) = (0, a)(u, v). Then (u+v) ∈ comm(a) and so (u+v) ∈ comm(s) since s ∈ comm2(a). This proves

(u, v)(0,−s) = (0,−s)(u, v). That is, (0,−s) ∈ comm2
(
(0, a)

)
, so (0, a) ∈ R is quasipolar by Corollary 2.17.

As A ∼= (0, A)�R , A is quasipolar by Proposition 3.1 and Remark 2.3. 2

This result shows that any ideal of a quasipolar general ring is a quasipolar general ring. However, the

converse need not be true in general, as the following example shows.

Given a ring R , the set I = {(a, b) | a, b ∈ R} becomes a general ring (without identity) with addition

defined componentwise and multiplication defined by (a, b)(c, d) = (ac, ad). Then I ∼=
[

R R
0 0

]
= J where J

is a right ideal of M2(R).

Example 3.3 Consider the local ring R = Z(2) = {m
n ∈ Q | 2 ∤ n} and (a, b) ∈ I . If a ∈ J(R), then it is easy to

verify that (a, b) ∈ J(I) and so (a, b) is quasipolar in I . If a /∈ J(R), then a ∈ 1+J(R), so (a, b)+(1, a−1b) =
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(a+ 1, b + a−1b) where (1, a−1b)2 = (1, a−1b) ∈ comm2
(
(a, b)

)
and (a+ 1, b + a−1b) ∈ J(I) ⊆ Q(I). Further,

since (a, b) − (a, b)(1, a−1b) = (0, 0) ∈ QN(I), (a, b) is quasipolar in I . Hence, I is a quasipolar general ring.

On the other hand, M2(R) is not a quasipolar ring because M2(R) is not a strongly clean ring (see [16]).

Lemma 3.4 Let e2 = e ∈ I . Then QN(eIe) = eIe ∩QN(I) .

Proof Let a ∈ QN(eIe) and ab = ba for some b ∈ I . Then a · ebe = abe = bae = ba and

ebe · a = eba = eab = ab , so ebe ∈ comm(a). Since a ∈ QN(eIe), we have ab ∗ x = 0 = x ∗ ab

for some x ∈ eIe . Hence, a ∈ eIe ∩ QN(I). This gives that QN(eIe) ⊆ eIe ∩ QN(I). Conversely, let

a ∈ eIe ∩ QN(I) and aere = erea for some ere ∈ eIe . This implies that ae = ea = a . Since a ∈ QN(I),

are+ y − arey = 0 = are+ y − yare for some y ∈ I . Then are+ eye− areye = 0 = are+ eye− eyare and so

are ∈ Q(eIe). Therefore, eIe ∩QN(I) ⊆ QN(eIe). We complete the proof. 2

Theorem 3.5 Let I be a quasipolar general ring with e2 = e ∈ I . Then eIe is quasipolar.

Proof Let a ∈ eIe . Then there exists p2 = p ∈ comm2(a) such that a+ p = q ∈ Q(I) and a− ap ∈ QN(I).

Since ae = ea , we have ep = pe . This implies that a + epe = eqe where epe2 = epe and eqe ∈ Q(I) ∩ eIe =

Q(eIe). It is easy to see that epe ∈ comm2(a) because p2 = p ∈ comm2(a). As a − ap ∈ QN(I), we have

a− ap = a− aep = a− aepe = a− ape = e(a− ap)e ∈ QN(I) ∩ eIe = QN(eIe) by Lemma 3.4. Hence, eIe is

quasipolar. 2

Corollary 3.6 [19, Proposition 3.6] Let R be a ring with e2 = e ∈ R . If R is quasipolar, then so is eRe .

4. Pseudopolar elements

An element a of R is pseudo-Drazin invertible if there exist b ∈ R and k ∈ N satisfying ab2 = b , b ∈ comm2(a),

and (a − a2b)k ∈ J(R) . Such a b , if it exists, is unique; it is called a pseudo-Drazin inverse of a . Wang and

Chen [18] showed that an element a ∈ R is pseudo-Drazin invertible if and only if a is pseudopolar; that is,

there exist p ∈ R and k ∈ N such that p2 = p ∈ comm2(a), a+ p ∈ U(R), and akp ∈ J(R).

A characterization of pseudopolar elements can be given as follows.

Theorem 4.1 Let R be a ring and let a ∈ R . Then the following are equivalent:

(1) a is pseudopolar.

(2) a = s+ q where s is strongly regular, s ∈ comm2(a) , q ∈ J#(R) , and sq = qs = 0 .

Proof (1) ⇒ (2) Assume that a ∈ R is pseudopolar. Then there exist b ∈ comm2(a) and k ∈ N such that

ab2 = b and (a − a2b)k ∈ J(R). Set s = a2b and q = a − a2b . This gives s ∈ comm2(a), q ∈ J#(R) and

sq = qs = a2b(a− a2b) = 0. It is easy to see that s = s2b and so s ∈ R is strongly regular.

(2) ⇒ (1) Suppose that a = s + q where s is strongly regular, s ∈ comm2(a), q ∈ J#(R), and

sq = qs = 0. Since s is strongly regular, there exists y ∈ comm2(s) such that s = s2y by Lemma 2.13. Then

we have that 1 − p = sy = ys is an idempotent, p ∈ comm2(a), and yq = qy . As q ∈ J#(R), we see that
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qn ∈ J(R) and so 1+ q ∈ U(R) for some n ∈ N . Hence, (a+ p)(y2s+ p) = 1+ q ∈ U(R) and so a+ p ∈ U(R).

Moreover, anp = (sn + qn)(1− sy) = qn ∈ J(R) because sn = sn+1y , so (1) holds. 2

Note that if R is pseudopolar, then R is quasipolar by Theorem 4.1 and Corollary 2.17. Further, if −a

is pseudopolar, then so is a by Theorem 4.1.

Combining Theorem 2.10 with Theorem 4.1, we obtain the following result.

Corollary 4.2 [18, Theorem 2.1] Let R be a ring. Then R is strongly π -regular if and only if R is pseudopolar

and J(R) is nil.

We give a different proof of the [18, Theorem 2.4].

Theorem 4.3 Let R be a ring. If R is pseudopolar and J#(R) = J(R) , then R is semiregular. The converse

holds if R is abelian.

Proof Assume that R is pseudopolar and J#(R) = J(R). According to Theorem 4.1, R/J(R) is strongly

regular. Hence, R is semiregular by [13, Theorem 2.9]. Conversely, let a ∈ R . Then there exists b ∈ R

with bab = b and a − aba ∈ J(R). Write a = aba + (a − aba), say s = aba and q = a − aba . Since

a− aba ∈ J(R) ⊆ J#(R) and R is abelian, we see that s ∈ comm2(a), q ∈ J#(R), s = aba = (aba)2b = s2b ,

and sq = qs = aba(a− aba) = a2ba− a2ba = 0. By Theorem 4.1, a is pseudopolar. In view of Theorem 2.23,

we see that J#(R) = J(R). 2

Recall that an element a ∈ R is strongly π -rad clean provided that there exists an idempotent e ∈ R

such that ae = ea and a − e ∈ U(R) and ane ∈ J(R) for some n ∈ N . A ring R is strongly π -rad clean if

every element in R is strongly π -rad clean (see [5]). We now give the relations among quasipolarity, strong

π -rad cleanness, and pseudopolarity.

Theorem 4.4 Let R be a ring. Then R is pseudopolar if and only if R is strongly π -rad clean and quasipolar.

Proof The “only if” part is easy to see and so we only have to prove the “if” part. Let a ∈ R . Then there

exists p2 = p ∈ comm2(a) such that a+ p ∈ U(R) and ap ∈ Rqnil since R is quasipolar. Further, there exists

q ∈ comm(a) such that −a − q ∈ U(R) and anq ∈ J(R) for some n ∈ N because R is strongly π -rad clean.

Since anq ∈ J(R), we have aq ∈ Rqnil . By [12, Proposition 2.3], we see that p = q . Hence, a is pseudopolar,

as desired. 2

Corollary 4.5 [18, Corollary 2.12] Let R be a ring with e2 = e ∈ R . If R is pseudopolar, then so is eRe .

Proof Assume that R is pseudopolar. Then R is strongly π -rad clean and quasipolar by Theorem 4.4.

In view of [5, Corollary 4.2.2] and Corollary 3.6, eRe is strongly π -rad clean and quasipolar. Hence, eRe is

pseudopolar again by Theorem 4.4. 2

Remark 4.6 Let S be a commutative ring and R = M2(S). By [18, Example 4.3], we have J#(R) = Rqnil .

Hence, by Theorem 4.1 and Corollary 2.17, R is quasipolar if and only if R is pseudopolar. Further, if S is

commutative local, then R is pseudopolar if and only if R is quasipolar if and only if R is strongly clean (by

[7, Corollary 2.13]) if and only if R is strongly π -rad clean (by [5, Corollary 4.3.7]).
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