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Abstract: In this paper, cyclic c− injective modules are introduced and investigated. It is shown that a commutative

Noetherian domain is Dedekind if and only if every simple module is cyclic c− injective. Finally, it is shown that

injectivity, principal injectivity, mininjectivity, and simple injectivity are all equal to characterize right V-rings, right

GV-rings, right pV-rings, and WV-rings.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary (unless otherwise

stated).

Recall that an integral domain R that is not a field is called a Dedekind domain if every nonzero proper

ideal factors into primes. This is equivalent to R being an integrally closed, Noetherian domain with Krull

dimension one (i.e. every nonzero prime ideal is maximal). Mermut et al. [10] showed that a commutative

Noetherian domain is Dedekind if and only if every simple module is c− injective. According to Baccella [1], a

ring R is called a right V-ring (resp. right GV-ring) if every simple (resp. simple singular) right R−module is

RR− injective, i.e. injective. According to López-Permouth et al. [9], a ring R is called a right pV-ring provided

every simple right R−module is p− injective (there, p− injectivity is exactly principal injectivity). It is shown

that being a right or left pV-ring is a Morita invariant. Following Holston [7], a ring R is called a WV-ring

if every simple right R−module is injective relative to proper cyclics, i.e M is R/I− injective for every right

ideal I of R satisfying R/I ̸∼= R. We ask here:

Can we characterize Dedekind domains, right V-rings, right GV-rings, right pV-rings, and WV-rings by

weaker forms of injectivity instead of the defined ones?

The answer is definitely yes as we shall see in the last section of this text. In fact, commutative Noetherian

domains are characterized by cyclic c− injective modules. Right V-rings, right GV-rings, right pV-rings, and

WV-rings are characterized by mininjective modules and simple injective modules.

Let M be a right R−module and S = End(MR) its endomorphism ring. M is called a simple module

if M and 0 are the only submodules of M. M is called a cyclic module if M = mR for some m ∈ M, i.e. M
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is generated by a single element. A submodule X of M (denoted by X ↪→ M) is called a cyclic submodule

(resp. simple or minimal submodule) if X is a cyclic module (resp. simple module). A submodule N of M is

said to be essential in M (denoted by N
∗
↪→M) if N has nonzero intersection with every nonzero submodule

of M, i.e. N ∩ A ̸= 0 for every 0 ̸= A ↪→ M. A submodule X ↪→ M is called a closed submodule if it has

no proper essential extension in M, i.e. for every submodule B of M, X
∗
↪→ B implies X = B. Note that if

X is a closed submodule of Y and Y is a closed submodule of M, then X is closed in M (see [12, section

1.29]). A submodule K of M is called an M -cyclic submodule if K = s(M) for some s ∈ S. A fact that cyclic

submodules and M−cyclic submodules are distinguished as we will see in Example 1. However, in the case of

rings, they meet each other.

We denote rX(Y ), lX(Y ) for the right annihilator, the left annihilator of Y in X, respectively. We

simply write r(Y ), l(Y ) if X is a ring R and Y ⊂ R. According to [6, 12], a module MR is called a CS module

(or extending module) if every submodule of M is essential in a direct summand, or, equivalently, every closed

submodule of M is a direct summand.

Let M and N be two right R−modules. The following notions of injectivity have been established and

investigated extensively.

1. N is called an M− injective module if every homomorphism from any submodule of M to N extends to

an element of HomR(M,N). N is called a quasi-injective module if it is N− injective. N is called an

injective module if it is M− injective for every right R−module M.

2. N is called an M − c− injective module if every homomorphism from any closed submodule of M to N

extends to an element of HomR(M,N). N is called quasi−c− injective if it is N − c− injective. N is

called a c− injective module if it is M − c− injective for every right R−module M (see [5, 10]).

3. N is called an M−cp− injective module if every homomorphism from any closed and M−cyclic submodule

of M to N extends to an element of HomR(M,N). N is called a cp− injective module if it is M −
cp− injective for every right R−module M (see [3]).

4. N is called a principally M− injective module if every homomorphism from any cyclic submodule of M

to N extends to an element of HomR(M,N). According to [11], N is called a principally quasi-injective

module if N is principally N− injective.

5. N is called an M−mininjective module if every homomorphism from any minimal submodule of M to N

extends to an element of HomR(M,N). N is called a quasi-mininjective module if it is N−mininjective

(see [12]). In [14], quasi-mininjective modules are referred to by the term minimal quasi-injective modules.

6. N is called a simple M− injective module if for every A ↪→ M, any f ∈ HomR(A,N) with simple

image extends to an element of HomR(M,N). N is called a simple quasi-injective module if it is simple

N− injective (see [12]).

Motivated by the notions above, we investigate some weak forms of principal injectivity relative to the

classes of cyclic submodules, closed submodules, and minimal submodules. Cyclic M − c− injective modules

and cyclic quasi−c− injective modules are defined and studied in sections 2 and 3. Our main results that

answer our question are shown in the last section as applications of cyclic c− injectivity, simple injectivity, and

mininjectivity. Surprisingly, in spite of weak injectivity, characterizations of right V-rings, right GV-rings, right

pV-rings, WV-rings, and commutative Noetherian domains that are Dedekind are obtained.
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2. On cyclic M − c− injective modules

Definition 1 Let M and N be two right R−modules. N is called a cyclic closed M− injective (or cyclic

M − c− injective) module if every homomorphism from any closed and cyclic submodule of M to N extends to

an element of HomR(M,N).

M is called a cyclic quasi−c− injective module if it is cyclic M − c− injective. M is said to be cyclic

c− injective if it is cyclic N − c− injective for every right R−module N. In particular, a ring R is called a right

cyclic c− injective ring if RR is a cyclic quasi−c− injective module.

Note that, in general, cp− injective modules (see [3]) and cyclic c− injective modules are different, since

cyclic submodules and M−cyclic submodules are distinguished. However, for a ring, being right cp− injective

(by sense of [3]) and being right cyclic c− injective are the same. Therefore, in order to unify terminologies in

the case of rings, we say right cyclic c− injective rings.

Let M and N be right R−modules. Then, we have

(1) If N is M− injective, then N is M − c− injective.

(2) If N is M − c− injective, then N is cyclic M − c− injective and M − cp− injective.

(3) If M is principally quasi-injective or quasi−c− injective, then M is cyclic quasi−c− injective.

For a ring R, right (self) injectivity implies right principal injectivity and right c− injectivity, and right

principal injectivity or right c− injectivity implies right cyclic c− injectivity.

Proposition 1 Let M1 and M2 be right R−modules. If M =M1⊕M2 is a cyclic quasi−c− injective module,

then Mi is cyclic Mj − c− injective, for i, j = 1, 2. In particular, if Mn is a cyclic quasi−c− injective for any

integer n ≥ 2, then M is cyclic quasi−c− injective.

An element m of a module M = MR is called a closed element if mR is a closed submodule of M. In

particular, an element x of a ring R is said to be right closed (resp. left closed) if xR (resp. Rx) is a closed

right ideal (resp. closed left ideal) of R.

According to [8], M is called a P-extending module provided every cyclic submodule is essential in a

direct summand. By [13], ECS modules are those whose every closed submodule containing essentially a cyclic

submodule is a direct summand. Following [4], for CMS modules all closed and M−cyclic submodules are direct

summands. For right C-regular ring every closed principal right ideal is a direct summand. Next, we study a

weak CS property.

Definition 2 A right R−module M is called a CCS module if for every closed element m ∈M,mR is a direct

summand. In particular, a ring R is called a right CCS ring if every closed, principal right ideal is a direct

summand.

Example 1 We consider Z−modules, M = Z ⊕ Z, and A = 2Z ⊕ 3Z. Then it is easy to check that A is an

M−cyclic submodule of M but is not cyclic. On the other hand, (2, 3)Z is not M−cyclic.

Considering Z−module M = Q⊕ Z/Zp, where Q is the set of all rational numbers, Z is the set of all

integers, and p is a prime number. Note that Z/Zp is a simple Z−module, Q is a uniform Z−module, and Q

has no closed proper submodule. Therefore, the only closed and cyclic submodules of M are 0, Q , and Z/Zp.

Thus M is CCS and so is cyclic quasi−c− injective (by Proposition 2 in the following) but not principally

quasi-injective.
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Left CCS rings are defined analogously. We have the relation of extending properties on a module: being

CS ⇒ being ECS ⇒ being P-extending ⇒ being CCS. Every CCS module is cyclic quasi−c− injective (by the

following result). By Example 1, we see that CCS modules and CMS modules are distinguished. However, for

a ring R, RR−cyclic submodules and cyclic submodules of RR coincide (in fact, both are principal (or cyclic)

right ideal of R). Thus, saying that R is right CCS, or R is right C−regular [4], or RR is CMS [4] is the same.

Therefore, we say right CCS rings in unity.

Proposition 2 The following conditions are equivalent for a right R−module M :

(1) M is a CCS module;

(2) Every right R−module is cyclic M − c− injective;

(3) Every cyclic right R−module is cyclic M − c− injective;

(4) Every closed and cyclic submodule of M is cyclic M − c− injective.

Proof The proof is routine. 2

We say that a right R−module M has the CC property if every closed submodule of M is cyclic.

Proposition 3 The following statements are equivalent for a right R−module M with the CC property:

(1) M is a CS module;

(2) Every right R−module is M − c− injective;

(3) Every right R−module is cyclic M − c− injective;

(4) M is a CCS module.

Proof The implications (1 ) ⇒ (2 ) ⇒ (3 ) are routine.

(3 ) ⇒ (4 ) Let A be an arbitrary closed and cyclic submodule of M. Then A is cyclic M − c− injective

and so is a direct summand of M. This implies that M is a CCS module.

(4 ) ⇒ (1 ) Let A be an arbitrary closed submodule of M. Since M has the CC property, A is cyclic.

Thus A is a direct summand of M, since M is CCS. This shows that M is a CS module, completing the proof. 2

Example 2 Let Z be the set of all integers. Consider Z−module M = (Z/Z2) ⊕ (Z/Z8). We observe that

all closed submodules of M are cyclic. However, there are cyclic submodules that are not closed. It is easy to

check that M has the CC property but it is not a CCS module and so it is not extending by Proposition 3 (in

fact, ((1 + Z2)⊕ (2 + Z8))Z is a cyclic closed submodule of M but not a direct summand). By this example,

we also see that a direct sum of two CCS (even extending) modules may not be a CCS module.

Theorem 1 Let M be a projective right R−module. Then the following conditions are equivalent:

(1) Every homomorphic image of a cyclic M − c− injective module is cyclic M − c− injective;

(2) Every homomorphic image of an M − c− injective module is cyclic M − c− injective;

(3) Every homomorphic image of an M− injective module is cyclic M − c− injective;

(4) Every homomorphic image of an injective module is cyclic M − c− injective;

(5) Every cyclic and closed submodule of M is projective.

(6) For every closed element m ∈M, rR(m) is a direct summand of R.
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Proof The implications (1 ) ⇒ (2 ) ⇒ (3 )⇒ (4 ) are obvious.

(4 ) ⇒ (5 ) Let X be a closed and cyclic submodule of M. We assume that N and K are two right

R−modules, N is injective, and ϕ : N → K is an epimorphism. By [2, Proposition 5.1], in order to prove that

X is projective, it is sufficient to show that every homomorphism ψ : X → K lifts to a homomorphism from

X to N.

By (4 ), K is cyclic M − c− injective; thus ψ extends to a homomorphism α : M → K. Since M is a

projective module, there exists β :M → N such that ϕβ = α. Then we see that β lifts ψ to N, implying that

X is projective.

0 → X ↪→M
ψ ↘↓ α

N
ϕ−→ K → 0

(5 ) ⇒ (1 ) Assuming that N is cyclic M − c− injective and X is projective for any closed and cyclic

submodule X of M. Then any homomorphism ψ : X → K lifts to a homomorphism γ : X → N and γ

extends to a homomorphism λ : M → N. Thus, ϕλ : M → K is an extension of ψ, showing that K is cyclic

M − c− injective.

(5 ) ⇔ (6 ) It is clear, finishing the proof. 2

Let M and N be right R−modules. It is obvious to say that if every quotient of N is cyclic M −
c− injective and then so is N. However, the converse need not be true. Theorem 1 gives us a necessary and

sufficient condition for a factor module of a cyclic M − c− injective module to be cyclic M − c− injective.

Corollary 1 Let M = MR be a projective module. If N = NR is a cyclic M − c− injective module, then

every quotient of N is again cyclic M − c− injective if and only if every closed and cyclic submodule of M is

projective.

3. On cyclic quasi−c− injective modules

In this section, properties of cyclic c− injectivity that are similar to principal injectivity in [12] are proved. By

Theorem 1, we have the following corollaries.

Corollary 2 Let M be a projective right R−module that is cyclic quasi−c− injective. Then the following

statements are equivalent:

(1) Every factor of M is cyclic M − c− injective;

(2) f(M) is cyclic M − c− injective for every endomorphism f of M ;

(3) mR is projective for every closed element m ∈M.

Corollary 3 For a right cyclic c− injective ring R, the following conditions are equivalent:

(1) xR is cyclic RR − c− injective for every x ∈ R;

(2) R/I is cyclic RR − c− injective for every right ideal I;

(3) aR is projective for every right closed element a ∈ R.

Example 3 Let F be a field with only two elements and R be a F−algebra having basis {e1, e2, e3, n1, n2, n3, n4}
with the following multiplication table:
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e1 e2 e3 n1 n2 n3 n4
e1 e1 0 0 0 0 0 0
e2 0 e2 0 n1 0 0 n4
e3 0 0 e3 0 0 0 0
n1 n1 0 0 0 0 0 0
n2 n2 0 0 0 0 0 0
n3 0 0 n3 0 0 0 0
n4 0 0 n4 0 0 0 0

Considering the right R−module M = e2R. Since e2R is a direct summand of R, M is projective. Closed

and cyclic submodules of M are precisely n1R and n4R. We observe that M is cyclic quasi−c− injective (but

not CCS) and that rR(n1) and rR(n4) are direct summands of R . Thus, Corollary 2 is applied.

Now we are going to prove a characterization of cyclic quasi−c− injective modules.

Theorem 2 Let M be a right R−module and its endomorphism ring S = End(MR). Then the following

conditions are equivalent:

(1) M is a cyclic quasi−c− injective module;

(2) lMrR(m) = Sm = {f(m)|f ∈ S} for every closed element m ∈M ;

(3) rR(m) ⊆ rR(n) implies Sn ⊆ Sm, for every closed element m ∈M and for any n ∈M ;

Proof Let m be an arbitrary closed element of M.

(1)⇒(2) For every f ∈ S, we have f(m)rR(m) = 0 and so Sm ⊆ lMrR(m). For x ∈ lMrR(m), it is

clear that rR(m) ⊆ rR(x); thus the mapping β : mR → M,ma 7→ xa, a ∈ R, is well defined. It is easy to see

that β is a homomorphism. Since M is a cyclic quasi−c− injective module, β extends to an endomorphism α

of M ; hence x = β(m) = α(m) ∈ Sm. This shows that lMrR(m) ⊆ Sm; thus lMrR(m) = Sm.

(2)⇒(3) For every n ∈ M, if rR(m) ⊆ rR(n), then n ∈ lMrR(m). By (2), Sm = lMrR(m), and so

n = β(m) for some β ∈ S. Thus Sn = Sβ(m) ⊆ Sm.

(3)⇒(1) We will show that for every closed element m ∈M, if γ : mR→M is an R−homomorphism,

then γ(m) ∈ Sm. Assuming that γ(m) = x, for some x ∈ M, we have rR(m) ⊆ rR(x), and so Sx ⊆ Sm by

(3). This implies x = f(m) for some f ∈ S, showing γ(m) ∈ Sm. Therefore, M is cyclic quasi−c− injective. 2

We obtain a characterization of right cyclic c− injective rings by the following corollary.

Corollary 4 (also see [3, Corollary 3.9])

The following conditions are equivalent for a ring R :

(1) R is right cyclic c− injective;

(2) lr(a) = Ra for every right closed element a ∈ R;

(3) r(a) ⊆ r(b) implies Rb ⊆ Ra, for every right closed element a ∈ R and for every b ∈ R;

(4) For every right closed element a ∈ R, l(kR ∩ r(a)) = l(k) + Ra, for any k ∈ R such that akR is

closed.

Proof (1)⇔(2)⇔(3)⇔(4) This follows from Theorem 2.

(3)⇒(4) Let k be any element of R such that akR is closed in RR. If x ∈ l(kR ∩ r(a)) then

r(ak) ⊆ r(xk), and so xk = yak, y ∈ R, by (3). Thus, x − ya ∈ l(k); hence x = z + ya, z ∈ l(k). This

implies that l(kR ∩ r(a)) ⊆ l(k) +Ra. The other inclusion always holds.

(4)⇒(2) It is routine by taking k = 1. 2
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Proposition 4 For a cyclic quasi−c− injective module M = MR, and for every closed element m ∈ M, if

mR ∼= A and A is a direct summand and then so is mR.

In particular, if R is right cyclic c− injective, then for every closed element a ∈ R, aR ∼= eR, e = e2 ∈ R

implies aR = bR, for some b = b2 ∈ R.

Proof Observe that A is cyclic M − c− injective. Since mR ∼= A, mR is cyclic M − c− injective. Thus mR

is a direct summand of M . The case of the ring is clear. 2

We will conclude this section by giving conditions in which the endomorphism ring of a module, in

particular, a self-generator, a self-cogenerator, is right (left) cyclic c− injective. By analogous way, a ring R

is left cyclic c− injective if and only if for every left closed element s ∈ R (i.e. Rs is closed in RR) and any

R−homomorphism α : Rs → R extends to a right multiplication, α = ·t, for some t ∈ R. It is routine to

obtain the following lemma, which is similar to Corollary 4.

Lemma 1 The following conditions are equivalent for a ring R :

(1) R is left cyclic c− injective;

(2) rl(a) = aR for every left closed element a ∈ R;

(3) l(a) ⊆ l(b) implies bR ⊆ aR, for every left closed element a ∈ R and for every b ∈ R;

Theorem 3 Let M be a right R−module and S = End(MR).

(1) We suppose that M generates ker(f) for every right closed element f ∈ S. Then, S is right cyclic

c− injective if and only if ker(f) ⊆ ker(g) implies g ∈ Sf, where g is an arbitrary element of S.

(2) Assuming that M cogenerates M/f(M) for every left closed element f ∈ S. Then S is left cyclic

c− injective if and only if g(M) ⊆ f(M) implies g ∈ fS, where g is an arbitrary element of S.

Proof (1) Let f be an arbitrary right closed element of S. We assume that S is right cyclic c− injective and

ker(f) ⊆ ker(g), where g ∈ S. For every s ∈ S, fs = 0 implies sM ⊆ ker(f) ⊆ ker(g); thus gsM = 0. This

means that gs = 0, and hence r(f) ⊆ r(g). By Corollary 4, Sg ⊆ Sf and thus g = sf ∈ Sf for some s ∈ S.

Conversely, for h ∈ lr(f), we will show that ker(f) ⊆ ker(h). For any x ∈ ker(f), since ker(f) is

generated by M, we have x =
∑

I γi(mi),mi ∈M,γi :M → ker(f), for some finite index set I. Then fγi = 0

for each i ∈ I, and so γi ∈ r(f). Therefore, lr(f) ⊆ l(γi), i ∈ I, and thus hγi = 0. As a consequence, h(x) = 0,

so x ∈ ker(h) and hence ker(f) ⊆ ker(h). By the hypothesis, h ∈ Sf and hence lr(f) ⊆ Sf. This implies

lr(f) = Sf, since the other inclusion always holds. By Corollary 4, S is a right cyclic c− injective ring.

(2) Let f be an arbitrary left closed element of S. We suppose that S is left cyclic c− injective and

g(M) ⊆ f(M), where g ∈ S. For every s ∈ S, sf = 0 implies sf(M) = 0; thus sg(M) = 0. This means that

sg = 0 and hence l(f) ⊆ l(g). By Lemma 1, gS ⊆ fS and thus g = fs ∈ fS for some s ∈ S.

Conversely, if h ∈ rl(f), then l(f) ⊆ l(h). We will show that h(M) ⊆ f(M). In contrast, assume that

there exists some m0 ∈ M such that h(m0) ̸∈ f(M). Thus the homomorphism α : M → M/f(M),m 7→
h(m) + f(M) is nonzero, because at least α(m0) = h(m0) + f(M) ̸= 0. Then there is an R−homomorphism

γ :M/f(M) →M satisfying γα(m0) = γ(h(m0)+f(M)) ̸= 0, since M cogenerates M/f(M). We have βf = 0,

where β :M →M is defined by β(m) = γ(m+f(M)),m ∈M. Then βh(m0) = γ(h(m0)+f(M)) ̸= 0, βh ̸= 0,

contradicting l(f) ⊆ l(h). Therefore, h(M) ⊆ f(M) must hold. Thus, by assumption, h = fs ∈ fS and so

rl(f) ⊆ fS. This says that rl(f) = fS, since the other inclusion always holds. Consequently, by Lemma 1, S

is left cyclic c− injective. 2
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4. Applications of weak forms of principal injectivity

This section aims to answer our question stated in the introductory part. We show that cyclic c− injectivity is

useful for characterizing commutative Noetherian rings that are Dedekind domains; principal injectivity, simple

injectivity, and mininjectivity help us to obtain right V-rings, right GV-rings, and WV-rings. The next theorems

can be regarded as the most important ones in this paper. Throughout this section, R is an associative ring

with identity and all modules are unitary, right over R.

Lemma 2 The following conditions are equivalent for a simple module MR :

(1) M is c− injective;

(2) M is cyclic c− injective;

(3) M is c− injective relative to minimal submodules, that is for every right R−module N, every

homomorphism from any minimal, closed submodule of N to M extends to an element of HomR(N,M).

Proof It is obvious for the implications (1)⇒(2)⇒(3).

(3)⇒(1) Let N be an arbitrary right R−module and A a closed submodule of N. For any homo-

morphism f : A → M, since M is simple, A/ ker(f) is a minimal submodule of N/ ker(f). Moreover,

A/ ker(f) is closed in N/ ker(f) (see [6]). We put f̄ : A/ ker(f) → M, f̄(a + ker(f)) = f(a), a ∈ A. Since

M is c− injective relative to minimal submodules, f̄ extends to a homomorphism φ : N/ ker(f) → M. Let

π : N → N/ ker(f) be the canonical projection. Then we observe that α = φπ is an extension of f. Indeed, for

every a ∈ A,α(a) = φπ(a) = φ(a + ker(f)) = f̄(a + ker(f)) = f(a). This implies that M is N − c− injective.

Consequently, M is c− injective, completing the proof. 2

Theorem 4 If R is a commutative Noetherian domain, then the following statements are equivalent:

(1) R is Dedekind;

(2) Every simple R−module is c− injective;

(3) Every simple R−module is cyclic c− injective;

(4) Every simple R−module is c− injective relative to minimal submodules;

(5) Every simple R−module M is simple N− injective relative to closed submodules, for every R−module

N, that is for any closed submodule A of N, every f ∈ HomR(A,M) with a simple image extends to an element

of HomR(N,M).

Proof The implications (2)⇔(3)⇔(4) follow from Lemma 2.

(1)⇔(2) It is by [10, Corollary 5.5].

(2)⇒(5) It is straightforward.

(5)⇒(4) For every R−module N and for any closed, minimal submodule A of N, every f : A → M

has a simple image. Since M is simple N− injective relative to closed submodules, f extends to an element of

HomR(N,M). This implies that M is c− injective relative to minimal submodules, as required. The proof is

now complete. 2

Theorem 5 The following conditions are equivalent for a ring R :

(1) R is a right V-ring (resp. right GV-ring);
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(2) Every simple (resp. simple singular) module is injective;

(3) Every simple (resp. simple singular) module is principally N− injective for every module N ;

(4) Every simple (resp. simple singular) module is principally R/I− injective for every right ideal I of

R;

(5) Every simple (resp. simple singular) module is N−mininjective for every module N ;

(6) Every simple (resp. simple singular) module is R/I−mininjective for every right ideal I of R;

(7) Every simple (resp. simple singular) module is simple N− injective for every module N ;

(8) Every simple (resp. simple singular) module is simple R/I− injective for every right ideal I of R;

(9) Every module is quasi-mininjective.

Proof We will prove for the case of being right V-rings. The other one is induced similarly.

(1)⇔(2) It is by the definition of right V-rings.

(1)⇔(9) It is by[14, Theorem 1.5].

(2)⇔(6) Let M be an arbitrary simple module. If M is injective, then it is obvious that M is

R/I−mininjective for every right ideal I of R. Conversely, we assume that for every right ideal J of R,

M is R/J−mininjective. For every right ideal I of R and for any homomorphism f : I → M, we have

I/ ker(f) ∼= M via the isomorphism f̄(a + ker(f)) = f(a), ∀a ∈ I. Moreover, ker(f) is a right ideal of R

and I/ ker(f) is a minimal submodule of R/ ker(f). Since M is R/ ker(f)−mininjective, f̄ extends to a

homomorphism φ : R/ ker(f) → M. Let π : R → R/ ker(f) be the canonical projection. Then α = φπ is an

extension of f. Indeed, for every a ∈ I, α(a) = φπ(a) = φ(a + ker(f)) = f̄(a + ker(f)) = f(a). This implies

that M is R− injective and hence is injective, as required.

(2)⇒(3)⇒(4)⇒(6), (2)⇒(5)⇒(6), and (2)⇒(7)⇒(8) are clear.

(8)⇒(6) Let M be a simple module. For any right ideal I of R, we put N = R/I. Let A be an arbitrary

minimal submodule of N. Then every homomorphic image of A is simple. Since M is simple N− injective,

every homomorphism f : A→M extends to N. This shows that M is R/I−mininjective. 2

Theorem 6 The following conditions are equivalent for a ring R :

(1) R is a WV-ring;

(2) Every simple module is R/I− injective for every right ideal I of R satisfying R/I ̸∼= R;

(3) Every simple module is principally R/I− injective for every right ideal I of R satisfying R/I ̸∼= R;

(4) Every simple module is R/I−mininjective for every right ideal I of R satisfying R/I ̸∼= R;

(5) Every simple module is simple R/I− injective for every right ideal I of R satisfying R/I ̸∼= R.

Proof (1)⇔(2), (2)⇒(3)⇒(4), and (2)⇒(5) It is obvious.

(4)⇒(2) It is similar to the proof of (2)⇔(6) of Theorem 5 that if a simple module is R/I−mininjective

for every right ideal I of R satisfying R/I ̸∼= R , then it is R/I− injective for every right ideal I of R satisfying

R/I ̸∼= R.

(5)⇒(2) It is elementary. 2

We see that our Theorem 5 agrees with Zhu and Tan [14, Theorem 1.5], in which right V-rings are

characterized by minimal quasi-injective (or quasi-mininjective) modules. The proof of the following theorem

is similar to such things of Theorem 5 and Theorem 6.
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Theorem 7 The following conditions are equivalent for a ring R :

(1) R is a right pV-ring;

(2) Every simple module is principally RR− injective;

(3) Every simple module is simple RR− injective;

(4) Every simple module is (R/I)R−mininjective for every right ideal I of R.
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