
Turk J Math

(2017) 41: 43 – 54

c⃝ TÜBİTAK
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Abstract: Let Y be a fixed subset of a nonempty set X and let Fix(X,Y ) be the set of all self maps on X which fix

all elements in Y . Then under the composition of maps, Fix(X,Y ) is a regular monoid. In this paper, we prove that

there are only three types of maximal subsemigroups of Fix (X,Y ) and these maximal subsemigroups coincide with

the maximal regular subsemigroups when X \ Y is a finite set with |X \ Y | ≥ 2. We also give necessary and sufficient

conditions for Fix(X,Y ) to be factorizable, unit-regular, and directly finite.

Key words: Transformation semigroup with fixed set, maximal subsemigroup, maximal regular subsemigroup, factor-
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1. Introduction

Let X be a nonempty set and let T (X) be the full transformation semigroup, that is the semigroup of all

mappings from X into itself under the composition of maps. It is well known that T (X) is a regular monoid

and every semigroup can be embedded in T (Z) for some nonempty set Z ([6], Exercises 15 and Theorem 1.1.2).

Let Y be a fixed subset of X and define

Fix(X,Y ) = {α ∈ T (X) : aα = a for all a ∈ Y }.

In 2013, Honyam and Sanwong [5] proved that Fix(X,Y ) is a regular semigroup and they also determined its

Green’s relations and ideals. Moreover, they proved that Fix(X,Y ) is never isomorphic to T (Z) for any set

Z , and every semigroup S is isomorphic to a subsemigroup of Fix(X ′, Y ′) for some appropriate sets X ′ and

Y ′ with Y ′ ⊆ X ′ .

Let S be a semigroup. x ∈ S is regular if x = xyx for some y ∈ S , and S is a regular semigroup if all

of its elements are regular.

A proper subset M of a semigroup (regular semigroup) S is called a maximal (maximal regular)

subsemigroup if M is a semigroup (regular semigroup), and any subsemigroup (regular subsemigroup) of S

properly containing M must be S .

Let X be a set. The symmetric group on X is the set S(X) of all permutations of X and is the group

of units of T (X). In the case that X = {1, . . . , n} , we will write T (X) = Tn and S(X) = Sn .
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For an arbitrary integer r such that 1 ≤ r ≤ n , define

K (n, r) = {α ∈ Tn : |Xα| ≤ r} ,

and so K(n, r) is an ideal of Tn and K (n, n) = Tn .

In 1966, Băıramov [2] characterized the maximal subsemigroups of Tn , which is of the form K (n, n− 1)∪
M, where M is a maximal subgroup of Sn , or K (n, n− 2) ∪ Sn . In 2001, Yang [11] described the maximal

subsemigroups of the finite singular transformation semigroup K(n, n−1). In 2002, You [12] determined all the

maximal regular subsemigroups of Tn , and those maximal regular subsemigroups coincide with the maximal

subsemigroups that first appeared in [2]. Moreover, You described all the maximal regular subsemigroups of

K (n, r). Later, in 2004, Yang and Yang [10] completely described the maximal subsemigroups of the semigroup

K (n, r). For an infinite set X , in 1965 Gavrilov [4] proved that there are five maximal subsemigroups of T (X)

containing S(X) when X is countable and in 1995 Pinsker [8] extended Gavrilov’s results to an arbitrary set.

Recently, East et al. [3] classified the maximal subsemigroups of the full transformation semigroup on an infinite

set X containing one of the following subgroups of S(X): the pointwise stabilizer of a nonempty finite subset

of X , the stabilizer of an ultrafilter on X , or the stabilizer of a partition of X into finitely many subsets of

equal cardinality.

A semigroup S is said to be factorizable if S = GE for some subgroup G of S and some set E of

idempotents of S . We note that if a semigroup S is factorizable as GE , then S = GE(S).

In 1979, Tirasupa [9] proved that: if a semigroup S is factorizable as GE , then G is a maximal subgroup

of S . If S has an identity, then G is a group of units of S . Moreover, the author showed that T (X) is

factorizable if and only if X is finite.

A monoid S with identity 1 is called unit-regular if, for every element x of S , there is a unit u with

x = xux . S is called directly finite, if for any x and y in S , xy = 1 implies that yx = 1.

In 1980, Alarcao [1] characterized when a monoid S is unit-regular and when it is directly finite. Moreover,

he gave a relationship between a unit-regular semigroup and a directly finite semigroup.

In this paper, we prove that there are only three types of maximal subsemigroups of Fix (X,Y ) when

X \ Y is a finite set with |X \ Y | ≥ 2 in Section 3. In Section 4, we show that the maximal subsemigroups and

the maximal regular subsemigroups of Fix(X,Y ) coincide when X \ Y is finite. Moreover, in Section 5, we

give necessary and sufficient conditions for Fix(X,Y ) to be factorizable, unit-regular, and directly finite.

2. Preliminaries and notations

For all undefined notions, the reader is referred to [6].

Let X be a set and Y a fixed subset of X . Then Fix(X,Y ) is a regular subsemigroup of T (X). We

note that Fix(X,Y ) contains 1X , the identity map on X . If Y = ∅ , then Fix(X,Y ) = T (X); and if |X| = 1

or X = Y , then Fix(X,Y ) consists of one element, 1X . Hence, throughout this paper we will consider the

case Y ⊊ X and |X| > 1.

Green’s relations and ideals on Fix(X,Y ) are used in this paper. For convenience, we present them here.

Theorem 2.1 [5] Let α, β ∈ Fix(X,Y ) . Then the following statements hold.

(1) αRβ in Fix(X,Y ) if and only if πα = πβ ;
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(2) αLβ in Fix(X,Y ) if and only if Xα\Y = Xβ\Y ;

(3) αDβ in Fix(X,Y ) if and only if |Xα\Y | = |Xβ\Y | and D = J .

Here πγ = {xγ−1 : x ∈ Xγ} .
Let p be any cardinal number and let p′ = min{q : q > p}.

Theorem 2.2 [5] The following statements hold.

(1) Fixk = {α ∈ Fix(X,Y ) : |Xα\Y | < k} , where 1 ≤ k ≤ |X\Y |′ is an ideal of Fix(X,Y ) .

(2) If I is an ideal of Fix(X,Y ) , then I = Fixk for some 1 ≤ k ≤ |X \ Y |′ .

For convenience, throughout this paper, unless otherwise stated, let Y = {yi : i ∈ I} .

For each α ∈ Fix(X,Y ), let Xα = Y ∪ {bj : j ∈ J}, yiα−1 = Ai and bjα
−1 = Bj . Then we can write α

as follows:

α =

(
Ai Bj

yi bj

)
.

In this notation Ai ∩ Y = {yi} , Bj ⊆ X \ Y and {bj : j ∈ J} ⊆ X \ Y . Here J can be an empty set.

If S is a semigroup and a ∈ S , then Da and Ha denote the equivalence class of D containing a and

the equivalence class of H containing a , respectively, that is

Da = {x ∈ S : xDa} and Ha = {x ∈ S : xHa}.

In [5] the authors showed that H1X is the group of units of Fix(X,Y ). In this case,

H1X =

{(
yi bj
yi bjσ

)
: σ ∈ S(X \ Y )

}
where X \ Y = {bj : j ∈ J} , is isomorphic to S(X \ Y ) where S(X \ Y ) is the permutation group on X \ Y .

Thus H1X is the set of all bijections in Fix(X,Y ).

An idempotent e of a semigroup S is said to be minimal if e has property: f ∈ E(S) and f ≤ e implies

f = e .

The authors in [5] described the set of all minimal idempotents in Fix(X,Y ) as follows:

Em =

{(
Ai

yi

)
: {Ai : i ∈ I} is a partition of X with yi ∈ Ai

}
.

We note that: α is an idempotent in Fix(X,Y ) if and only if xα = x for all x ∈ Xα \ Y . Moreover, Em is a

left zero semigroup.

3. Maximal subsemigroups of Fix(X,Y )

Throughout this section, let X \Y be a finite set with n elements such that ∅ ̸= Y ⊊ X . In this case Fix(X,Y )

has n+ 1 J -classes. Let

Jk = {α ∈ Fix(X,Y ) : |Xα \ Y | = k},
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where 0 ≤ k ≤ n . Since α|Y = 1Y and α|X\Y is a permutation on the set X \ Y for each α ∈ Jn , we obtain

Jn is isomorphic to Sn the symmetric group on the set of n elements.

Consider the case when |X \Y | = 1. Hence there are only two J -classes of Fix(X,Y ), J1 and J0 . Here

J1 has only one element 1X and J0 = Em the set of all minimal idempotents in Fix(X,Y ). In this case

Mα = Fix(X,Y ) \ {α},

where α ∈ Fix(X,Y ) are the only maximal regular subsemigroups of Fix(X,Y ).

In what follows, we assume that |X \ Y | = n ≥ 2 and define two subsets of Jn−1 playing an essential

role in maximal subsemigroups of Fix(X,Y ). Let

J∗
n−1 = {α ∈ Jn−1 : |yα−1| > 1 for some y ∈ Y },

and for each y ∈ Y , define

Jy
n−1 = {α ∈ Jn−1 : |yα−1| = 1}.

We observe that J∗
n−1 ∪ Jy

n−1 = Jn−1 for all y ∈ Y .

We begin with the following simple theorem.

Theorem 3.1 Let M be a maximal subgroup of Jn . Then M∪Fixn is a maximal subsemigroup of Fix(X,Y ) .

Proof It is clear that ∅ ̸= M ∪ Fixn ⊊ Fix(X,Y ). Since M is a group and Fixn is an ideal, we obtain

M ∪Fixn is a subsemigroup of Fix(X,Y ). Let S be a subsemigroup of Fix(X,Y ) such that M ∪Fixn ⊊ S .

Then there exists γ ∈ S \ (M ∪ Fixn), and so γ ∈ (Jn \M) ∩ S . Since M is a maximal subgroup of Jn , the

subgroup of Jn generated by M ∪ {γ} is Jn . Thus

S = Jn ∪ Fixn = Fix(X,Y ).

Therefore, M ∪ Fixn is a maximal subsemigroup of Fix(X,Y ). 2

We note that the maximal subgroups of Jn were completely characterized by Liebeck et al. (see [7] for

details).

The following lemma is needed in proving Theorem 3.3 and Theorem 3.4.

Lemma 3.2 Let S be a subsemigroup of Fix(X,Y ) , Jn ⊆ S , and α ∈ S ∩ Jn−1 .

(1) If |yα−1| > 1 for some y ∈ Y , then {γ ∈ Jn−1 : |yγ−1| > 1} ⊆ S.

(2) If |yα−1| = 1 for all y ∈ Y , then {γ ∈ Jn−1 : |yγ−1| = 1 for all y ∈ Y } ⊆ S.

Proof (1) Suppose that there is i0 ∈ I such that |yi0α−1| = 2. Let yi0α
−1 = {yi0 , x} for some x ∈ X \ Y .

Let X \ (Y ∪ {x}) = {a1, . . . , an−1}, J = {1, . . . , n− 1} and I ′ = I \ {i0}. Then we can write

α =

(
yi′ {yi0 , x} aj
yi′ yi0 bj

)
, (∗)

where bj ∈ X \ Y for all j ∈ J . Let β ∈ {γ ∈ Jn−1 : |yi0γ−1| > 1}. As α , there is x′ ∈ X \ Y such that

yi0α
−1 = {yi0 , x′} . Therefore, we can write

β =

(
yi′ {yi0 , x′} cj
yi′ yi0 dj

)
,
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where cj , dj ∈ X \ Y for all j ∈ J . Now choose

θ =

(
yi x′ cj
yi x aj

)
and η =

(
yi u bj
yi v dj

)
,

where u ∈ X \Xα and v ∈ X \Xβ . Then θ, η ∈ Jn and β = θαη ∈ S .

(2) Assume that |yα−1| = 1 for all y ∈ Y . Since α ∈ Jn−1 , there exists b ∈ X \Y such that |bα−1| = 2.

Let bα−1 = {x, z} ⊆ X \ Y , X \ (Y ∪ {x, z}) = {a1, . . . , an−2} and J = {1, . . . , n− 2} . Thus we can write

α =

(
yi {x, z} aj
yi b bj

)
, (∗∗)

where bj ∈ X \ Y for all j ∈ J . Let β ∈ {γ ∈ Jn−1 : |yγ−1| = 1 for all y ∈ Y } . As before, we can write

β =

(
yi {x′, z′} cj
yi d dj

)
,

where {x′, z′, d} ⊆ X \ Y and cj , dj ∈ X \ Y for all j ∈ J . Choose

θ =

(
yi x′ z′ cj
yi x z aj

)
and η =

(
yi b bj u
yi d dj v

)
,

where u ∈ X \Xα and v ∈ X \Xβ . Thus θ, η ∈ Jn and β = θαη ∈ S . 2

Theorem 3.3 Jn ∪ Jy
n−1 ∪ Fixn−1 is a maximal subsemigroup of Fix(X,Y ) .

Proof Let A = Jn ∪ Jy
n−1 ∪ Fixn−1 . We first prove that A is a subsemigroup of Fix(X,Y ). Let α, β ∈ A .

If α ∈ Fixn−1 or β ∈ Fixn−1 , then αβ ∈ Fixn−1 ⊆ A since Fixn−1 is an ideal of Fix(X,Y ). If α, β ∈ Jn ,

then αβ ∈ Jn since Jn is a group. Now we consider the case α, β ∈ Jy
n−1 . Hence, we have

|Xαβ \ Y | = |(Xα)β \ Y | ≤ |Xβ \ Y | = n− 1.

The case |Xαβ \ Y | < n − 1 gives αβ ∈ Fixn−1 . For the case |Xαβ \ Y | = n − 1, we let x ∈ X \ Y . Thus

xα ̸= y ̸= xβ . If xα ∈ Y , then xαβ = xα ̸= y . If xα ∈ X \ Y , then xαβ ̸= y . That is αβ ∈ Jy
n−1 . For

α ∈ Jy
n−1 and β ∈ Jn , we have |Xα \ Y | = n− 1 and β is bijective. Therefore,

n− 1 = |Xα \ Y | = |(Xα \ Y )β| = |Xαβ \ Y β| = |Xαβ \ Y |,

and |Xα \ Y | = |(Xβ)α \ Y | = |Xβα \ Y | . Thus αβ, βα ∈ Jn−1 . Let a ∈ X \ Y. We have aα ̸= y . If

aα ∈ X \ Y , then (aα)β ̸= y since yβ = y and β is injective. If aα ∈ Y , then (aα)β = aα ̸= y . That

is αβ ∈ Jy
n−1 ⊆ A . Since aβ ∈ X \ Y , we get aβα ̸= y , that is βα ∈ Jy

n−1 ⊆ A . We obtain that A is a

subsemigroup of Fix(X,Y ).

Let S be a subsemigroup of Fix(X,Y ) such that A ⊊ S . Then there exists θ ∈ S \ A ⊆ Jn−1 , and so

xθ = y for some x ∈ X \ Y . By Lemma 3.2(1), we have {γ ∈ Jn−1 : |yγ−1| > 1} ⊆ S . Since

Fix(X,Y ) = A ∪ {γ ∈ Jn−1 : |yγ−1| > 1} ⊆ S ⊆ Fix(X,Y ),

we obtain S = Fix(X,Y ). Therefore, A is a maximal subsemigroup of Fix(X,Y ). 2
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Theorem 3.4 Jn ∪ J∗
n−1 ∪ Fixn−1 is a maximal subsemigroup of Fix(X,Y ) .

Proof Let A = Jn ∪ J∗
n−1 ∪ Fixn−1 . To prove that A is a subsemigroup of Fix(X,Y ), we consider the

case α, β ∈ J∗
n−1 and |Xαβ \ Y | = n − 1 and the case α ∈ J∗

n−1 and β ∈ Jn . For the case α, β ∈ J∗
n−1 and

|Xαβ \ Y | = n − 1, we have xα = y for some x ∈ X \ Y and y ∈ Y . Then xαβ = (xα)β = yβ = y , that is

αβ ∈ J∗
n−1 ⊆ A . Now consider the case α ∈ J∗

n−1 and β ∈ Jn . Then there exists x ∈ X \ Y such that xα = y

for some y ∈ Y . Hence, xαβ = yβ = y , that is αβ ∈ J∗
n−1 ⊆ A . Since β is surjective, there exists x′ ∈ X \ Y

such that x′β = x , and so x′βα = xα = y , that is βα ∈ J∗
n−1 ⊆ A . Hence A is a subsemigroup of Fix(X,Y ).

Now let S be a subsemigroup of Fix(X,Y ) with A ⊊ S . Then there exists θ ∈ S \A , so θ ∈ Jn−1 and

|yθ−1| = 1 for all y ∈ Y . By Lemma 3.2(2), we have {γ ∈ Jn−1 : |yγ−1| = 1 for all y ∈ Y } ⊆ S. Since

Fix(X,Y ) = A ∪ {γ ∈ Jn−1 : |yγ−1| = 1 for all y ∈ Y } ⊆ S,

we obtain S = Fix(X,Y ). Therefore, A is a maximal subsemigroup of Fix(X,Y ). 2

Our final aim is to prove that there are only three types of maximal subsemigroups of Fix(X,Y ).

Lemma 3.5 If S is a maximal subsemigroup of Fix(X,Y ) , then either Jn ⊆ S or Jn−1 ⊆ S.

Proof Let S be a maximal subsemigroup of Fix(X,Y ) and Jn ⊈ S. Since S is maximal, we have S∩Jn ̸= ∅ ;
otherwise S ⊊ M ∪ Fixn where M is a maximal subgroup of Jn , which contradicts the maximality of S .

Moreover, S ∩ Jn = H is a maximal subgroup of Jn . For if H is not a maximal subgroup of Jn , then H is

contained in a maximal subgroup M of Jn . Thus S ⊊M ∪Fixn where M ∪Fixn is a maximal subsemigroup

of Fix(X,Y ) and this contradicts the maximality of S . Hence S ⊆ H ∪ Fixn . Since S is maximal, we obtain

S = H ∪ Fixn and that Jn−1 ⊆ S as required. 2

Lemma 3.6 Let α ∈ Jk where 0 ≤ k ≤ n−2 . Then α can be written as a product of β, γ for some β, γ ∈ Jk+1 .

Proof Let J = {1, . . . , k} and write

α =

(
Ai Bj

yi bj

)
,

where Bj ⊆ X \ Y, bj ∈ X \ Y for all j ∈ J . Since k ≤ n− 2, we have |Ai0 | ≥ 2 for some i0 ∈ I or |Bj0 | ≥ 2

for some j0 ∈ J .

Case 1: |Ai0 | ≥ 2 for some i0 ∈ I . Choose u ∈ Ai0 \ Y and v ∈ X \Xα . Let I ′ = I \ {i0} and define

β, γ ∈ Fix(X,Y ) by

β =

(
Ai′ Ai0 \ {u} Bj u
yi′ yi0 bj v

)
and γ =

(
yi′ {yi0 , v} bj X \ (Xα ∪ {v})
yi′ yi0 bj v

)
.

Hence β, γ ∈ Jk+1 and α = βγ.

Case 2: |Bj0 | ≥ 2 for some j0 ∈ J . Choose u ∈ Bj0 and v ∈ X \Xα . Let J ′ = J \ {j0} and define

β, γ ∈ Fix(X,Y ) by

β =

(
Ai Bj′ Bj0 \ {u} u
yi bj′ bj0 v

)
and γ =

(
yi bj′ {bj0 , v} X \ (Xα ∪ {v})
yi bj′ bj0 v

)
.

So β, γ ∈ Jk+1 and α = βγ . 2

48



CHAIYA et al./Turk J Math

Lemma 3.7 Let S be a subsemigroup of Fix(X,Y ) . If S∩Jn = Jn and S∩Jn−1 = Jn−1 , then S = Fix(X,Y ) .

Proof Assume that S ∩Jn = Jn and S ∩Jn−1 = Jn−1 . Let α ∈ Fix(X,Y ). It is clear that if α ∈ Jn ∪Jn−1 ,

then α ∈ S . Now consider when α ∈ Jk , where 0 ≤ k ≤ n− 2. By Lemma 3.6, we have α can be written as a

product of β, γ for some β, γ ∈ Jn−1 , that is α ∈ S . Thus S = Fix(X,Y ). 2

Theorem 3.8 Let S be a maximal subsemigroup of Fix(X,Y ) . Then S is one of the following forms:

(1) M ∪ Fixn , where M is a maximal subgroup of Jn ;

(2) Jn ∪ Jy
n−1 ∪ Fixn−1 for some y ∈ Y ;

(3) Jn ∪ J∗
n−1 ∪ Fixn−1 .

Proof Since S is a maximal subsemigroup, by Lemma 3.5 we have either Jn ⊆ S or Jn−1 ⊆ S .

Case 1: Jn ⊆ S . Therefore, S ∩ Jn−1 ⊊ Jn−1 by Lemma 3.7. We consider two subcases.

Subcase 1.1: (X \ Y )α∩ Y ̸= ∅ for all α ∈ S ∩ Jn−1 . Let α ∈ S ∩ Jn−1 . Then by assumption, we have

|yα−1| > 1 for some y ∈ Y . That is α ∈ J∗
n−1 . Hence S ∩ Jn−1 ⊆ J∗

n−1 . Since Jn ⊆ S , we obtain

S ⊆ Jn ∪ J∗
n−1 ∪ Fixn−1.

Since the right-hand side of the above expression is a maximal subsemigroup, it follows that S = Jn ∪ J∗
n−1 ∪

Fixn−1 . Therefore, S is of the form (3).

Subcase 1.2: (X \ Y )α ∩ Y = ∅ for some α ∈ S ∩ Jn−1 . Then |yα−1| = 1 for all y ∈ Y . By Lemma

3.2(2) we have

{γ ∈ Jn−1 : |yγ−1| = 1 for all y ∈ Y } ⊆ S.

We prove that S ∩Jn−1 ⊆ Jy0

n−1 for some y0 ∈ Y, by supposing that it is false. Therefore, for each y ∈ Y , there

exists β ∈ S ∩ Jn−1 such that |yβ−1| > 1. Thus by Lemma 3.2(1), {γ ∈ Jn−1 : |yγ−1| > 1} ⊆ S . Hence

∪
y∈Y

{γ ∈ Jn−1 : |yγ−1| > 1} ⊆ S,

and so Jn−1 ⊆ S , which contradicts S ∩ Jn−1 ⊊ Jn−1 . Therefore,

S ∩ Jn−1 ⊆ Jy0

n−1

for some y0 ∈ Y . Again, since Jn ⊆ S , we obtain

S ⊆ Jn ∪ Jy0

n−1 ∪ Fixn−1,

and that S is of the form (2).

Case 2: Jn−1 ⊆ S . Then S ∩ Jn ⊊ Jn by Lemma 3.7. Since S is maximal, by the same proof as given

for Lemma 3.5, we get that S ∩ Jn = M , where M is a maximal subgroup of Jn . Thus S ⊆ M ∪ Fixn . By

the maximality of S , we obtain that S is of the form (1). 2
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Example 3.9 Let X = {1, 2, 3} and Y = {1} . Then |X \ Y | = 2 and

J2 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)}
.

Moreover, we have

J1
1 =

{(
1 {2, 3}
1 2

)
,

(
1 {2, 3}
1 3

)}
,

J∗
1 =

{(
{1, 2} 3
1 2

)
,

(
{1, 2} 3
1 3

)
,

(
{1, 3} 2
1 2

)
,

(
{1, 3} 2
1 3

)}
and

Fix1 =

{(
X
1

)}
.

Thus there are only three maximal subsemigroups of Fix(X,Y ) , namely

M1 =

{(
1 2 3
1 2 3

)}
∪ Fix2 = Fix(X,Y ) \

{(
1 2 3
1 3 2

)}
,

M2 = J2 ∪ J1
1 ∪ Fix1 and

M3 = J2 ∪ J∗
1 ∪ Fix1.

4. Maximal regular subsemigroups of Fix(X,Y )

In general, if S is a regular semigroup and T is a maximal subsemigroup of S , then T may not be a maximal

regular subsemigroup of S (see [10], Theorem 2 for example).

In this section, we prove that the maximal subsemigroups and the maximal regular subsemigroups of

Fix(X,Y ) coincide.

Lemma 4.1 The following statements hold.

(1) If α ∈ J∗
n−1 , then α = αβα for some β ∈ J∗

n−1 .

(2) If y ∈ Y and α ∈ Jy
n−1 , then α = αβα for some β ∈ Jy

n−1 .

Proof (1) Let α ∈ J∗
n−1 . Then there are x ∈ X \ Y and yi0 ∈ Y such that xα = yi0 . Let X \ (Y ∪ {x}) =

{a1, . . . an−1} , J = {1, . . . , n− 1} and I ′ = I \ {i0} . Then we can write α as (∗). Choose

β =

(
yi′ {yi0 , x′} bj
yi′ yi0 aj

)
,

where x′ ∈ X \Xα . Thus β ∈ J∗
n−1 and α = αβα.

(2) Let α ∈ Jy
n−1 . Then aα ̸= y for all a ∈ X \ Y . If α ∈ J∗

n−1 , there exist y ̸= yi0 ∈ Y and x ∈ X \ Y
such that xα = yi0 . Define β as given in (1); then β ∈ Jy

n−1 since yi0 ̸= y and α = αβα . If α /∈ J∗
n−1 , then

|yα−1| = 1 for all y ∈ Y . Since α ∈ Jn−1 , there exists b ∈ X \ Y such that bα−1 = {x, z} ⊆ X \ Y. Let

X \ (Y ∪ {x, z}) = {a1, . . . , an−2} and J = {1, . . . , n− 2} . Therefore, we can write α as (∗∗). Now choose

β =

(
yi {b, w} bj
yi x aj

)
,

where w ∈ X \Xα . Thus β ∈ Jy
n−1 and α = αβα. 2

50



CHAIYA et al./Turk J Math

We note that if T is a maximal subsemigroup of S and T is regular, then T is a maximal regular

subsemigroup of S .

Now we aim to characterize the maximal regular subsemigroups of Fix(X,Y ).

Theorem 4.2 The following subsemigroups of Fix(X,Y ) are maximal regular subsemigroups.

(1) M ∪ Fixn , where M is a maximal subgroup of Jn ;

(2) Jn ∪ Jy
n−1 ∪ Fixn−1 for some y ∈ Y ;

(3) Jn ∪ J∗
n−1 ∪ Fixn−1 .

Proof The three subsemigroups above are maximal subsemigroups of Fix(X,Y ), and so by the previous note

we only show that they are regular.

(1) Since M is a group, it is regular. Since Fix(X,Y ) is regular and Fixn is an ideal of Fix(X,Y ), we

obtain Fixn is also regular. Hence M ∪ Fixn is a regular subsemigroup of Fix(X,Y ).

Similar to (1), we have that Jn and Fixn−1 are regular, and for each α ∈ Jy
n−1 (J∗

n−1) there exists

β ∈ Jy
n−1 (J∗

n−1) by Lemma 4.1 such that α = αβα . Therefore, (2) and (3) hold. 2

By replacing the maximal subsemigroup by a maximal regular subsemigroup in the proof of Lemma 3.5

and using the results in Theorem 4.2, we obtain the following lemma.

Lemma 4.3 If S is a maximal regular subsemigroup of Fix(X,Y ) , then either Jn ⊆ S or Jn−1 ⊆ S.

With some mild modifications of the proof given in Theorem 3.8 and the results in Theorem 4.2 and

Lemma 4.3, we get that maximal subsemigroups and maximal regular subsemigroups of Fix(X,Y ) coincide.

Theorem 4.4 Let S be a maximal regular subsemigroup of Fix(X,Y ) . Then S is one of the following forms:

(1) M ∪ Fixn , where M is a maximal subgroup of Jn ;

(2) Jn ∪ Jy
n−1 ∪ Fixn−1 for some y ∈ Y ;

(3) Jn ∪ J∗
n−1 ∪ Fixn−1 .

5. Finiteness conditions on Fix(X,Y )

In 1980, Alarcao [1] characterized when a monoid S is unit-regular and when it is directly finite as follows:

Theorem 5.1 Let S be a monoid having 1 as an identity.

(1) S is unit-regular if and only if it is factorizable.

(2) S is directly finite if and only if H1 = D1 .

For the semigroup Fix(X,Y ), the properties unit-regular, factorizable, and directly finite depend on the

finiteness conditions on sets.
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Theorem 5.2 Fix(X,Y ) is unit-regular if and only if X \ Y is finite.

Proof Suppose that Fix(X,Y ) is unit-regular. Assume by contrary that X \ Y is infinite. Let a ∈ X \ Y .

Then |X \ Y | = |(X \ Y ) \ {a}| = |X \ (Y ∪ {a})| . Thus there is a bijection σ : X \ Y → X \ (Y ∪ {a}). Let

X \ Y = {xj : j ∈ J} and define α ∈ Fix(X,Y ) by

α =

(
yi xj

yi xjσ

)
.

Hence α is injective and Xα = X \ {a} . Since Fix(X,Y ) is unit-regular, there is a unit β ∈ Fix(X,Y ) such

that α = αβα . Assume that aβ = b . We have bα = bαβα = (bαβ)α and then b = (bα)β since α is injective.

Since β is injective, bα = a /∈ Xα , a contradiction.

Conversely, assume that X \ Y is finite. Let α ∈ Fix(X,Y ). We can write

α =

(
Ai B1 . . . Bn

yi b1 . . . bn

)
,

where Bj ⊆ X \ Y, bj ∈ X \ Y for all j ∈ {1, . . . , n} . Let C = X \ (Y ∪ {bj}). For each j ∈ {1, . . . , n} , choose
b′j ∈ Bj and let C ′ = X \ (Y ∪ {b′j}). Then |C| = |C ′| since X \ Y is finite and thus there exists a bijection

σ : C → C ′ . Let C = {xk : k ∈ K} and define

β =

(
yi bj xk

yi b′j xkσ

)
.

Then β is a unit in Fix(X,Y ) and α = αβα . Thus Fix(X,Y ) is unit-regular. 2

Combining Theorem 5.1 and Theorem 5.2, we obtain the following corollary.

Corollary 5.3 The following statements are equivalent.

(1) Fix(X,Y ) is unit-regular;

(2) Fix(X,Y ) is factorizable;

(3) X \ Y is a finite set.

The following example shows that X \ Y being a finite set is a sufficient condition for Fix(X,Y ) to be

directly finite.

Example 5.4 Let X = N be the set of all natural numbers and Y = {x ∈ N : x > 3} . Then X\Y = {1, 2, 3} . If
α, β ∈ Fix(X,Y ) such that αβ = 1X , then α is injective and yα = y for all y ∈ Y . Thus {1, 2, 3}α = {1, 2, 3} .
Hence 1 = zα for some z ∈ {1, 2, 3} , that is 1βα = (zα)βα = (zαβ)α = (z1X)α = zα = 1 . Similarly, we have

2βα = 2 and 3βα = 3 . Hence βα = 1X .

Moreover, we have the following theorem.
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Theorem 5.5 Fix(X,Y) is directly finite if and only if X \ Y is finite.

Proof Suppose that Fix(X,Y ) is directly finite. By Theorem 5.1(2), we get D1X = H1X . Assume by

contrary that X \ Y is infinite. Choose a ∈ X \ Y and yi0 ∈ Y . Then |X \ (Y ∪ {a})| = |X \ Y | . Therefore,

there is a bijection

σ : X \ (Y ∪ {a}) → X \ Y.

Let I ′ = I \ {i0} , X \ (Y ∪ {a}) = {xj : j ∈ J} and define α ∈ Fix(X,Y ) by

α =

(
yi′ {yi0 , a} xj

yi′ yi0 xjσ

)
.

Then α is surjective. Hence Xα \ Y = X \ Y = X1X \ Y , that is α ∈ D1X . However, α /∈ H1X since α is not

injective, a contradiction. Thus X \ Y is finite.

Conversely, assume that X \ Y is finite. Let α, β ∈ Fix(X,Y ) be such that αβ = 1X . Then α is

injective and so (X \Y )α ⊆ X \Y . Since X \Y is finite, we have (X \Y )α = X \Y . Thus for each x ∈ X \Y ,

there exists z ∈ X \ Y such that zα = x . Hence xβ = zαβ = z1X = z . Therefore, xβα = zα = x for all

x ∈ X \ Y and so we conclude that βα = 1X . 2

If Y = ∅ , then Fix(X,Y ) = T (X), and we have the following corollary, which first appeared in [1] and

[9].

Corollary 5.6 The following statements are equivalent.

(1) T (X) is unit-regular;

(2) T (X) is factorizable;

(3) T (X) is directly finite;

(4) X is a finite set.
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