tübitak

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article
Turk J Math
(2017) 41: $43-54$
(C) TÜBİTAK

左

Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets

Yanisa CHAIYA ${ }^{1}$, Preeyanuch HONYAM, Jintana SANWONG*
Department of Mathematics, Chiang Mai University, Chiang Mai, Thailand

| Received: 02.07 .2015 | Accepted/Published Online: 10.03 .2016 | \bullet | Final Version: 16.01 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let Y be a fixed subset of a nonempty set X and let Fix (X, Y) be the set of all self maps on X which fix all elements in Y. Then under the composition of maps, $F i x(X, Y)$ is a regular monoid. In this paper, we prove that there are only three types of maximal subsemigroups of $F i x(X, Y)$ and these maximal subsemigroups coincide with the maximal regular subsemigroups when $X \backslash Y$ is a finite set with $|X \backslash Y| \geq 2$. We also give necessary and sufficient conditions for Fix (X, Y) to be factorizable, unit-regular, and directly finite.

Key words: Transformation semigroup with fixed set, maximal subsemigroup, maximal regular subsemigroup, factorizable, unit-regular, directly finite

1. Introduction

Let X be a nonempty set and let $T(X)$ be the full transformation semigroup, that is the semigroup of all mappings from X into itself under the composition of maps. It is well known that $T(X)$ is a regular monoid and every semigroup can be embedded in $T(Z)$ for some nonempty set Z ([6], Exercises 15 and Theorem 1.1.2).

Let Y be a fixed subset of X and define

$$
\text { Fix }(X, Y)=\{\alpha \in T(X): a \alpha=a \text { for all } a \in Y\} .
$$

In 2013, Honyam and Sanwong [5] proved that $F i x(X, Y)$ is a regular semigroup and they also determined its Green's relations and ideals. Moreover, they proved that $\operatorname{Fix}(X, Y)$ is never isomorphic to $T(Z)$ for any set Z, and every semigroup S is isomorphic to a subsemigroup of $\operatorname{Fix}\left(X^{\prime}, Y^{\prime}\right)$ for some appropriate sets X^{\prime} and Y^{\prime} with $Y^{\prime} \subseteq X^{\prime}$.

Let S be a semigroup. $x \in S$ is regular if $x=x y x$ for some $y \in S$, and S is a regular semigroup if all of its elements are regular.

A proper subset M of a semigroup (regular semigroup) S is called a maximal (maximal regular) subsemigroup if M is a semigroup (regular semigroup), and any subsemigroup (regular subsemigroup) of S properly containing M must be S.

Let X be a set. The symmetric group on X is the set $\mathcal{S}(X)$ of all permutations of X and is the group of units of $T(X)$. In the case that $X=\{1, \ldots, n\}$, we will write $T(X)=T_{n}$ and $\mathcal{S}(X)=\mathcal{S}_{n}$.

[^0]For an arbitrary integer r such that $1 \leq r \leq n$, define

$$
K(n, r)=\left\{\alpha \in T_{n}:|X \alpha| \leq r\right\}
$$

and so $K(n, r)$ is an ideal of T_{n} and $K(n, n)=T_{n}$.
In 1966, Bairamov [2] characterized the maximal subsemigroups of T_{n}, which is of the form $K(n, n-1) \cup$ M, where M is a maximal subgroup of \mathcal{S}_{n}, or $K(n, n-2) \cup \mathcal{S}_{n}$. In 2001, Yang [11] described the maximal subsemigroups of the finite singular transformation semigroup $K(n, n-1)$. In 2002, You [12] determined all the maximal regular subsemigroups of T_{n}, and those maximal regular subsemigroups coincide with the maximal subsemigroups that first appeared in [2]. Moreover, You described all the maximal regular subsemigroups of $K(n, r)$. Later, in 2004, Yang and Yang [10] completely described the maximal subsemigroups of the semigroup $K(n, r)$. For an infinite set X, in 1965 Gavrilov [4] proved that there are five maximal subsemigroups of $T(X)$ containing $\mathcal{S}(X)$ when X is countable and in 1995 Pinsker [8] extended Gavrilov's results to an arbitrary set. Recently, East et al. [3] classified the maximal subsemigroups of the full transformation semigroup on an infinite set X containing one of the following subgroups of $\mathcal{S}(X)$: the pointwise stabilizer of a nonempty finite subset of X, the stabilizer of an ultrafilter on X, or the stabilizer of a partition of X into finitely many subsets of equal cardinality.

A semigroup S is said to be factorizable if $S=G E$ for some subgroup G of S and some set E of idempotents of S. We note that if a semigroup S is factorizable as $G E$, then $S=G E(S)$.

In 1979, Tirasupa [9] proved that: if a semigroup S is factorizable as $G E$, then G is a maximal subgroup of S. If S has an identity, then G is a group of units of S. Moreover, the author showed that $T(X)$ is factorizable if and only if X is finite.

A monoid S with identity 1 is called unit-regular if, for every element x of S, there is a unit u with $x=x u x . S$ is called directly finite, if for any x and y in $S, x y=1$ implies that $y x=1$.

In 1980, Alarcao [1] characterized when a monoid S is unit-regular and when it is directly finite. Moreover, he gave a relationship between a unit-regular semigroup and a directly finite semigroup.

In this paper, we prove that there are only three types of maximal subsemigroups of $\operatorname{Fix}(X, Y)$ when $X \backslash Y$ is a finite set with $|X \backslash Y| \geq 2$ in Section 3. In Section 4, we show that the maximal subsemigroups and the maximal regular subsemigroups of $\operatorname{Fix}(X, Y)$ coincide when $X \backslash Y$ is finite. Moreover, in Section 5, we give necessary and sufficient conditions for $F i x(X, Y)$ to be factorizable, unit-regular, and directly finite.

2. Preliminaries and notations

For all undefined notions, the reader is referred to [6].
Let X be a set and Y a fixed subset of X. Then $F i x(X, Y)$ is a regular subsemigroup of $T(X)$. We note that $\operatorname{Fix}(X, Y)$ contains 1_{X}, the identity map on X. If $Y=\emptyset$, then $\operatorname{Fix}(X, Y)=T(X)$; and if $|X|=1$ or $X=Y$, then $F i x(X, Y)$ consists of one element, 1_{X}. Hence, throughout this paper we will consider the case $Y \nsubseteq X$ and $|X|>1$.

Green's relations and ideals on $F i x(X, Y)$ are used in this paper. For convenience, we present them here.

Theorem 2.1 [5] Let $\alpha, \beta \in \operatorname{Fix}(X, Y)$. Then the following statements hold.
(1) $\alpha \mathcal{R} \beta$ in $\operatorname{Fix}(X, Y)$ if and only if $\pi_{\alpha}=\pi_{\beta}$;
(2) $\alpha \mathcal{L} \beta$ in $F i x(X, Y)$ if and only if $X \alpha \backslash Y=X \beta \backslash Y$;
(3) $\alpha \mathcal{D} \beta$ in $\operatorname{Fix}(X, Y)$ if and only if $|X \alpha \backslash Y|=|X \beta \backslash Y|$ and $\mathcal{D}=\mathcal{J}$.

Here $\pi_{\gamma}=\left\{x \gamma^{-1}: x \in X \gamma\right\}$.
Let p be any cardinal number and let $p^{\prime}=\min \{q: q>p\}$.
Theorem 2.2 [5] The following statements hold.
(1) Fix $=\{\alpha \in \operatorname{Fix}(X, Y):|X \alpha \backslash Y|<k\}$, where $1 \leq k \leq|X \backslash Y|^{\prime}$ is an ideal of Fix (X, Y).
(2) If I is an ideal of $\operatorname{Fix}(X, Y)$, then $I=$ Fix x_{k} for some $1 \leq k \leq|X \backslash Y|^{\prime}$.

For convenience, throughout this paper, unless otherwise stated, let $Y=\left\{y_{i}: i \in I\right\}$.
For each $\alpha \in \operatorname{Fix}(X, Y)$, let $X \alpha=Y \cup\left\{b_{j}: j \in J\right\}, y_{i} \alpha^{-1}=A_{i}$ and $b_{j} \alpha^{-1}=B_{j}$. Then we can write α as follows:

$$
\alpha=\left(\begin{array}{ll}
A_{i} & B_{j} \\
y_{i} & b_{j}
\end{array}\right) .
$$

In this notation $A_{i} \cap Y=\left\{y_{i}\right\}, B_{j} \subseteq X \backslash Y$ and $\left\{b_{j}: j \in J\right\} \subseteq X \backslash Y$. Here J can be an empty set.
If S is a semigroup and $a \in S$, then D_{a} and H_{a} denote the equivalence class of \mathcal{D} containing a and the equivalence class of \mathcal{H} containing a, respectively, that is

$$
D_{a}=\{x \in S: x \mathcal{D} a\} \text { and } H_{a}=\{x \in S: x \mathcal{H} a\} .
$$

In [5] the authors showed that $H_{1_{X}}$ is the group of units of Fix (X, Y). In this case,

$$
H_{1_{X}}=\left\{\left(\begin{array}{cc}
y_{i} & b_{j} \\
y_{i} & b_{j} \sigma
\end{array}\right): \sigma \in \mathcal{S}(X \backslash Y)\right\}
$$

where $X \backslash Y=\left\{b_{j}: j \in J\right\}$, is isomorphic to $\mathcal{S}(X \backslash Y)$ where $\mathcal{S}(X \backslash Y)$ is the permutation group on $X \backslash Y$. Thus $H_{1_{X}}$ is the set of all bijections in $\operatorname{Fix}(X, Y)$.

An idempotent e of a semigroup S is said to be minimal if e has property: $f \in E(S)$ and $f \leq e$ implies $f=e$.

The authors in [5] described the set of all minimal idempotents in $\operatorname{Fix}(X, Y)$ as follows:

$$
E_{m}=\left\{\binom{A_{i}}{y_{i}}:\left\{A_{i}: i \in I\right\} \text { is a partition of } X \text { with } y_{i} \in A_{i}\right\} .
$$

We note that: α is an idempotent in $\operatorname{Fix}(X, Y)$ if and only if $x \alpha=x$ for all $x \in X \alpha \backslash Y$. Moreover, E_{m} is a left zero semigroup.

3. Maximal subsemigroups of $\operatorname{Fix}(X, Y)$

Throughout this section, let $X \backslash Y$ be a finite set with n elements such that $\emptyset \neq Y \subsetneq X$. In this case $F i x(X, Y)$ has $n+1 \mathcal{J}$-classes. Let

$$
J_{k}=\{\alpha \in \operatorname{Fix}(X, Y):|X \alpha \backslash Y|=k\},
$$

where $0 \leq k \leq n$. Since $\alpha_{\left.\right|_{Y}}=1_{Y}$ and $\alpha_{\left.\right|_{X \backslash Y}}$ is a permutation on the set $X \backslash Y$ for each $\alpha \in J_{n}$, we obtain J_{n} is isomorphic to \mathcal{S}_{n} the symmetric group on the set of n elements.

Consider the case when $|X \backslash Y|=1$. Hence there are only two \mathcal{J}-classes of $\operatorname{Fix}(X, Y), J_{1}$ and J_{0}. Here J_{1} has only one element 1_{X} and $J_{0}=E_{m}$ the set of all minimal idempotents in $\operatorname{Fix}(X, Y)$. In this case

$$
M_{\alpha}=F i x(X, Y) \backslash\{\alpha\},
$$

where $\alpha \in \operatorname{Fix}(X, Y)$ are the only maximal regular subsemigroups of Fix (X, Y).
In what follows, we assume that $|X \backslash Y|=n \geq 2$ and define two subsets of J_{n-1} playing an essential role in maximal subsemigroups of $\operatorname{Fix}(X, Y)$. Let

$$
J_{n-1}^{*}=\left\{\alpha \in J_{n-1}:\left|y \alpha^{-1}\right|>1 \text { for some } y \in Y\right\},
$$

and for each $y \in Y$, define

$$
J_{n-1}^{y}=\left\{\alpha \in J_{n-1}:\left|y \alpha^{-1}\right|=1\right\} .
$$

We observe that $J_{n-1}^{*} \cup J_{n-1}^{y}=J_{n-1}$ for all $y \in Y$.
We begin with the following simple theorem.
Theorem 3.1 Let M be a maximal subgroup of J_{n}. Then $M \cup F i x_{n}$ is a maximal subsemigroup of Fix (X, Y).
Proof It is clear that $\emptyset \neq M \cup F i x_{n} \subsetneq F i x(X, Y)$. Since M is a group and $F i x_{n}$ is an ideal, we obtain $M \cup F i x_{n}$ is a subsemigroup of $\operatorname{Fix}(X, Y)$. Let S be a subsemigroup of $\operatorname{Fix}(X, Y)$ such that $M \cup F i x_{n} \subsetneq S$. Then there exists $\gamma \in S \backslash\left(M \cup F i x_{n}\right)$, and so $\gamma \in\left(J_{n} \backslash M\right) \cap S$. Since M is a maximal subgroup of J_{n}, the subgroup of J_{n} generated by $M \cup\{\gamma\}$ is J_{n}. Thus

$$
S=J_{n} \cup F i x_{n}=F i x(X, Y) .
$$

Therefore, $M \cup F i x_{n}$ is a maximal subsemigroup of $\operatorname{Fix}(X, Y)$.
We note that the maximal subgroups of J_{n} were completely characterized by Liebeck et al. (see [7] for details).

The following lemma is needed in proving Theorem 3.3 and Theorem 3.4.
Lemma 3.2 Let S be a subsemigroup of $\operatorname{Fix}(X, Y), J_{n} \subseteq S$, and $\alpha \in S \cap J_{n-1}$.
(1) If $\left|y \alpha^{-1}\right|>1$ for some $y \in Y$, then $\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|>1\right\} \subseteq S$.
(2) If $\left|y \alpha^{-1}\right|=1$ for all $y \in Y$, then $\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|=1\right.$ for all $\left.y \in Y\right\} \subseteq S$.

Proof (1) Suppose that there is $i_{0} \in I$ such that $\left|y_{i_{0}} \alpha^{-1}\right|=2$. Let $y_{i_{0}} \alpha^{-1}=\left\{y_{i_{0}}, x\right\}$ for some $x \in X \backslash Y$. Let $X \backslash(Y \cup\{x\})=\left\{a_{1}, \ldots, a_{n-1}\right\}, J=\{1, \ldots, n-1\}$ and $I^{\prime}=I \backslash\left\{i_{0}\right\}$. Then we can write

$$
\alpha=\left(\begin{array}{ccc}
y_{i^{\prime}} & \left\{y_{i_{i}}, x\right\} & a_{j} \tag{*}\\
y_{i^{\prime}} & y_{i_{0}} & b_{j}
\end{array}\right),
$$

where $b_{j} \in X \backslash Y$ for all $j \in J$. Let $\beta \in\left\{\gamma \in J_{n-1}:\left|y_{i_{0}} \gamma^{-1}\right|>1\right\}$. As α, there is $x^{\prime} \in X \backslash Y$ such that $y_{i_{0}} \alpha^{-1}=\left\{y_{i_{0}}, x^{\prime}\right\}$. Therefore, we can write

$$
\beta=\left(\begin{array}{ccc}
y_{i^{\prime}} & \left\{y_{i_{i}}, x^{\prime}\right\} & c_{j} \\
y_{i^{\prime}} & y_{i_{0}} & d_{j}
\end{array}\right),
$$

where $c_{j}, d_{j} \in X \backslash Y$ for all $j \in J$. Now choose

$$
\theta=\left(\begin{array}{lll}
y_{i} & x^{\prime} & c_{j} \\
y_{i} & x & a_{j}
\end{array}\right) \text { and } \eta=\left(\begin{array}{lll}
y_{i} & u & b_{j} \\
y_{i} & v & d_{j}
\end{array}\right),
$$

where $u \in X \backslash X \alpha$ and $v \in X \backslash X \beta$. Then $\theta, \eta \in J_{n}$ and $\beta=\theta \alpha \eta \in S$.
(2) Assume that $\left|y \alpha^{-1}\right|=1$ for all $y \in Y$. Since $\alpha \in J_{n-1}$, there exists $b \in X \backslash Y$ such that $\left|b \alpha^{-1}\right|=2$. Let $b \alpha^{-1}=\{x, z\} \subseteq X \backslash Y, X \backslash(Y \cup\{x, z\})=\left\{a_{1}, \ldots, a_{n-2}\right\}$ and $J=\{1, \ldots, n-2\}$. Thus we can write

$$
\alpha=\left(\begin{array}{ccc}
y_{i} & \{x, z\} & a_{j} \tag{**}\\
y_{i} & b & b_{j}
\end{array}\right),
$$

where $b_{j} \in X \backslash Y$ for all $j \in J$. Let $\beta \in\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|=1\right.$ for all $\left.y \in Y\right\}$. As before, we can write

$$
\beta=\left(\begin{array}{ccc}
y_{i} & \left\{x^{\prime}, z^{\prime}\right\} & c_{j} \\
y_{i} & d & d_{j}
\end{array}\right),
$$

where $\left\{x^{\prime}, z^{\prime}, d\right\} \subseteq X \backslash Y$ and $c_{j}, d_{j} \in X \backslash Y$ for all $j \in J$. Choose

$$
\theta=\left(\begin{array}{llll}
y_{i} & x^{\prime} & z^{\prime} & c_{j} \\
y_{i} & x & z & a_{j}
\end{array}\right) \text { and } \eta=\left(\begin{array}{llll}
y_{i} & b & b_{j} & u \\
y_{i} & d & d_{j} & v
\end{array}\right) \text {, }
$$

where $u \in X \backslash X \alpha$ and $v \in X \backslash X \beta$. Thus $\theta, \eta \in J_{n}$ and $\beta=\theta \alpha \eta \in S$.

Theorem 3.3 $J_{n} \cup J_{n-1}^{y} \cup$ Fix x_{n-1} is a maximal subsemigroup of Fix (X, Y).
Proof Let $A=J_{n} \cup J_{n-1}^{y} \cup F_{i x-1}$. We first prove that A is a subsemigroup of $\operatorname{Fix}(X, Y)$. Let $\alpha, \beta \in A$. If $\alpha \in$ Fix x_{n-1} or $\beta \in$ Fix $_{n-1}$, then $\alpha \beta \in$ Fix $x_{n-1} \subseteq A$ since Fix $_{n-1}$ is an ideal of $\operatorname{Fix}(X, Y)$. If $\alpha, \beta \in J_{n}$, then $\alpha \beta \in J_{n}$ since J_{n} is a group. Now we consider the case $\alpha, \beta \in J_{n-1}^{y}$. Hence, we have

$$
|X \alpha \beta \backslash Y|=|(X \alpha) \beta \backslash Y| \leq|X \beta \backslash Y|=n-1 .
$$

The case $|X \alpha \beta \backslash Y|<n-1$ gives $\alpha \beta \in$ Fix x_{n-1}. For the case $|X \alpha \beta \backslash Y|=n-1$, we let $x \in X \backslash Y$. Thus $x \alpha \neq y \neq x \beta$. If $x \alpha \in Y$, then $x \alpha \beta=x \alpha \neq y$. If $x \alpha \in X \backslash Y$, then $x \alpha \beta \neq y$. That is $\alpha \beta \in J_{n-1}^{y}$. For $\alpha \in J_{n-1}^{y}$ and $\beta \in J_{n}$, we have $|X \alpha \backslash Y|=n-1$ and β is bijective. Therefore,

$$
n-1=|X \alpha \backslash Y|=|(X \alpha \backslash Y) \beta|=|X \alpha \beta \backslash Y \beta|=|X \alpha \beta \backslash Y|,
$$

and $|X \alpha \backslash Y|=|(X \beta) \alpha \backslash Y|=|X \beta \alpha \backslash Y|$. Thus $\alpha \beta, \beta \alpha \in J_{n-1}$. Let $a \in X \backslash Y$. We have $a \alpha \neq y$. If $a \alpha \in X \backslash Y$, then $(a \alpha) \beta \neq y$ since $y \beta=y$ and β is injective. If $a \alpha \in Y$, then $(a \alpha) \beta=a \alpha \neq y$. That is $\alpha \beta \in J_{n-1}^{y} \subseteq A$. Since $a \beta \in X \backslash Y$, we get $a \beta \alpha \neq y$, that is $\beta \alpha \in J_{n-1}^{y} \subseteq A$. We obtain that A is a subsemigroup of $\operatorname{Fix}(X, Y)$.

Let S be a subsemigroup of $\operatorname{Fix}(X, Y)$ such that $A \subsetneq S$. Then there exists $\theta \in S \backslash A \subseteq J_{n-1}$, and so $x \theta=y$ for some $x \in X \backslash Y$. By Lemma 3.2(1), we have $\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|>1\right\} \subseteq S$. Since

$$
\operatorname{Fix}(X, Y)=A \cup\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|>1\right\} \subseteq S \subseteq \operatorname{Fix}(X, Y),
$$

we obtain $S=\operatorname{Fix}(X, Y)$. Therefore, A is a maximal subsemigroup of $\operatorname{Fix}(X, Y)$.

Theorem 3.4 $J_{n} \cup J_{n-1}^{*} \cup$ Fix x_{n-1} is a maximal subsemigroup of Fix (X, Y).
Proof Let $A=J_{n} \cup J_{n-1}^{*} \cup F i x_{n-1}$. To prove that A is a subsemigroup of Fix (X, Y), we consider the case $\alpha, \beta \in J_{n-1}^{*}$ and $|X \alpha \beta \backslash Y|=n-1$ and the case $\alpha \in J_{n-1}^{*}$ and $\beta \in J_{n}$. For the case $\alpha, \beta \in J_{n-1}^{*}$ and $|X \alpha \beta \backslash Y|=n-1$, we have $x \alpha=y$ for some $x \in X \backslash Y$ and $y \in Y$. Then $x \alpha \beta=(x \alpha) \beta=y \beta=y$, that is $\alpha \beta \in J_{n-1}^{*} \subseteq A$. Now consider the case $\alpha \in J_{n-1}^{*}$ and $\beta \in J_{n}$. Then there exists $x \in X \backslash Y$ such that $x \alpha=y$ for some $y \in Y$. Hence, $x \alpha \beta=y \beta=y$, that is $\alpha \beta \in J_{n-1}^{*} \subseteq A$. Since β is surjective, there exists $x^{\prime} \in X \backslash Y$ such that $x^{\prime} \beta=x$, and so $x^{\prime} \beta \alpha=x \alpha=y$, that is $\beta \alpha \in J_{n-1}^{*} \subseteq A$. Hence A is a subsemigroup of Fix (X, Y).

Now let S be a subsemigroup of $\operatorname{Fix}(X, Y)$ with $A \subsetneq S$. Then there exists $\theta \in S \backslash A$, so $\theta \in J_{n-1}$ and $\left|y \theta^{-1}\right|=1$ for all $y \in Y$. By Lemma 3.2(2), we have $\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|=1\right.$ for all $\left.y \in Y\right\} \subseteq S$. Since

$$
\operatorname{Fix}(X, Y)=A \cup\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|=1 \text { for all } y \in Y\right\} \subseteq S,
$$

we obtain $S=F i x(X, Y)$. Therefore, A is a maximal subsemigroup of $\operatorname{Fix}(X, Y)$.
Our final aim is to prove that there are only three types of maximal subsemigroups of $\operatorname{Fix}(X, Y)$.
Lemma 3.5 If S is a maximal subsemigroup of $\operatorname{Fix}(X, Y)$, then either $J_{n} \subseteq S$ or $J_{n-1} \subseteq S$.
Proof Let S be a maximal subsemigroup of $F i x(X, Y)$ and $J_{n} \nsubseteq S$. Since S is maximal, we have $S \cap J_{n} \neq \emptyset$; otherwise $S \subsetneq M \cup F i x_{n}$ where M is a maximal subgroup of J_{n}, which contradicts the maximality of S. Moreover, $S \cap J_{n}=H$ is a maximal subgroup of J_{n}. For if H is not a maximal subgroup of J_{n}, then H is contained in a maximal subgroup M of J_{n}. Thus $S \subsetneq M \cup F i x_{n}$ where $M \cup F i x_{n}$ is a maximal subsemigroup of $\operatorname{Fix}(X, Y)$ and this contradicts the maximality of S. Hence $S \subseteq H \cup F i x_{n}$. Since S is maximal, we obtain $S=H \cup F i x_{n}$ and that $J_{n-1} \subseteq S$ as required.

Lemma 3.6 Let $\alpha \in J_{k}$ where $0 \leq k \leq n-2$. Then α can be written as a product of β, γ for some $\beta, \gamma \in J_{k+1}$.
Proof Let $J=\{1, \ldots, k\}$ and write

$$
\alpha=\left(\begin{array}{ll}
A_{i} & B_{j} \\
y_{i} & b_{j}
\end{array}\right),
$$

where $B_{j} \subseteq X \backslash Y, b_{j} \in X \backslash Y$ for all $j \in J$. Since $k \leq n-2$, we have $\left|A_{i_{0}}\right| \geq 2$ for some $i_{0} \in I$ or $\left|B_{j_{0}}\right| \geq 2$ for some $j_{0} \in J$.

Case 1: $\left|A_{i_{0}}\right| \geq 2$ for some $i_{0} \in I$. Choose $u \in A_{i_{0}} \backslash Y$ and $v \in X \backslash X \alpha$. Let $I^{\prime}=I \backslash\left\{i_{0}\right\}$ and define $\beta, \gamma \in \operatorname{Fix}(X, Y)$ by

$$
\beta=\left(\begin{array}{cccc}
A_{i^{\prime}} & A_{i_{0}} \backslash\{u\} & B_{j} & u \\
y_{i^{\prime}} & y_{i_{0}} & b_{j} & v
\end{array}\right) \text { and } \gamma=\left(\begin{array}{cccc}
y_{i^{\prime}} & \left\{y_{i_{0}}, v\right\} & b_{j} & X \backslash(X \alpha \cup\{v\}) \\
y_{i^{\prime}} & y_{i_{0}} & b_{j} & v
\end{array}\right) .
$$

Hence $\beta, \gamma \in J_{k+1}$ and $\alpha=\beta \gamma$.
Case 2: $\left|B_{j_{0}}\right| \geq 2$ for some $j_{0} \in J$. Choose $u \in B_{j_{0}}$ and $v \in X \backslash X \alpha$. Let $J^{\prime}=J \backslash\left\{j_{0}\right\}$ and define $\beta, \gamma \in \operatorname{Fix}(X, Y)$ by

$$
\beta=\left(\begin{array}{cccc}
A_{i} & B_{j^{\prime}} & B_{j_{0}} \backslash\{u\} & u \\
y_{i} & b_{j^{\prime}} & b_{j_{0}} & v
\end{array}\right) \text { and } \gamma=\left(\begin{array}{cccc}
y_{i} & b_{j^{\prime}} & \left\{b_{j_{0}}, v\right\} & X \backslash(X \alpha \cup\{v\}) \\
y_{i} & b_{j^{\prime}} & b_{j_{0}} & v
\end{array}\right) .
$$

So $\beta, \gamma \in J_{k+1}$ and $\alpha=\beta \gamma$.

Lemma 3.7 Let S be a subsemigroup of $\operatorname{Fix}(X, Y)$. If $S \cap J_{n}=J_{n}$ and $S \cap J_{n-1}=J_{n-1}$, then $S=F i x(X, Y)$.
Proof Assume that $S \cap J_{n}=J_{n}$ and $S \cap J_{n-1}=J_{n-1}$. Let $\alpha \in F i x(X, Y)$. It is clear that if $\alpha \in J_{n} \cup J_{n-1}$, then $\alpha \in S$. Now consider when $\alpha \in J_{k}$, where $0 \leq k \leq n-2$. By Lemma 3.6, we have α can be written as a product of β, γ for some $\beta, \gamma \in J_{n-1}$, that is $\alpha \in S$. Thus $S=F i x(X, Y)$.

Theorem 3.8 Let S be a maximal subsemigroup of $\operatorname{Fix}(X, Y)$. Then S is one of the following forms:
(1) $M \cup F i x_{n}$, where M is a maximal subgroup of J_{n};
(2) $J_{n} \cup J_{n-1}^{y} \cup$ Fix x_{n-1} for some $y \in Y$;
(3) $J_{n} \cup J_{n-1}^{*} \cup F i x_{n-1}$.

Proof Since S is a maximal subsemigroup, by Lemma 3.5 we have either $J_{n} \subseteq S$ or $J_{n-1} \subseteq S$.
Case 1: $J_{n} \subseteq S$. Therefore, $S \cap J_{n-1} \subsetneq J_{n-1}$ by Lemma 3.7. We consider two subcases.
Subcase 1.1: $(X \backslash Y) \alpha \cap Y \neq \emptyset$ for all $\alpha \in S \cap J_{n-1}$. Let $\alpha \in S \cap J_{n-1}$. Then by assumption, we have $\left|y \alpha^{-1}\right|>1$ for some $y \in Y$. That is $\alpha \in J_{n-1}^{*}$. Hence $S \cap J_{n-1} \subseteq J_{n-1}^{*}$. Since $J_{n} \subseteq S$, we obtain

$$
S \subseteq J_{n} \cup J_{n-1}^{*} \cup F i x_{n-1}
$$

Since the right-hand side of the above expression is a maximal subsemigroup, it follows that $S=J_{n} \cup J_{n-1}^{*} \cup$ Fix ${ }_{n-1}$. Therefore, S is of the form (3).

Subcase 1.2: $(X \backslash Y) \alpha \cap Y=\emptyset$ for some $\alpha \in S \cap J_{n-1}$. Then $\left|y \alpha^{-1}\right|=1$ for all $y \in Y$. By Lemma $3.2(2)$ we have

$$
\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|=1 \text { for all } y \in Y\right\} \subseteq S
$$

We prove that $S \cap J_{n-1} \subseteq J_{n-1}^{y_{0}}$ for some $y_{0} \in Y$, by supposing that it is false. Therefore, for each $y \in Y$, there exists $\beta \in S \cap J_{n-1}$ such that $\left|y \beta^{-1}\right|>1$. Thus by Lemma 3.2(1), $\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|>1\right\} \subseteq S$. Hence

$$
\bigcup_{y \in Y}\left\{\gamma \in J_{n-1}:\left|y \gamma^{-1}\right|>1\right\} \subseteq S
$$

and so $J_{n-1} \subseteq S$, which contradicts $S \cap J_{n-1} \subsetneq J_{n-1}$. Therefore,

$$
S \cap J_{n-1} \subseteq J_{n-1}^{y_{0}}
$$

for some $y_{0} \in Y$. Again, since $J_{n} \subseteq S$, we obtain

$$
S \subseteq J_{n} \cup J_{n-1}^{y_{0}} \cup F i x_{n-1}
$$

and that S is of the form (2).
Case 2: $J_{n-1} \subseteq S$. Then $S \cap J_{n} \subsetneq J_{n}$ by Lemma 3.7. Since S is maximal, by the same proof as given for Lemma 3.5, we get that $S \cap J_{n}=M$, where M is a maximal subgroup of J_{n}. Thus $S \subseteq M \cup F i x_{n}$. By the maximality of S, we obtain that S is of the form (1).

Example 3.9 Let $X=\{1,2,3\}$ and $Y=\{1\}$. Then $|X \backslash Y|=2$ and

$$
J_{2}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\} .
$$

Moreover, we have

$$
\begin{aligned}
& J_{1}^{1}=\left\{\left(\begin{array}{cc}
1 & \{2,3\} \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & \{2,3\} \\
1 & 3
\end{array}\right)\right\}, \\
& J_{1}^{*}=\left\{\left(\begin{array}{cc}
\{1,2\} & 3 \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
\{1,2\} & 3 \\
1 & 3
\end{array}\right),\left(\begin{array}{cc}
\{1,3\} & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
\{1,3\} & 2 \\
1 & 3
\end{array}\right)\right\} \text { and } \\
& \text { Fix }_{1}=\left\{\binom{X}{1}\right\} .
\end{aligned}
$$

Thus there are only three maximal subsemigroups of $\operatorname{Fix}(X, Y)$, namely

$$
\begin{aligned}
& M_{1}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\} \cup \text { Fix }_{2}=F i x(X, Y) \backslash\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\} \\
& M_{2}=J_{2} \cup J_{1}^{1} \cup \text { Fix }_{1} \text { and } \\
& M_{3}=J_{2} \cup J_{1}^{*} \cup \text { Fix }_{1}
\end{aligned}
$$

4. Maximal regular subsemigroups of $\operatorname{Fix}(X, Y)$

In general, if S is a regular semigroup and T is a maximal subsemigroup of S, then T may not be a maximal regular subsemigroup of S (see [10], Theorem 2 for example).

In this section, we prove that the maximal subsemigroups and the maximal regular subsemigroups of $F i x(X, Y)$ coincide.
Lemma 4.1 The following statements hold.
(1) If $\alpha \in J_{n-1}^{*}$, then $\alpha=\alpha \beta \alpha$ for some $\beta \in J_{n-1}^{*}$.
(2) If $y \in Y$ and $\alpha \in J_{n-1}^{y}$, then $\alpha=\alpha \beta \alpha$ for some $\beta \in J_{n-1}^{y}$.

Proof (1) Let $\alpha \in J_{n-1}^{*}$. Then there are $x \in X \backslash Y$ and $y_{i_{0}} \in Y$ such that $x \alpha=y_{i_{0}}$. Let $X \backslash(Y \cup\{x\})=$ $\left\{a_{1}, \ldots a_{n-1}\right\}, J=\{1, \ldots, n-1\}$ and $I^{\prime}=I \backslash\left\{i_{0}\right\}$. Then we can write α as (*). Choose

$$
\beta=\left(\begin{array}{ccc}
y_{i^{\prime}} & \left\{y_{i_{0}}, x^{\prime}\right\} & b_{j} \\
y_{i^{\prime}} & y_{i_{0}} & a_{j}
\end{array}\right),
$$

where $x^{\prime} \in X \backslash X \alpha$. Thus $\beta \in J_{n-1}^{*}$ and $\alpha=\alpha \beta \alpha$.
(2) Let $\alpha \in J_{n-1}^{y}$. Then $a \alpha \neq y$ for all $a \in X \backslash Y$. If $\alpha \in J_{n-1}^{*}$, there exist $y \neq y_{i_{0}} \in Y$ and $x \in X \backslash Y$ such that $x \alpha=y_{i_{0}}$. Define β as given in (1); then $\beta \in J_{n-1}^{y}$ since $y_{i_{0}} \neq y$ and $\alpha=\alpha \beta \alpha$. If $\alpha \notin J_{n-1}^{*}$, then $\left|y \alpha^{-1}\right|=1$ for all $y \in Y$. Since $\alpha \in J_{n-1}$, there exists $b \in X \backslash Y$ such that $b \alpha^{-1}=\{x, z\} \subseteq X \backslash Y$. Let $X \backslash(Y \cup\{x, z\})=\left\{a_{1}, \ldots, a_{n-2}\right\}$ and $J=\{1, \ldots, n-2\}$. Therefore, we can write α as $(* *)$. Now choose

$$
\beta=\left(\begin{array}{ccc}
y_{i} & \{b, w\} & b_{j} \\
y_{i} & x & a_{j}
\end{array}\right)
$$

where $w \in X \backslash X \alpha$. Thus $\beta \in J_{n-1}^{y}$ and $\alpha=\alpha \beta \alpha$.

We note that if T is a maximal subsemigroup of S and T is regular, then T is a maximal regular subsemigroup of S.

Now we aim to characterize the maximal regular subsemigroups of Fix (X, Y).

Theorem 4.2 The following subsemigroups of Fix (X, Y) are maximal regular subsemigroups.
(1) $M \cup$ Fix x_{n}, where M is a maximal subgroup of J_{n};
(2) $J_{n} \cup J_{n-1}^{y} \cup$ Fix x_{n-1} for some $y \in Y$;
(3) $J_{n} \cup J_{n-1}^{*} \cup F i x_{n-1}$.

Proof The three subsemigroups above are maximal subsemigroups of $\operatorname{Fix}(X, Y)$, and so by the previous note we only show that they are regular.
(1) Since M is a group, it is regular. Since $\operatorname{Fix}(X, Y)$ is regular and $F i x_{n}$ is an ideal of $F i x(X, Y)$, we obtain Fix is also regular. Hence $M \cup$ Fix n is a regular subsemigroup of $\operatorname{Fix}(X, Y)$.

Similar to (1), we have that J_{n} and $F i x_{n-1}$ are regular, and for each $\alpha \in J_{n-1}^{y}\left(J_{n-1}^{*}\right)$ there exists $\beta \in J_{n-1}^{y}\left(J_{n-1}^{*}\right)$ by Lemma 4.1 such that $\alpha=\alpha \beta \alpha$. Therefore, (2) and (3) hold.

By replacing the maximal subsemigroup by a maximal regular subsemigroup in the proof of Lemma 3.5 and using the results in Theorem 4.2, we obtain the following lemma.

Lemma 4.3 If S is a maximal regular subsemigroup of $\operatorname{Fix}(X, Y)$, then either $J_{n} \subseteq S$ or $J_{n-1} \subseteq S$.
With some mild modifications of the proof given in Theorem 3.8 and the results in Theorem 4.2 and Lemma 4.3, we get that maximal subsemigroups and maximal regular subsemigroups of $\operatorname{Fix}(X, Y)$ coincide.

Theorem 4.4 Let S be a maximal regular subsemigroup of Fix (X, Y). Then S is one of the following forms:
(1) $M \cup F i x_{n}$, where M is a maximal subgroup of J_{n};
(2) $J_{n} \cup J_{n-1}^{y} \cup F i x_{n-1}$ for some $y \in Y$;
(3) $J_{n} \cup J_{n-1}^{*} \cup F i x_{n-1}$.

5. Finiteness conditions on $\operatorname{Fix}(X, Y)$

In 1980, Alarcao [1] characterized when a monoid S is unit-regular and when it is directly finite as follows:
Theorem 5.1 Let S be a monoid having 1 as an identity.
(1) S is unit-regular if and only if it is factorizable.
(2) S is directly finite if and only if $H_{1}=D_{1}$.

For the semigroup Fix (X, Y), the properties unit-regular, factorizable, and directly finite depend on the finiteness conditions on sets.

Theorem 5.2 Fix (X, Y) is unit-regular if and only if $X \backslash Y$ is finite.
Proof Suppose that $\operatorname{Fix}(X, Y)$ is unit-regular. Assume by contrary that $X \backslash Y$ is infinite. Let $a \in X \backslash Y$. Then $|X \backslash Y|=|(X \backslash Y) \backslash\{a\}|=|X \backslash(Y \cup\{a\})|$. Thus there is a bijection $\sigma: X \backslash Y \rightarrow X \backslash(Y \cup\{a\})$. Let $X \backslash Y=\left\{x_{j}: j \in J\right\}$ and define $\alpha \in \operatorname{Fix}(X, Y)$ by

$$
\alpha=\left(\begin{array}{cc}
y_{i} & x_{j} \\
y_{i} & x_{j} \sigma
\end{array}\right) .
$$

Hence α is injective and $X \alpha=X \backslash\{a\}$. Since $\operatorname{Fix}(X, Y)$ is unit-regular, there is a unit $\beta \in F i x(X, Y)$ such that $\alpha=\alpha \beta \alpha$. Assume that $a \beta=b$. We have $b \alpha=b \alpha \beta \alpha=(b \alpha \beta) \alpha$ and then $b=(b \alpha) \beta$ since α is injective. Since β is injective, $b \alpha=a \notin X \alpha$, a contradiction.

Conversely, assume that $X \backslash Y$ is finite. Let $\alpha \in \operatorname{Fix}(X, Y)$. We can write

$$
\alpha=\left(\begin{array}{cccc}
A_{i} & B_{1} & \ldots & B_{n} \\
y_{i} & b_{1} & \ldots & b_{n}
\end{array}\right)
$$

where $B_{j} \subseteq X \backslash Y, b_{j} \in X \backslash Y$ for all $j \in\{1, \ldots, n\}$. Let $C=X \backslash\left(Y \cup\left\{b_{j}\right\}\right)$. For each $j \in\{1, \ldots, n\}$, choose $b_{j}^{\prime} \in B_{j}$ and let $C^{\prime}=X \backslash\left(Y \cup\left\{b_{j}^{\prime}\right\}\right)$. Then $|C|=\left|C^{\prime}\right|$ since $X \backslash Y$ is finite and thus there exists a bijection $\sigma: C \rightarrow C^{\prime}$. Let $C=\left\{x_{k}: k \in K\right\}$ and define

$$
\beta=\left(\begin{array}{ccc}
y_{i} & b_{j} & x_{k} \\
y_{i} & b_{j}^{\prime} & x_{k} \sigma
\end{array}\right) .
$$

Then β is a unit in $\operatorname{Fix}(X, Y)$ and $\alpha=\alpha \beta \alpha$. Thus $\operatorname{Fix}(X, Y)$ is unit-regular.

Combining Theorem 5.1 and Theorem 5.2, we obtain the following corollary.
Corollary 5.3 The following statements are equivalent.
(1) $\operatorname{Fix}(X, Y)$ is unit-regular;
(2) Fix (X, Y) is factorizable;
(3) $X \backslash Y$ is a finite set.

The following example shows that $X \backslash Y$ being a finite set is a sufficient condition for $\operatorname{Fix}(X, Y)$ to be directly finite.

Example 5.4 Let $X=\mathbb{N}$ be the set of all natural numbers and $Y=\{x \in \mathbb{N}: x>3\}$. Then $X \backslash Y=\{1,2,3\}$. If $\alpha, \beta \in \operatorname{Fix}(X, Y)$ such that $\alpha \beta=1_{X}$, then α is injective and $y \alpha=y$ for all $y \in Y$. Thus $\{1,2,3\} \alpha=\{1,2,3\}$. Hence $1=z \alpha$ for some $z \in\{1,2,3\}$, that is $1 \beta \alpha=(z \alpha) \beta \alpha=(z \alpha \beta) \alpha=\left(z 1_{X}\right) \alpha=z \alpha=1$. Similarly, we have $2 \beta \alpha=2$ and $3 \beta \alpha=3$. Hence $\beta \alpha=1_{X}$.

Moreover, we have the following theorem.

Theorem 5.5 Fix (X, Y) is directly finite if and only if $X \backslash Y$ is finite.
Proof Suppose that Fix (X, Y) is directly finite. By Theorem 5.1(2), we get $D_{1_{X}}=H_{1_{X}}$. Assume by contrary that $X \backslash Y$ is infinite. Choose $a \in X \backslash Y$ and $y_{i_{0}} \in Y$. Then $|X \backslash(Y \cup\{a\})|=|X \backslash Y|$. Therefore, there is a bijection

$$
\sigma: X \backslash(Y \cup\{a\}) \rightarrow X \backslash Y
$$

Let $I^{\prime}=I \backslash\left\{i_{0}\right\}, X \backslash(Y \cup\{a\})=\left\{x_{j}: j \in J\right\}$ and define $\alpha \in \operatorname{Fix}(X, Y)$ by

$$
\alpha=\left(\begin{array}{ccc}
y_{i^{\prime}} & \left\{y_{i_{0}}, a\right\} & x_{j} \\
y_{i^{\prime}} & y_{i_{0}} & x_{j} \sigma
\end{array}\right) .
$$

Then α is surjective. Hence $X \alpha \backslash Y=X \backslash Y=X 1_{X} \backslash Y$, that is $\alpha \in D_{1_{X}}$. However, $\alpha \notin H_{1_{X}}$ since α is not injective, a contradiction. Thus $X \backslash Y$ is finite.

Conversely, assume that $X \backslash Y$ is finite. Let $\alpha, \beta \in \operatorname{Fix}(X, Y)$ be such that $\alpha \beta=1_{X}$. Then α is injective and so $(X \backslash Y) \alpha \subseteq X \backslash Y$. Since $X \backslash Y$ is finite, we have $(X \backslash Y) \alpha=X \backslash Y$. Thus for each $x \in X \backslash Y$, there exists $z \in X \backslash Y$ such that $z \alpha=x$. Hence $x \beta=z \alpha \beta=z 1_{X}=z$. Therefore, $x \beta \alpha=z \alpha=x$ for all $x \in X \backslash Y$ and so we conclude that $\beta \alpha=1_{X}$.

If $Y=\emptyset$, then $\operatorname{Fix}(X, Y)=T(X)$, and we have the following corollary, which first appeared in [1] and [9].

Corollary 5.6 The following statements are equivalent.
(1) $T(X)$ is unit-regular;
(2) $T(X)$ is factorizable;
(3) $T(X)$ is directly finite;
(4) X is a finite set.

References

[1] Alarcao HD. Factorizable as a finiteness condition. Semigroup Forum 1980; 20: 281-282.
[2] Băramov RA. On the problem of completeness in a symmetric semigroup of finite degree. Diskret Analiz 1966; 8: 3-26 (in Russian).
[3] East J, Mitchell JD, Péresse Y. Maximal subsemigroups of the semigroup of all mappings on an infinite set. Trans Amer Math Soc 2015; 367: 1911-1944.
[4] Gavrilov GP. On functional completeness in countably-valued logic. Problemy Kibernet 1965; 15: 5-64.
[5] Honyam P, Sanwong J. Semigroups of transformations with fixed sets. Quaest Math 2013; 36: 79-92.
[6] Howie JM. Fundamentals of Semigroup Theory. Oxford, UK: Oxford University Press, 1995.
[7] Liebeck MW, Praeger CE, Saxl J. A classification of the maximal subgroups of finite alternating and symmetric groups. J Algebra 1987; 111: 365-383.
[8] Pinsker M. Maximal clones on uncountable sets that include all permutations. Algebra Universalis 2005; 54: 129-148.
[9] Tirasupa Y. Factorizable transformation semigroup. Semigroup Forum 1979; 18: 15-19.
[10] Yang HB, Yang XL. Maximal subsemigroups of finite transformation semigroups $K(n, r)$. Acta Math Sinica (English Series) 2004; 20: 475-482.
[11] Yang XL. Maximal subsemigroups of the finite singular transformation semigroup. Comm Algebra 2001; 29: 11751182.
[12] You T. Maximal regular subsemigroups of certain semigroups of transformations. Semigroup Forum 2002; 64: 391396.

[^0]: *Correspondence: jintana.s@cmu.ac.th
 2010 AMS Mathematics Subject Classification: 20M20.
 This research was supported by Chiang Mai University.
 ${ }^{1}$ This author thanks the Science Achievement Scholarship of Thailand, for its financial support.

