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Abstract: In this paper we give a sampling expansion for integral transforms whose kernels arise from Green’s function

of differential operators in a space of vector-functions. The differential operators are in a space of dimension m and

consist of systems of m equations in m unknowns. We assume the simplicity of the eigenvalues.

Key words: Sampling theory, vector-functions, Green’s function, boundary value problems

1. Introduction

The use of Green’s function in sampling theory is due to the work of Zayed [8], where a sampling theorem for

integral transform whose kernel includes Green’s function of not necessarily self-adjoint problems of the form

n∑
k=0

pk(x)y
(n−k)(x) = λy, a ⩽ x ⩽ b, λ ∈ C,

n∑
j=1

αjiy
(j−1)(a) + βjiy

(j−1)(b) = 0, i = 1, 2, · · · , n,

(1.1)

is introduced. This theorem can be stated as follows.

Let H(x, ξ, λ) be the Green’s function of the problem (1.1) and

P (λ) =


∏∞

k=1

(
1− λ

λk

)
, if all λk ̸= 0,

λ
∏∞

k=2

(
1− λ

λk

)
, if one of λk, say λ1 = 0,

(1.2)

where {λk}∞k=1 are the eigenvalues of (1.1). If this product is not convergent, then a multiplication by exp(λ/λk)

is needed. For some fixed ξ0 ∈ [a, b], put

Φ(x, λ) = P (λ)H(x, ξ0, λ).

Hence, the sampling theorem of [8] reads:
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Theorem 1.1 Let

f(λ) =

∫ b

a

g(x)Φ(x, λ) dx, g ∈ L2(a, b). (1.3)

Then f(λ) can be represented as

f(λ) =
∞∑
k=1

f(λk)
P (λ)

(λ− λk)P ′(λk)
. (1.4)

If the problem (1.1) is self-adjoint or g satisfies the boundary conditions, then the series converges uniformly

on compact subsets of C .

For more details one may refer to [8]. In [4], certain modifications for the above result were given. In [2], Green’s

function for deriving sampling theorems associated with discontinuous eigenvalue problems was also given. In

[1], the authors used Green’s function associated with differential operators on a space of vector-function of

dimension two to derive the sampling theorem. They considered the Dirac system of differential equations

y′2 − p(x) y1 = λ y1, y′1 + r(x) y2 = −λ y2, (1.5)

together with the boundary conditions

y1(0) sinα+ y2(0) cos α = 0,

y1(π) sinβ + y2(π) cosβ = 0,
(1.6)

where p(·) and r(·) are continuous functions on [0, π] . Problem (1.5)–(1.6) [5, 6] has a countable number

of real and simple eigenvalues {λn}∞n=−∞ , and the solution y(x, λ) = (y1(x, λ), y2(x, λ))
⊤ , where ⊤ stands

for the transpose, of (1.5), which satisfies y(0, λ) = (cosα,− sinα)⊤ , generates all eigenfunctions. A vector-

function f(x) = (f1(x), f2(x))
⊤ is square-integrable if each component is square-integrable. Let ϕ(x, λ) =

(ϕ1(x, λ), ϕ2(x, λ))
⊤, ψ(x, λ) = (ψ1(x, λ), ψ2(x, λ))

⊤ be two solutions of (1.5) satisfying

ϕ(0, λ) =

(
ϕ1(0, λ)
ϕ2(0, λ)

)
=

(
cosα
− sinα

)
, ψ(π, λ) =

(
ψ1(π, λ)
ψ2(π, λ)

)
=

(
cosβ
− sinβ

)
, (1.7)

and let w(λ) = ψ1(0) sinα+ ψ2(0) cosα . Thus, Green’s matrix of problem (1.5)–(1.6) [5, 6] is:

G(x, ξ, λ) =
1

w(λ)

 ϕ(x, λ)ψ⊤(ξ, λ), 0 ⩽ ξ ⩽ x ⩽ π,

ψ(x, λ)ϕ⊤(ξ, λ), 0 ⩽ x ⩽ ξ ⩽ π.
(1.8)

Define the matrix
Φ(ξ, λ) = w(λ)G(x0, ξ, λ), (1.9)

where x0 ∈ [0, π] . Φ(ξ, λ) is an entire vector-function of λ for every ξ ∈ [0, π] . The sampling theorem for

vector-valued transforms whose kernels arise from Green’s matrix of [1] states:

Theorem 1.2 Let f(·) be a square-integrable vector-function on [0, π] . Let F (λ) =

(
F1(λ)
F2(λ)

)
be the vector-

valued transform

F (λ) =

∫ π

0

Φ(ξ, λ)f(ξ) dξ. (1.10)
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Then F (λ) is a vector entire function of order one and exponential type at most π that admits the vector-valued

sampling representation:

F (λ) =
∞∑

k=−∞

F (λk)
w(λ)

(λ− λk)w′(λk)
. (1.11)

The vector-valued series (1.11) converges uniformly on any compact subset of C and absolutely on C .

Also, in [3], two-dimensional sampling theorems associated with first- and second-order two-parameter differen-

tial equations via Green’s function were given.

The aim of this article is to introduce a sampling theorem for integral transforms whose kernels arise from

Green’s function of differential operators in a space of vector-functions of dimension m and consist of systems

of m equations in m unknowns. This will generalize the result of [4], where a system of differential equations

of arbitrary order with boundary conditions that may be of mixed type is included.

Some main definitions for the problem and the formula of Green’s function are given in the following

section as well as some results that are used in the sequel. Most of these definitions and the results have been

taken from [7]. Section 3 contains the sampling theorem in which the integral transform is a vector of dimension

m involving Green’s function in its kernel. Some illustrative examples are provided in the last section.

2. Preliminaries

Let Cm be the m-dimensional complex space consisting of all vectors yT = (y1, · · · , ym), where T denotes

the matrix transpose. Here y(·) is a vector-valued function in Cm , with the inner product
⟨
y, z
⟩
= z∗y =∑m

k=1 yk(x)zk(x), where z∗ denotes the conjugate transpose of z . We mean by an operator function A a

square matrix A(x) = [aij(x)] of order m , whose entries are scalar functions. By differentiability or continuity of

vector-functions or operator functions we mean that those properties hold for their entries. Let C(n)[a, b] be the

set of all vector-functions y(·) that have continuous derivatives up to nth order on [a, b] . Let P0(·), · · · , Pn(·)
be continuous operator functions on [a, b] , and let det(P0(x)) ̸= 0 in [a, b] . Consider the linear differential

expression in Cm ,

ℓ(y) = P0(x)y
(n) + · · ·+ Pn(x)y, (2.1)

where y ∈ C(n)[a, b] and the n boundary conditions

Ui(y) = Ai,1ya +Ai,2y
′
a · · ·+Ai,ny

(n−1)
a +Bi,1yb +Bi,2y

′
b + · · ·+Bi,ny

(n−1)
b = 0, (2.2)

i = 1, 2, · · · , n, where Ai,1, Ai,2, · · · , Ai,n, Bi,1, Bi,2, · · · , Bi,n are fixed (constant) operator functions. We

assume that these boundary conditions are linearly independent, i.e. the rank ofA1,1 · · · A1,n B1,1 · · · B1,n

. · · · . . · · · .
An,1 · · · An,n Bi,1 · · · Bn,n


equals nm . Integrating by parts yields∫ b

a

⟨
ℓ(y), z

⟩
dx = P (η, ζ) +

∫ b

a

⟨
y, ℓ∗(z)

⟩
dx, (2.3)
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where

ℓ∗(z) = (−1)n(P ∗
0 z)

(n) + (−1)(n−1)(P ∗
1 z)

(n−1) + · · ·+ P ∗
nz, (2.4)

and P (η, ζ) is a bilinear form in

η = (ya, y
′
a, · · · , y(n−1)

a , yb, y
′
b, · · · , y

(n−1)
b ), ζ = (za, z

′
a, · · · , z(n−1)

a , zb, z
′
b, · · · , z

(n−1)
b ).

The differential expression ℓ∗(z) is called the adjoint differential expression of ℓ(y), and (2.3) is called Lagrange’s

formula for vector-functions. The differential expressions ℓ(y) and ℓ∗(y) are mutually adjoint. A differential

expression is said to be self-adjoint if ℓ∗ = ℓ . A general form of self-adjoint differential expressions is given in

the following.

Lemma 2.1 Any self-adjoint differential expression is a sum of differential expressions of the form

ℓ2ν = (Py(ν))(ν), ℓ2ν−1 =
1

2
[(iPy(ν−1))(ν) + (iPy(ν))(ν−1)],

where P = P (x) is an operator function whose values are Hermitian matrices.

We extend U1, · · · , Un with other forms Un+1, · · · , U2n to obtain a linearly independent system of 2n forms

U1, U2, · · · , U2n . In this case Lagrange’s formula takes the form∫ b

a

⟨
ℓ(y), z

⟩
dx =

⟨
U1, V2n

⟩
+
⟨
U2, V2n−1

⟩
+ · · ·+

⟨
U2n, V1

⟩
+

∫ b

a

⟨
y, ℓ∗(z)

⟩
dx, (2.5)

where V1, V2, · · · , V2n are linearly independent forms in the variables

za, z
′
a, · · · , z(n−1)

a , zb, z
′
b, · · · , z

(n−1)
b .

The boundary conditions

V1 = 0, V2 = 0, · · · , Vn = 0, (2.6)

are said to be the adjoint conditions to the original boundary conditions

U1 = 0, U2 = 0, · · · , Un = 0. (2.7)

Boundary conditions are said to be self-adjoint if they are equivalent to their adjoint boundary conditions. Let

L be the operator generated by the expression ℓ(y) and the boundary conditions (2.7). The operator generated

by ℓ∗(y) and the boundary conditions (2.6) is denoted by L∗ and is called the adjoint operator of L . If λ is

an eigenvalue of L , then λ is an eigenvalue of L∗ . An operator L is said to be self-adjoint if L = L∗ , i.e. if

and only if it is generated by a self-adjoint differential expression and self-adjoint boundary conditions.

Now we look for a special form of the boundary conditions (2.2), which are called regular boundary

conditions. This definition can be stated as follows. Assume that the boundary conditions (2.2) have the form

Uν(y) = Uνa(y) + Uνb(y) = 0, (2.8)

where

Uνa(y) = Aν y
(kν)
a +

kν−1∑
j=0

Aνj y
(j)
a , Uνb(y) = Bν y

(kν)
b +

kν−1∑
j=0

Bνj y
(j)
b , (2.9)
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n− 1 ⩾ k1 ⩾ k2 ⩾ · · · ⩾ kn ⩾ 0, kν+2 < kν ,

and for each ν, ν = 1, · · · , n, at least one of the matrices Aν , Bν is different from zero. The conditions (2.8)

are called normalized . It is always possible to put boundary conditions in a normalized form [7, p. 120]. The

definition of regularity of (2.8) [7] depends on whether n is even or odd as follows:

When n is odd: n = 2µ− 1, conditions (2.8) are said to be regular if the numbers θ0 and θm defined

by

θ0 + θ1 s+ · · ·+ θm sm =∣∣∣∣∣∣∣∣∣
A1w

k1
1 · · · A1w

k1
µ−1 (A1 + sB1)w

k1
µ B1w

k1
µ+1 · · · B1w

k1
n

A2w
k2
1 · · · A2w

k2
µ−1 (A2 + sB2)w

k2
µ B2w

k2
µ+1 · · · B2w

k2
n

· · · · · · · · · · ·
Anw

kn
1 · · · Anw

kn
µ−1 (An + sBn)w

kn
µ Bnw

kn
µ+1 · · · Bnw

kn
n

∣∣∣∣∣∣∣∣∣
(2.10)

are both different from zero, where wk are the different n roots of -1.

When n is even: n = 2µ, conditions (2.8) are said to be regular if the numbers θ−m and θm defined

by

θ−m s−m + θ−m+1 s
−m+1 + · · ·+ θm sm =∣∣∣∣∣∣∣∣∣∣∣∣

A1w
k1
1 · · · A1w

k1
µ−1 (A1 + sB1)w

k1
µ

(
A1 +

B1

s

)
wk1

µ+1 B1w
k1
µ+2 · · · B1w

k1
n

A2w
k2
1 · · · A2w

k2
µ−1 (A2 + sB2)w

k2
µ

(
A2 +

B2

s

)
wk2

µ+1 B2w
k2
µ+2 · · · B2w

k2
n

· · · · · · · · · · · ·
Anw

kn
1 · · · Anw

kn
µ−1 (An + sBn)w

kn
µ

(
An +

Bn

s

)
wkn

µ+1 Bnw
kn
µ+2 · · · Bnw

kn
n

∣∣∣∣∣∣∣∣∣∣∣∣
(2.11)

are both different from zero.

In the following we investigate the eigenvalues of the operator L and Green’s function of the operator

L−λI . For this task, we need an operator form of equation (2.1). Consider the equation in an operator function

Y (x):

ℓ(Y ) = P0(x)Y
(n) + · · ·+ Pn(x)Y = λY. (2.12)

Solutions Y1(x), · · · , Yn(x) of (2.12) are linearly independent if C1Y1 + · · · + CnYn = 0, for any constant

operators C1, · · · , Cn, holds only when C1 = · · · = Cn = 0. This is equivalent to that the matrix Y1 · · · Yn
. · · · .

Y
(n−1)
1 · · · Y

(n−1)
n


is nonsingular. Any solution of ℓ(y) = λy has the form y = Y1c1 + · · · + Yncn , where c1, · · · , cn are constant

vectors. The eigenvalues of Ly = λy are the zeros of the characteristic determinant

∆(λ) =

∣∣∣∣∣∣
U1(Y1) · · · U1(Yn)

. · · · .
Un(Y1) · · · Un(Yn)

∣∣∣∣∣∣ . (2.13)
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The solutions Y1, · · · , Yn can be chosen to be analytic operator functions in the parameter λ , and hence ∆(λ)

also is an analytic function. If this determinant is not identically zero, then these are zeros; the eigenvalues of

the operator L are at most a countable set with no finite limit point. If λ0 is a zero of ∆(λ) with multiplicity

ν , then the multiplicity of the eigenvalue λ0 cannot be greater than ν . Hence, if λ0 is a simple zero of ∆(λ),

then the multiplicity of the eigenvalue λ0 is also unity. In this case λ0 is called a simple eigenvalue.

In the following we give the Green’s function expression for the operator L − λI . This is guaranteed if

L− λI = 0 has only a trivial solution; in other words, λ is different from the eigenvalues of L .

Let |W | be the determinant of the matrix

W =


Y

(n−1)
1 · · · Y

(n−1)
n

Y
(n−2)
1 · · · Y

(n−2)
n

· · · · ·
Y1 · · · Yn

 ,

and denote by Wν , ν = 1, · · · , n, the transpose of the mth order matrices consisting of the cofactors of the

elements of Yν in W . Put

Zν =
1

|W |
Wν ,

g(x, ξ, λ) =


1
2

∑n
ν=1 Yν(x)Zν(ξ), ξ < x,

− 1
2

∑n
ν=1 Yν(x)Zν(ξ), ξ > x,

U =

U1(Y1) · · · U1(Yn)
· · · · ·

Un(Y1) · · · Un(Yn)

 , U−1 =

W11 · · · W1n

· · · · ·
Wn1 · · · Wnn

 ,

where Wjν are m×m matrices.

The Green’s function for the operator L− λI is given by

G(x, ξ, λ) = g(x, ξ, λ)−
n∑

j,ν=1

Yj(x)Wjν Uν(g). (2.14)

The function G(x, ξ, λ) is a meromorphic matrix-function of the parameter λ , and only eigenvalues of L can

be poles of this function [7, p. 117]. Hence, the solution of (L− λ)y = f(x) is

y(x) =

∫ b

a

G(x, ξ, λ) f(ξ) dξ. (2.15)

The following theorem gives a significant characterization of the Green’s function G(x, ξ, λ). From now

on we assume that all the eigenvalues of the operator L generated by regular boundary conditions are simple

zeros of ∆(λ). Assume also that {λk}∞k=1, and {λk}∞k=1 are the eigenvalues of L and L∗ associated with the

eigenfunctions {ϕk}∞k=1 and {ψk}∞k=1 , respectively, where ϕk and ψk are normalized so that∫ b

a

⟨
ϕk, ψk

⟩
dx = 1.
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Theorem 2.2 Green’s function can be represented as the uniformly convergent expansion

G(x, ξ, λ) =
∞∑
k=1

ϕk(x)ψ
∗
k(ξ)

λk − λ
, x, ξ ∈ [a, b], λ ̸= λk. (2.16)

Proof Green’s function of the operator L has the following uniform convergent series [7, p. 128]:

G(x, ξ) =
∞∑
k=1

ϕk(x)ψ
∗
k(ξ)

λk
.

Since λk − λ, k = 1, 2, · · · , are the eigenvalues of the operator L − λI with the corresponding eigenfunctions

ϕk(x) and λk − λ are the eigenvalues of the operator L∗ − λI with the corresponding eigenfunctions ψk(x),

then replacing λk by λk − λ in the former formula, one gets (2.16). 2

3. The sampling theorem

In this section we introduce the main result for a sampling theorem of vector-valued transform of dimension m

with a kernel defined via Green’s function as follows:

Let ξ0 ∈ [a, b] such that G(x, ξ0, λ) ̸≡ 0 on [a, b] . Define the entire function

Ψ(x, λ) = ∆(λ)G(x, ξ0, λ). (3.1)

Let L2
m(a, b) be the Hilbert space:

L2
m(a, b) =

y(x) =
 y1(x)

...
ym(x)

 : yi(x) ∈ L2(a, b)

 , (3.2)

where the inner product and the norm are

(
y, z
)
L2

m(a,b)
=

∫ b

a

⟨
y, z
⟩
dx =

∫ b

a

z∗y dx,

∥y∥L2
m(a,b) =

√(
y, y
)
L2

m(a,b)
.

(3.3)

Theorem 3.1 For f ∈ L2
m(a, b) , let

F (λ) =

∫ b

a

f∗(x)Ψ(x, λ) dx,=
(
Ψ, f

)
L2

m(a,b)
, (3.4)

be an m-dimensional vector-valued transform, and then F (λ) can be represented as

F (λ) =
∞∑
k=1

F (λk)
∆(λ)

(λ− λk)∆′(λk)
. (3.5)

This series converges uniformly on a compact subset of C if:
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1. f is in the domain of L when it is not self-adjoint, or

2. the operator L is self-adjoint.

Proof From (3.4) and (2.16), one has

F (λ) =

∫ b

a

f∗(x)∆(λ)

∞∑
k=1

ϕk(x)ψ
∗
k(ξ)

λk − λ
dx

=
∞∑
k=1

∆(λ)

λk − λ

(∫ b

a

f∗(x)ϕk(x) dx

)
ψ∗
k(ξ). (3.6)

This leads to

F (λk) = −∆′(λk)

(∫ b

a

f∗(x)ϕk(x) dx

)
ψ∗
k(ξ). (3.7)

Combining (3.6) and (3.7), one gets (3.5).

For the uniform convergence, we apply the same technique used in [9, p. 176]. Let K be a compact

subset of the complex λ -plane. Let Λ = {λk}∞k=1 and Λ = {λK1, · · · , λKp} be the set of eigenvalues that lie in

K , which is finite since Λ has no finite limit point. Put ρ = distance(K,Λ− Λ); thus, for all λk ∈ Λ− Λ, one

gets

sup
λ∈K

∣∣∣∣ ∆(λ)

λk − λ

∣∣∣∣ ⩽ 1

ρ
sup
λ∈K

|∆(λ)| = 1

ρ
||∆(λ)||K ,

where sup
λ∈K

|∆(λ)| = ||∆(λ)||K . For λk ∈ Λ, since ∆(λ) has zeros at λK1, · · · , λKp , it follows that hKi =

D(λ)/(λKi − λ) is an analytic function in K . Let

C(K) = max

{
1

ρ
||∆(λ)||K , ||hK1||, · · · , ||hKp||

}
.

Hence, for all λk , one obtains

sup
λ∈K

∣∣∣∣ ∆(λ)

λk − λ

∣∣∣∣ ⩽ C(K).

Now in view of (3.6), we have∥∥∥∥∥F (λ)−
m∑

k=1

F (λk)
∆(λ)

(λ− λk)∆′(λk)

∥∥∥∥∥
L2

m(a,b)

=

∥∥∥∥∥
∞∑

k=m+1

∆(λ)

λk − λ

(∫ b

a

f∗(x)ϕk(x) dx

)
ψ∗
k(ξ)

∥∥∥∥∥
L2

m(a,b)

⩽ C(K)

∞∑
k=m+1

∣∣∣(ϕk, f)L2
m(a,b)

∣∣∣ ∥ψk∥L2
m(a,b) .

The last series is independent of λ and tends to zero as m→ ∞ in the following cases.
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1. If f is in the domain of L when the operator L is not self-adjoint, then f has the uniform convergent

expansion

f(ξ) =
∞∑
k=1

(
f, ϕk

)
L2

m(a,b)
ψk(ξ); (3.8)

see [7, p. 129].

2. If the operator L is self-adjoint, then (3.8) is valid for any f ∈ L2
m(a, b) with ψk ≡ ϕk ; see [7, pp.

124–125].

2

Remark 3.2 We can replace ∆(λ) in (3.1) by the infinite product (1.2) in the kernel (3.1) to get a represen-

tation similar to (1.4). In fact, let

Ψ̃(x, λ) = P (λ)G(x, ξ0, λ). (3.9)

Then the transform

F̃ (λ) =

∫ b

a

f∗(x)Ψ̃(x, λ) dx, f ∈ L2
m(a, b), (3.10)

will have the expansion

F̃ (λ) =
∞∑
k=1

F̃ (λk)
P (λ)

(λ− λk)P ′(λk)
. (3.11)

Since P (λ) and ∆(λ) have the same zeros, then

∆(λ) = R(λ)P (λ),

where R(λ) is an entire function with no zeros.

4. Examples

In this section we give three examples for the above sampling theorem associated with boundary value problems

of order one and two on a space of vector-functions that is two-dimensional.

Example 4.1 Consider the boundary value problem

i

(
y1
y2

)′

+

(
0 i
−i 0

)(
y1
y2

)
= λ

(
y1
y2

)
, 0 ⩽ x ⩽ π, (4.1)

U(y) =

(
1 0
0 1

)(
y1(0)
y2(0)

)
+

(
0 −1
1 0

)(
y1((π))
y2(π)

)
=

(
y1(0)− y2(π)
y2(0) + y1(π)

)
= 0. (4.2)

This problem is self adjoint since

V (z) = i

[(
1 0
0 1

)
z(0) +

(
0 −1
1 0

)
z(π)

]
.
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Any solution of ℓ(Y ) = λY will be

Y (x, λ) =

(
e−iλx cosx −e−iλx sinx
e−iλx sinx e−iλx cosx

)
.

Hence, any solution of (4.1) is

y(x, λ) =

(
c1 e

−iλx cosx− c2 e
−iλx sinx

c1 e
−iλx sinx+ c2 e

−iλx cosx

)
.

The boundary condition is regular since (2.10) will be

∣∣∣A1 + sB1

∣∣∣ = ∣∣∣∣1 −s
s 1

∣∣∣∣ = 1 + s2, A1 =

(
1 0
0 1

)
, B1 =

(
0 −1
1 0

)
.

This means that θ0 = 0, θ2 = 1 . We have

∆(λ) = 1 + e−2iλπ,

and hence the eigenvalues are λk = k − 1
2 , k ∈ Z. Green’s function G(x, ξ.λ) here has the form

G(x, ξ, λ) =
−i eiλ(ξ−x)

1 + e−2iλπ

(
cosx − sinx
sinx cosx

)
×

×



(
1 −e−iλπ

e−iλπ 1

)
ξ < x

e−iλπ

(
−e−iλπ −1

1 −e−iλπ

)
ξ > x


(

cos ξ sin ξ
− sin ξ cos ξ

)
.

Let Ψ(x, λ) = ∆(λ)G(x, ξ0, λ); then the transform (3.4) , which is

F (λ) =

∫ π

0

f∗(x)Ψ(x, λ) dx, f ∈ L2
2(0, π),

has the expansion

F (λ) =
∞∑

k=−∞

F (k − 1/2)
1 + e−2iλπ

2iπ(λ− k + 1
2 )
. (4.3)

Here P (λ) =
∏∞

k=1

(
1− λ2

(k−1/2)2

)
= cosπλ ,

(
R(λ) = 2e−iλπ

)
. For the transform

F̃ (λ) =

∫ π

0

f∗(x)Ψ̃(x, λ) dx, Ψ̃(x, λ) = P (λ)G(x, ξ0, λ),

one obtains

F̃ (λ) =
∞∑

k=−∞

F̃ (k − 1/2)
sinπ(λ− k + 1

2 )

π(λ− k + 1
2 )

. (4.4)
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Example 4.2 Consider the differential equation (4.1) with the boundary condition

U(y) =

(
1 0
0 1

)(
y1(0)
y2(0)

)
+

(
0 1
1 0

)(
y1((π))
y2(π)

)
=

(
y1(0) + y2(π)
y2(0) + y1(π)

)
= 0. (4.5)

This problem is self adjoint since V (z) = i

[(
1 0
0 1

)
z(0) +

(
0 1
1 0

)
z(π)

]
. The solution is the same as in the

previous example and the boundary conditions are regular. The eigenvalues are the zeros of

∆(λ) = 1− e−2iλπ,

and hence the eigenvalues are λk = k, k ∈ Z. Here, we have

G(x, ξ, λ) =
−i e−iλ(ξ−x)

1− e−2iλπ

(
cosx − sinx
sinx cosx

)
×

×



(
1 e−iλπ

e−iλπ 1

)
ξ < x

e−iλπ

(
e−iλπ 1

1 e−iλπ

)
ξ > x


(

cos ξ sin ξ
− sin ξ cos ξ

)
.

Let Ψ(x, λ) = ∆(λ)G(x, ξ0, λ); then the transform (3.4) has the expansion

F (λ) =
∞∑

k=−∞

F (k)
e−iπλ sinπλ

π(λ− k)
. (4.6)

We have P (λ) = λ
∏∞

k=1

(
1− λ2

k2

)
= sinπλ

π ,
(
R(λ) = 2ie−iλπ

)
. For the transform

F̃ (λ) =

∫ π

0

f∗(x)Ψ̃(x, λ) dx, Ψ̃(x, λ) = P (λ)G(x, ξ0, λ),

one gets

F̃ (λ) =
∞∑

k=−∞

F̃ (k)
sinπ(λ− k)

π(λ− k)
.

Example 4.3 Consider the boundary value problem

ℓ(y) =

(
0 1
1 0

)
y′′ = λy, or

{
y′′2 = λy1,
y′′1 = λy2,

0 ⩽ x ⩽ π, (4.7)

U1(y) = y(0) =

(
y1(0)
y2(0)

)
= 0, U2(y) =

(
y1(π)
y2(π)

)
= y(π) = 0. (4.8)

Lagrange’s formula will be∫ π

0

z∗ℓ(y) dx = V ∗
4 U1 + V ∗

3 U2 + V ∗
2 U3 + V ∗

1 U4 +

∫ π

0

ℓ∗(z)y dx, (4.9)
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where

V1 =

(
0 1
1 0

)
z(π), V2 = −

(
0 1
1 0

)
z(0). (4.10)

Hence, ℓ and the boundary conditions are self-adjoint. Two linearly solutions of ℓ(Y ) = λY are

Y1(x, λ) =

(
cosh tx cos tx
cosh tx − cos tx

)
, Y2(x, λ) =

(
sinh tx/t sin tx/t
sinh tx/t −sin tx/t

)
,

where λ = t2 . Therefore, any solution of (4.7) is given by

y(x, λ) =

(
c1 cosh tx+ c2 cos tx+ c3sinh tx/t+ c4sin tx/t
c1 cosh tx− c2 cos tx+ c3sinh tx/t− c4sin tx/t

)
.

The problem (4.7)− (4.8) is regular since we have

A1 = B2 =

(
1 0
0 1

)
, A2 = B1 =

(
0 0
0 0

)
, k1 = k2 = 0,

and then (2.11) will be ∣∣∣∣∣∣∣∣
(A1 + sB1)

(
A1 +

B1

s

)
(A2 + sB2)

(
A2 +

B2

s

)
∣∣∣∣∣∣∣∣ =

1

s2
− 2 + s2,

i.e. θ−2 = θ2 = 1 . The eigenvalues of (4.7)− (4.8) are the zeros of

∆(λ) =

∣∣∣∣∣∣∣∣
1 1 0 0
1 −1 0 0

coshπt cosπt sinhπt/t sinπt/t
coshπt − cosπt sinhπt/t − sinπt/t

∣∣∣∣∣∣∣∣ =
4 sinπt sinhπt

t2
,

which are λk = ±k2, k = 1, 2, · · · , and all of them are simple. Here,

g(x, ξ, λ) =
1

4

{(
cosh tx cos tx
cosh tx − cos tx

)(
cosh tξ cosh tξ
cos tξ − cos tξ

)

+

(
sinh tx sin tx
sinh tx − sin tx

)(
− sinh tξ − sinh tξ
sin tξ − sin tξ

)}{
1 ξ < x,

−1 ξ > x,

U−1 =
1

2


(
1 1
1 −1

) (
0 0
0 0

)
(
− t

tanhπt − t
tanhπt

− t
tanπt

t
tanπt

)(
t

sinhπt
t

sinhπt
t

sinπt − t
sinπt

)
 =

(
W11 W12

W21 W22

)
.

Hence, G(x, ξ, λ) can be determined from (2.14) . For the transform (3.4) , we have

F (λ) =
∞∑
k=1

(
F (k2)

λ− k2
− F (−k2)

λ+ k2

)
2k3 sinπ(

√
λ− k) sinhπ

√
λ

π λ sinhπk
. (4.11)

Here P (λ) =
∏∞

k=1

(
1− λ2

k2

)(
1 + λ2

k2

)
= sinπt sinhπt

π2 t2 ,
(
R(λ) = 4 π2

)
. Thus, the transform F̃ of Remark 3.2

has the same representation of the transform F .
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