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doi:10.3906/mat-1509-19

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

New statistical randomness tests: 4-bit template matching tests

Fatih SULAK∗

Department of Mathematics, Atılım University, Ankara, Turkey

Received: 04.09.2015 • Accepted/Published Online: 14.03.2016 • Final Version: 16.01.2017

Abstract: For cryptographic algorithms, secret keys should be generated randomly as the security of the system depends

on the key and therefore generation of random sequences is vital. Randomness testing is done by means of statistical

randomness tests. In this work, we show that the probabilities for the overlapping template matching test in the NIST

test suite are only valid for a specific template and need to be recalculated for the other templates. We calculate the

exact distribution for all 4-bit templates and propose new randomness tests, namely template matching tests. The new

tests can be applied to any sequence of minimum length 5504 whereas the overlapping template matching test in the

NIST test suite can only be applied to sequences of minimum length 106 . Moreover, we apply the proposed tests to

biased nonrandom data and observe that the new tests detect the nonrandom behavior of the generator even for a bias

of 0.001, whereas the template matching tests in NIST cannot detect that bias.
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1. Introduction

Random sequences and random numbers are used in many fields, such as statistics, computer simulations, and

cryptography. In cryptography, random sequences are needed for several applications, such as the generation

of primes in RSA encryption, secret keys in symmetric encryption, challenges in challenge-response protocols,

initialization vectors, or salts in hash functions, but the most common application is the generation of secret

keys.

Secret keys should be generated randomly so that the best option of the attacker should not be better

than trying all possible elements in the set from which the key was chosen. If an attacker narrows down the

number of possible keys, then the protocol is assumed to be broken. In 1996, Goldberg and Wagner [8] showed

that the “random numbers” used to generate the keys in the Netscape SSL protocol were based on the time of

the processor and therefore predictable, which helped them to find a major weakness in the protocol. Thus, it

is vital to use an algorithm that produces random numbers properly.

Ideally, random numbers should be produced by true random sources, like atmospheric noise, thermal

noise, or noise in an electrical circuit. These generators are called true random number generators (TRNGs).

However, producing random numbers by TRNGs is usually inefficient, and therefore deterministic algorithms

are generally used to produce random numbers. These algorithms are called pseudorandom number generators

(PRNGs).

An example of a PRNG is the linear congruential generator [18], which produces a pseudorandom sequence

∗Correspondence: fatih.sulak@atilim.edu.tr

80



SULAK/Turk J Math

x1, x2, x3, . . . using the linear recurrence

xn = a · xn−1 + b (mod m)

where x0 is the seed and a , b , and m are parameters.

The output sequences of PRNGs should be statistically indistinguishable from truly random sequences;

therefore, statistical analysis of PRNGs is crucial, and this analysis is performed by statistical randomness

testing. In order to test a PRNG, first an output sample is produced, and then this sample is tested by various

statistical randomness tests.

A test suite is a collection of statistical randomness test that are designed to tests the randomness

properties of sequences. There are several test suites in the literature [14, 15, 20, 21]. Similarly there are several

individual statistical randomness tests [1, 4, 6, 10–13, 17, 23].

The outputs of symmetric encryption algorithms should be indistinguishable from random sequences;

that is, algorithms are expected to behave like PRNGs. Hence, their analysis from this point of view is crucial.

Generally, a sample output set is taken from a symmetric encryption algorithm, and this set is evaluated in

terms of randomness by a test suite.

The NIST test suite [21] is the most popular test suite for cryptographic applications. The statistical

analysis of AES finalist algorithms was performed by Soto et al. using the NIST test suite [22]. Some tests

in the suite require sequences of length 106 , while the outputs of AES finalist algorithms are 128 bits. Soto

et al. concatenated the outputs of the algorithms to obtain long sequences in order to apply all the tests.

Recently, Sulak et al. proposed an alternative method where they computed and used the exact distributions

instead of approximations or asymptotic distributions [24]. Having these exact probabilities, the necessity of

long sequences was reduced, and they applied the randomness tests directly to the outputs of the algorithms

instead of concatenating them.

There are several studies for the tests of the NIST test suite [5, 7, 9, 19, 25]. Okutomi et al. applied

the tests in the NIST test suite to the random data taken from the cryptographic algorithms DES and SHA-1

[19]. They observed that Maurer’s universal statistical test and the overlapping template matching test have

problems with the ratio of the random data that pass the tests. Hamano et al. corrected the probabilities for

the overlapping template matching test, where they took the template as B = 111111111 [9] and NIST updated

the probabilities accordingly. However, as noted in [25], the probability of each pattern depends on the pattern

itself. In this work, we set m = 4 and classify 16 possible patterns into four groups. Then, for each of the 16

patterns, we evaluate the exact probabilities using combinatorial approaches. Afterwards, we propose four new

statistical randomness tests that can be applied to short sequences and long sequences. We observe that the

probabilities are not the same for each overlapping template, which shows that the probabilities for overlapping

template matching test in the NIST are valid only for B = 111111111. We apply the new tests to random data

taken from various PRNGs and to nonrandom data to observe the power of the new tests, and we compare the

results with the NIST test suite.

The organization of the paper is as follows. In Section 2, we give preliminaries. In Section 3, we obtain

the exact distributions. In Section 4, we define new statistical randomness tests and state the corresponding

bin probabilities. In Section 5, we apply the new tests to random and nonrandom data and observe the power

of new tests. In Section 6, we conclude the paper by describing some future work.
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2. Preliminaries

A statistical randomness test is a procedure that takes a binary sequence as an input and tests a null hypothesis

(H0) stating that the given input sequence is random. The test examines the input sequence, produces a real

number between 0 and 1 that is called p -value, and accepts or rejects the hypothesis using a probabilistic

approach. As it is probabilistic, the test may reject truly random sequences, and in that case, a type I error

has occurred. The probability of such an error is called the level of significance of the test and denoted by α .

If the p -value produced by the test is greater than α then H0 is accepted; otherwise, it is rejected [18]. α is

usually set to 0.01 for cryptographic applications [21].

The χ2 distribution is used to compare how well the observed frequencies of events fit to the corresponding

expected frequencies under the hypothesized distribution.

Definition 2.1 [18] A random variable has a χ2 distribution with degrees of freedom v if the corresponding

probability density function f(x) = 0 for x < 0 and

f(x) =
1

Γ(v/2)2v/2
x

v
2−1e−

x
2 , x ≥ 0

where v is a positive integer and Γ is the gamma function; that is, Γ(t) =
∫∞
0

xt−1e−xdx , for t > 0 .

The χ2 goodness of fit test is a statistical randomness test where the distribution of the test statistic

follows χ2 distribution, assuming H0 is true. In other words, let Ei be the expected frequencies and Fi be the

observed frequencies for 1 ≤ i ≤ k . Then

χ2 =
k∑

i=1

(Fi − Ei)
2

Ei
and p-value = igamc

(
2,

χ2

2

)

where igamc is the incomplete gamma function [21].

3. Four-bit template matching tests

The subject of the 4-bit template matching tests is the frequency of a prespecified template in a binary sequence.

Similar tests are defined in the NIST test suite, namely the nonoverlapping template matching test and the

overlapping template matching test. In both tests, first an m -bit template B is chosen, and the sequence

subject to the test is divided into N subsequences of length M . An m-bit window is used to search the m -bit

overlapping blocks of each subsequence. Then, for each block, the number of the template B in that subsequence

is counted. Let Wi denote the number of B in the ith block. For the overlapping template matching test M

is set to 1032. Let πj denote the probability that Wi = j for 0 ≤ j ≤ 4 and π5 denote the probability that

Wi ≥ 5. For M = 1032 and B = 111111111, the exact probabilities πj are calculated in [9] using a recursion.

A p -value is produced using the χ2 goodness of fit test using those probabilities.

For the nonoverlapping template matching test, the prespecified template is chosen in such a manner

that if the template is observed somewhere in the sequence, then it should not be seen before the template is

completed. As noted in the NIST test suite, if the pattern is observed somewhere in the sequence, it cannot

be observed again for the next m − 1 blocks, and hence the m-bit window slides m bits. This shows that

the distribution is the same for all nonoverlapping templates. Using a similar idea, we have the following

proposition.
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Proposition 3.1 The distribution of the frequency of a prespecified template depends only on the number of

overlapping bits in the template.

Proof Assume that the prespecified template B of length 4 has k overlapping bits. If B is observed some-

where in the sequence, the next 3 − k blocks cannot be equal to B as B has k overlapping bits. The latter

block may be equal to B with probability
1

23−k
. This shows that the distribution depends only on the number

of overlapping bits in the block. 2

Using this proposition, we classify the 4-bit templates according to their number of overlapping bits.

There 4 types of blocks:

1. Nonoverlapping blocks: 0001, 0011, 0111, 1000, 1100, 1110

2. One-bit-overlapping blocks: 0010, 0100, 0110, 1001, 1011, 1101

3. Two-bit-overlapping blocks: 0101, 1010

4. Three-bit-overlapping blocks: 0000, 1111

We choose one representative block from each type and find the exact distributions. Different from the

previous approaches, we assume that the bits are circular in each subsequence.

Example 3.2 Let the subsequence be 1000011000 . Then the number of 001 blocks is two, one starting from the

fourth bit and one starting from the ninth bit, and the number of 000 blocks is three, starting from the second

bit, the third bit, and the eighth bit.

First we state some combinatorial formulae, which we will use in the calculation of probabilities.

Lemma 3.3 [2] The number of nonnegative integer solutions of the equation x1 + x2 + · · · + xb = a is(
a+ b− 1

b− 1

)
.

Lemma 3.4 [2] The number of integer solutions of the equation x1+x2+ · · ·+xb = a with xi ≥ c for 1 ≤ i ≤ b

is

(
a− b(c− 1)− 1

b− 1

)
.

Proof With the substitution xi = yi + c , we get

(y1 + c) + (y2 + c) + · · ·+ (yb + c) = a

y1 + y2 + · · ·+ yb = a− bc.

From Lemma 3.3 it follows that the number of solutions is:(
(a− bc) + b− 1

b− 1

)
=

(
a− b(c− 1)− 1

b− 1

)
.

2

Lemma 3.5 [2] [Inclusion - Exclusion Principle] The number of nonnegative integer solutions of the equation

x1 + x2 + · · ·+ xb = a with xi ≤ c for 1 ≤ i ≤ b is
b∑

j=0

(
a+ b− 1− j(c+ 1)

b− 1

)(
b

j

)
(−1)j .
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3.1. Nonoverlapping case

In order to define a randomness test, we need to find the probability that the prespecified template B occurs

k times in the subsequence. For the nonoverlapping case, we choose B = 0001 and compute the probability

accordingly. We assume that we know the weight W and the number of runs V of the sequence.

Theorem 3.6 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 0001 blocks among bi for 1 ≤ i ≤ n .

Also let w be the weight of the sequence and 2r be the number of runs in the sequence. If the sequence is not

all zero or all one then

Pr(K = k) =
n

r · 2n

(
w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
n− w − r − a− k − 1

k − 1

)
.

Proof First note that the number of runs is even if the sequence is not all zero or all one. We assume the

bits are arranged on a circle and we write ‘one’s and ‘zero’s consecutively to define 2r runs. As a result, w− r

‘one’s and n− w − r ‘zero’s remain.

As all the 0001 blocks contain 01 blocks, if a run of ‘zero’s has more than 2 ‘zero’s, it produces exactly

one 0001 block. Now we find the distribution of w − r many ‘one’s and n − w − r many ‘zero’s so that the

number of 0001 blocks is k . The number of such arrangements is equal to the number of nonnegative integer

solutions of the system

x1 + x2 + · · ·+ xr = n− w − r

y1 + y2 + · · ·+ yr = w − r

with an additional condition that exactly k of xi s satisfy xi ≥ 2 for 1 ≤ i ≤ r . This additional condition

guarantees that there are exactly k many 0001 blocks. The second equation has

(
w − 1

r − 1

)
solutions by Lemma

3.3.

x1 + · · ·+ xk︸ ︷︷ ︸
≥2

+xk+1 + · · ·+ xk+a︸ ︷︷ ︸
=1

+xk+a+1 + · · ·+ xr︸ ︷︷ ︸
=0

= n− w − r

In order to find the number of solutions of the first equation, we may assume that xi ≥ 2 for 1 ≤ i ≤ k (with

a factor

(
r

k

)
), xj = 1 for k + 1 ≤ j ≤ k + a (with a factor of

(
r − k

a

)
), and xs = 0 for k + a + 1 ≤ s ≤ r ;

hence, the number of integer solutions of the first equation is

x1 + x2 + · · ·+ xk = n− w − r − a, xi ≥ 2, 1 ≤ i ≤ k,

which is

(
n− w − r − a− k − 1

k − 1

)
by Lemma 3.4. Note that if k = 0, we cannot apply Lemma 3.4, and in that

case we assume there is only one solution. We use this assumption throughout the paper.

Moreover, each arrangement on the circle gives n sequences. However, since there are r many 01 blocks,

r of these sequences are identical. Thus, considering the circular symmetry, other than an all-zero or all-one
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sequence, we have

Pr(K = k) =
n

r · 2n

(
w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
n− w − r − a− k − 1

k − 1

)
.

2

Example 3.7 Assume that n = 8 , w = 3 , r = 2 , k = 1 . We need to find the number of integer solutions of

the system

x1 + x2 = 3

y1 + y2 = 1

where x1 = 3 , x2 = 0 , y1 = 0 , y2 = 1 is a solution. The corresponding sequence is obtained as:

0000︸︷︷︸
x1=3

1︸︷︷︸
y1=0

0︸︷︷︸
x2=0

11︸︷︷︸
y2=1

.

Note that as x1 ≥ 2 , it produces exactly one 0001 block. We show all the solutions and the corresponding

sequences in Table 1.

Table 1. An example for Theorem 3.6.

y1 = 0, y2 = 1 y1 = 1, y2 = 0
x1 = 3, x2 = 0 00001011 00001101
x1 = 2, x2 = 1 00010011 00011001
x1 = 1, x2 = 2 00100011 00110001
x1 = 0, x2 = 3 01000011 01100001

Moreover, each arrangement gives 8 sequences, and two sequences are always identical. Consider the

solution x1 = 3 , x2 = 0 , y1 = 0 , y2 = 1 and its corresponding sequence 00001011 . It produces 00010110 ,

00101100 , 01011000 , 10110000 , 01100001 , 11000010 , and 10000101 . However, note that we also obtain

01100001 as the corresponding sequence of the solution x1 = 0 , x2 = 3 , y1 = 0 , y2 = 1 . As a result, there are

8 · 8
2

= 32 sequences, which is consistent with Theorem 3.6.

In the template matching test, we need to find the probabilities independent of weight and number of

runs of the sequence. For this reason, we state the following corollary.

Corollary 3.8 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 0001 blocks among bi for 1 ≤ i ≤ n .

If the sequence is not all zero or all one then

Pr(K = k) =

n−1∑
w=1

⌊n/2⌋∑
r=1

n

r · 2n

(
w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
n− w − r − a− k − 1

k − 1

)
.

Proof Since we compute Pr(K = k|W = w, V = 2r) in Theorem 3.6, by summing over all possible weights

and runs, we obtain Pr(K = k). 2
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3.2. One-bit-overlapping case

For a one-bit-overlapping case, we choose B = 0110 and obtain the probability accordingly.

Theorem 3.9 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 0110 blocks among bi for 1 ≤ i ≤ n .

Also let w be the weight of the sequence and 2r be the number of runs in the sequence. If the sequence is not

all zero or all one then

Pr(K = k) =
n

r · 2n

(
n− w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
w − 2r + a− 1

r − k − a− 1

)
.

Proof Using an idea similar to the proof of Theorem 3.6, we assume the bits are arranged on a circle and we

write ‘one’s and ‘zero’s consecutively to define 2r runs. As a result, w− r ‘one’s and n−w− r ‘zero’s remain.

As all the 0110 blocks contain 01 blocks, if a run of ‘one’s contains exactly two ‘one’s, it produces exactly

one 0110 block. Therefore, we need to find the distribution of w− r many ‘one’s and n−w− r many ‘zero’s so

that the number of 0110 blocks is k . The number of such arrangements is equal to the number of nonnegative

integer solutions of the system

x1 + x2 + · · ·+ xr = n− w − r

y1 + y2 + · · ·+ yr = w − r

with an additional condition that exactly k of yi = 1 for 1 ≤ i ≤ r . This additional condition guarantees that

there are exactly k many 0110 blocks. The first equation has

(
n− w − 1

r − 1

)
solutions by Lemma 3.3.

y1 + · · ·+ yk︸ ︷︷ ︸
=1

+ yk+1 + · · ·+ yk+a︸ ︷︷ ︸
=0

+ yk+a+1 + · · ·+ yr︸ ︷︷ ︸
≥2

= w − r

In order to find the number of solutions of the second equation, we assume that yi = 1 for 1 ≤ i ≤ k (with a

factor of

(
r

k

)
), yj = 0 for k + 1 ≤ j ≤ k + a (with a factor of

(
r − k

a

)
), and ys ≥ 2 for k + a + 1 ≤ s ≤ r .

In other words, we need to find the integer solutions of the equation

yk+a+1 + yk+a+2 · · ·+ yr = w − r − k, ys ≥ 2, k + a+ 1 ≤ s ≤ r

, which is

(
w − 2r + a− 1

r − k − a− 1

)
by Lemma 3.4. Similar to the proof of the previous theorem, considering the

circular symmetry we obtain

Pr(K = k) =
n

r · 2n

(
n− w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
w − 2r + a− 1

r − k − a− 1

)
.

2
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Corollary 3.10 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 0110 blocks among bi for 1 ≤ i ≤ n .

If the sequence is not all zero or all one then

Pr(K = k) =
n−1∑
w=1

⌊n/2⌋∑
r=1

n

r · 2n

(
n− w − 1

r − 1

)(
r

k

) r−k∑
a=0

(
r − k

a

)(
w − 2r + a− 1

r − k − a− 1

)
.

Proof Since we compute Pr(K = k|W = w, V = 2r) in Theorem 3.9, by summing over all possible weights

and runs, we obtain Pr(K = k). 2

3.3. Two-bit-overlapping case

In this case we choose the prespecified block as 1010. Different from Theorem 3.6 and Theorem 3.9, to obtain

the probabilities, we use another model where xi s are modeled as red boxes and yi s are modeled as white

boxes.

Theorem 3.11 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 1010 blocks among bi for 1 ≤ i ≤ n .

Also let w be the weight of the sequence and 2r be the number of runs in the sequence. If the sequence is not

all zero or all one then

Pr(K = k) =
n

r · 2n
r−1∑
a=k

(
r

a

)(
a

k

)(
n− w − r − 1

r − a− 1

)(
w − a− 1

r − k − 1

)
.

Proof Using an idea similar to the proof of Theorem 3.6, we assume the bits are arranged on a circle and we

write ‘one’s and ‘zero’s consecutively to define 2r runs. As a result, w− r ‘one’s and n−w− r ‘zero’s remain.

Now we find the distribution of n − w − r many ‘zero’s and w − r many ‘one’s so that the number of

1010 blocks is k . We use another model to solve this problem. Assume that there are r red-white box pairs

and we distribute w−r balls into white boxes and n−w−r balls into red boxes. Pr(K = k) is the probability

that exactly k pairs are empty.

In other words, we find the number of nonnegative integer solutions of the system

x1 + x2 + · · ·+ xr = n− w − r

y1 + y2 + · · ·+ yr = w − r

with the condition that xi + yi = 0 is satisfied for exactly k different values of i where 1 ≤ i ≤ r .

Let a of the red boxes xi be empty. Assume that the empty boxes are the first a boxes (with a factor

of

(
r

a

)
). If we consider the first a white boxes, k of them should be empty. Assume that the empty boxes are

the first k boxes (with a factor of

(
a

k

)
). Now we need to find the number of integer solutions of the system

x1 + · · ·+ xa︸ ︷︷ ︸
=0

+xa+1 + · · ·+ xr︸ ︷︷ ︸
≥1

= n− w − r

y1 + · · ·+ yk︸ ︷︷ ︸
=0

+ yk+1 + · · ·+ ya︸ ︷︷ ︸
≥1

+ ya+1 + · · ·+ yr︸ ︷︷ ︸
≥0

= w − r.
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The first equation has

(
n− w − r − 1

r − a− 1

)
solutions and the second equation has

(
w − a− 1

r − k − 1

)
solutions by

Lemma 3.4.

Considering the circular symmetry, other than an all-zero or all one-sequence, we have

Pr(K = k) =
n

r · 2n
r−1∑
a=k

(
r

a

)(
a

k

)(
n− w − r − 1

r − a− 1

)(
w − a− 1

r − k − 1

)
.

2

Corollary 3.12 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 1010 blocks among bi for 1 ≤ i ≤ n .

If the sequence is not all zero or all one then

Pr(K = k) =

n−2∑
w=2

⌊n/2⌋∑
r=2

n

r · 2n
r−1∑
a=k

(
r

a

)(
a

k

)(
n− w − r − 1

r − a− 1

)(
w − a− 1

r − k − 1

)
.

Proof Since we compute Pr(K = k|W = w, V = 2r) in Theorem 3.11, by summing over all possible weights

and runs, we obtain Pr(K = k). 2

3.4. Three-bit-overlapping case

We choose the prespecified block as 1111 for the three-bit-overlapping case. We apply the inclusion-exclusion

principle to obtain the probability.

Theorem 3.13 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 1111 blocks among bi for 1 ≤ i ≤ n .

Also let w be the weight of the sequence and 2r be the number of runs in the sequence. If the sequence is not

all zero or all one then

Pr(K = k) =
n

r · 2n

(
n− w − 1

r − 1

) r∑
t=0

(
r

t

)(
k − 1

t− 1

)

·
r∑

i=0

(
w − k − 3t− 3i− 1

r − t− 1

)(
r − t

i

)
(−1)i.

Proof Using an idea similar to the proof of Theorem 3.6, we assume the bits are arranged on a circle and we

write ‘one’s and ‘zero’s consecutively to define 2r runs. As a result, w− r ‘one’s and n−w− r ‘zero’s remain.

Now we find the distribution of n − w − r many ‘zero’s and w − r many ‘one’s so that the number of 1111

blocks is k and V = 2r . Similarly, we should find the the number of integer solutions of the system

x1 + x2 + · · ·+ xr = n− w − r, xi ≥ 0, 1 ≤ i ≤ r

y1 + y2 + · · ·+ yr = w − r, yj ≥ 0, 1 ≤ j ≤ r,

which should also satisfy that the number of 1111 blocks is k .
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The first equation has

(
n− w − 1

r − 1

)
solutions by Lemma 3.3. Without loss of generality (or multiplying

by

(
r

t

)
), assume yj ≥ 3 for 1 ≤ j ≤ t , and 0 ≤ ys ≤ 2 for t+ 1 ≤ s ≤ r . We find the number of solutions of

the second equation in two parts:

Each run of ‘one’s with length l ≥ 4 defines l − 3 many 1111 blocks. Hence, in order to have k many

1111 blocks, we should have

y1 − 2 + y2 − 2 + · · ·+ yt − 2 = k, yj ≥ 3

y1 + y2 + · · ·+ yt = k + 2t, yj ≥ 3

and, therefore, the number of solutions is

(
k − 1

t− 1

)
(and t = 0⇔ k = 0) by Lemma 3.4.

As the weight of the sequence is w , we have:

yt+1 + yt+2 + · · ·+ yr = w − r − k − 2t, 0 ≤ yj ≤ 2, t+ 1 ≤ j ≤ r.

We apply the inclusion-exclusion principle to find the number of solutions and obtain:

r∑
i=0

(
w − k − 3t− 3i− 1

r − t− 1

)(
r − t

i

)
(−1)i.

Considering the circular symmetry, other than an all-zero or all-one sequence, we have

Pr(K = k) =
n

r · 2n

(
n− w − 1

r − 1

) r∑
t=0

(
r

t

)(
k − 1

t− 1

)

·
r∑

i=0

(
w − k − 3t− 3i− 1

r − t− 1

)(
r − t

i

)
(−1)i.

2

Note that we may use other models to prove the theorem, but the inclusion-exclusion principle can be

generalized to other m values. We can still apply the inclusion-exclusion principle if we choose m = 9 and

B = 111111111.

Corollary 3.14 Let {a1, a2, . . . , an} be a binary sequence and bi = aiai+1ai+2ai+3 be blocks of length 4 for

1 ≤ i ≤ n with an+j = aj for j = 1, 2, 3 , and let K denote the number of 1111 blocks among bi for 1 ≤ i ≤ n .

If the sequence is not all zero or all one then

Pr(K = k) =

n−1∑
w=1

⌊n/2⌋∑
r=1

n

r · 2n

(
n− w − 1

r − 1

) r∑
t=0

(
r

t

)(
k − 1

t− 1

)

·
r∑

i=0

(
w − k − 3t− 3i− 1

r − t− 1

)(
r − t

i

)
(−1)i.

Proof Since we compute Pr(K = k|W = w, V = 2r) in Theorem 3.13, by summing over all possible weights

and runs, we obtain Pr(K = k). 2
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4. Test descriptions

The subject of the 4-bit template matching tests is the number of a prespecified template in a sequence. We

apply the χ2 goodness of fit test to measure how well the observed values fit the expected values. For this

purpose, we divide the sequence into 128-bit blocks and find the number of occurrences of the template in each

block. Afterwards, we apply the χ2 test with 5 bins and produce the p-value using Table 2. The probabilities

in Table 2 are evaluated using Corollaries 3.8, 3.10, 3.12, and 3.14.

Table 2. Bin probabilities for 4-bit template matching tests.

0-bit 1-bit 2-bit 3-bit
0–6 0.24205627 0–5 0.16353105 0–5 0.19990529 0–4 0.21976555
7 0.17082354 6–7 0.27433485 6–7 0.25650023 5–6 0.18737326
8 0.18629989 8 0.15466485 8–9 0.25566342 7–8 0.18572664
9 0.16401892 9–10 0.24482145 10–11 0.16931656 9–10 0.15200493
10–128 0.23680138 11–128 0.16264780 12–128 0.11861450 11–128 0.25512962

Assume that we want to test a binary sequence of length n using the template matching test. We can

summarize the procedure as follows:

• Choose a 4-bit template B .

• Divide the sequence into M =
⌊ n

128

⌋
many 128-bit blocks.

• For each block, write the first 3 bits to the end of the sequence.

• Find the occurrence of B among the first block in an overlapping manner and increment the corresponding

bin value, calling them Fi for 1 ≤ i ≤ 5. Repeat the same procedure for all blocks.

• Apply the χ2 goodness of fit test; that is, evaluate

χ2 =

5∑
i=1

(Fi −M · pi)2

M · pi
and p-value = igamc

(
2,

χ2

2

)

where pi s are obtained from Table 2 according to the number of overlapping bits in template B .

• If the p -value is < 0.01, conclude as nonrandom, else conclude as random.

Let us demonstrate the template matching test using a simple example.

Example 4.1 Assume the sequence subject to the template matching test is

{0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0}

and assume that we choose a template B = 0010 . Note that B is a one-bit-overlapping block. We divide the

sequence into three 8-bit blocks and extend the blocks.

• Block 1: {0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1} , there are two occurrences of B , the first one starts from the first bit

and the second one starts from the fourth bit.
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• Block 2: {0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0} , B does not occur in this block.

• Block 3: {1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1} , there is one occurrence of B starting from the seventh bit.

As a result we find that F1 = 1 , F2 = 1 , and F3 = 1 .

In this example we divide the sequence into 8-bit blocks instead of 128-bit blocks. Note that we use

different values for Fi s and thus we cannot produce a p -value using Table 2, as the block size is not 128. The

pseudocode of the test is stated in Algorithm 4.1. As the expected number of items in each bin should be at

least 5, and the minimum probability in Table 2 is 0.1186145, the sequence subject to the test should be at

least 128 ·
⌊

5

0.1186145

⌋
= 5504 bits.

�

�

�



Algorithm 4.1: Template matching test({a1, a2, . . . , an}, B )

F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0;
M =

⌊
n

128

⌋
;

for i← 0 to M − 1
do

for j ← 1 to 128
do{
bj = a128i+j ;

b129 = a128i+1, b130 = a128i+2, b131 = a128i+3;
count = 0;
for j ← 1 to 128
do{
if bjbj+1bj+2bj+3 = B
then count++;

Increment Fi according to Table 2;

Apply χ2 of goodness of fit test to F1, F2, F3, F4, F5;
return (p− value)

Example 4.2 Assume the sequence subject to the template matching test is the first 5504 bits of the binary

expansion of π and assume that we choose the template as B = 1111 . Note that B is a three-bit-overlapping

block. We divide the sequence into forty-three 128-bit blocks, and we find that F1 = 11 , F2 = 7 , F3 = 10 ,

F4 = 6 , and F5 = 9 . Using Table 2, we find the p-value as 0.861602.

5. Simulation results

In this section, we apply the new statistical randomness tests to various sequences. We compare the new tests

with the randomness tests in the NIST test suite [21]. There are 16 possible templates, and we choose a sample

template from each class. For the nonoverlapping case we choose B = 0001, for one-bit-overlapping cases we

choose B = 0010, for two-bit-overlapping cases we choose B = 0101, and for three-bit-overlapping cases we

choose B = 1111. For the tests in the NIST test suite, we choose M = 128 for Frequency Test within a Block,

M = 104 for Test for the Longest Run of Ones in a Block, M = 32 for Binary Matrix Rank Test, m = 9

and B = 000000001 for Nonoverlapping Template Matching Test, m = 9 and B = 111111111 for Overlapping
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Template Matching Test, L = 7 and L = 10 for Maurer’s Universal Statistical Test, M = 500 for Linear

Complexity Test, m = 16 for Serial Test, m = 14 and m = 14 for Approximate Entropy Test, state = 1 for

Random Excursions Test, and state = −1 for Random Excursions Variant Test. We produce two p -values for

the Serial Test and the Cumulative Sums Test.

Table 3. Test results for the binary expansions of e , π ,
√
2, and

√
3.

e π
√
2

√
3

Frequency 0.953749 0.578211 0.811881 0.610051
Block Freq 0.211072 0.380615 0.833222 0.473961
Runs 0.561917 0.419268 0.313427 0.261123
Long Run of Ones 0.718945 0.024390 0.012117 0.446726
Bin Matrix Rank 0.306156 0.083553 0.823810 0.314498
Nonover Temp 0.078790 0.165757 0.569461 0.532235
Over Temp 0.110434 0.296897 0.791982 0.082716
Maurer Univ 0.282568 0.669012 0.130805 0.165981
Linear Comp 0.826335 0.255475 0.317127 0.346469
Serial Test 1 0.766182 0.143005 0.861925 0.157500
Serial Test 2 0.462921 0.034354 0.629225 0.171100
App Entropy 0.700073 0.361595 0.884740 0.180481
CuSum Forw 0.669886 0.628308 0.879009 0.917121
CuSum Back 0.724265 0.663369 0.957206 0.689519
Rand Excur 0.786868 0.844143 0.216235 0.783283
Rand Excur Var 0.826009 0.760966 0.566118 0.798247
0-bit Temp (0001) 0.766497 0.975645 0.383993 0.884000
1-bit Temp (0010) 0.903124 0.717759 0.898930 0.849536
2-bit Temp (0101) 0.631473 0.981607 0.508969 0.236139
3-bit Temp (1111) 0.907699 0.294869 0.839803 0.600553

First, we apply the randomness tests to the binary expansions of e , π ,
√
2, and

√
3. For this purpose,

we produce approximately 106 bits (7812 × 128 = 999936 bits) from the binary expansions of each number

and apply the randomness tests. These four sequences are random according to all tests. The test results are

presented in Table 3.

Second, we apply the randomness tests to four PRNGs. The random data are taken from the Mersenne

Twister [16], the Random and RNGCryptoServiceProvider classes of C#, and the outputs of AES [3]. The

data from AES are produced using a fixed random key and low weight inputs. For both PRNGs 217×128 = 224

bits are tested. Similar to the previous experiment, both generators pass all the statistical randomness tests.

The test results are presented in Table 4.

Finally, in order to measure the power of the tests, we produce biased nonrandom data and observe which

statistical randomness tests detect the bias. Using a random source, we produce sequences of length 224 that

satisfy Pr(ai = 1) =
1

2
+ q , for each i , where q is the bias. We then find that for which values of q the tests

detect the nonrandom behavior of the generator. The results are presented in Table 5. We observe that three

instances of our new randomness test can detect the nonrandom behavior of the generator even for q = 0.001,

where the template matching tests in NIST cannot detect that bias.
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Table 4. Test results for the four PRNGs.

MerTwis c# random RNGCrypto AES
Frequency 0.597616 0.906325 0.251393 0.156628
Block Freq 0.121173 0.958137 0.845587 0.482953
Runs 0.110322 0.686351 0.374532 0.348251
Long Run of Ones 0.191338 0.097943 0.213666 0.698123
Bin Matrix Rank 0.356745 0.269794 0.329875 0.698390
Nonover Temp 0.055189 0.804045 0.089171 0.276687
Over Temp 0.275223 0.024611 0.328769 0.249247
Maurer Univ 0.044998 0.854632 0.364266 0.423608
Linear Comp 0.693782 0.364427 0.105382 0.956454
Serial Test 1 0.147844 0.557261 0.126045 0.157290
Serial Test 2 0.382965 0.279386 0.129355 0.058659
App Entropy 0.252337 0.823391 0.037039 0.640333
CuSum Forw 0.715825 0.965085 0.062243 0.166657
CuSum Back 0.302646 0.906039 0.449610 0.089899
Rand Excur 0.589143 0.279374 0.421991 0.152072
Rand Excur Var 0.497518 0.483294 0.980570 0.450652
0-bit Temp (0001) 0.250408 0.762958 0.369484 0.804434
1-bit Temp (0010) 0.724940 0.961562 0.764521 0.416899
2-bit Temp (0101) 0.330876 0.418822 0.809574 0.241198
3-bit Temp (1111) 0.930115 0.194722 0.380861 0.865790

Table 5. Test results for the biased nonrandom data.

0 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.03 0.04
Frequency Ran Non Non Non Non Non Non Non Non Non
Block Freq Ran Ran Ran Ran Ran Non Non Non Non Non
Runs Ran Non Non Non Non Non Non Non Non Non
Long Run of Ones Ran Ran Ran Ran Non Non Non Non Non Non
Bin Matrix Rank Ran Ran Ran Ran Ran Ran Ran Ran Ran Ran
Nonover Temp Ran Ran Non Non Non Non Non Non Non Non
Over Temp Ran Ran Non Non Non Non Non Non Non Non
Maurer Univ Ran Ran Ran Ran Ran Ran Non Non Non Non
Linear Comp Ran Ran Ran Ran Ran Ran Ran Ran Ran Ran
Serial Test 1 Ran Ran Ran Ran Non Non Non Non Non Non
Serial Test 2 Ran Ran Ran Ran Ran Ran Ran Ran Ran Non
App Entropy Ran Ran Non Non Non Non Non Non Non Non
CuSum Forw Ran Non Non Non Non Non Non Non Non Non
CuSum Back Ran Non Non Non Non Non Non Non Non Non
Ran Excur Ran Non Non Non Non Non Non Non Non Non
Ran Excur Var Ran Non Non Non Non Non Non Non Non Non
0-bit Temp (0001) Ran Non Non Non Non Non Non Non Non Non
1-bit Temp (0010) Ran Non Non Non Non Non Non Non Non Non
2-bit Temp (0101) Ran Ran Ran Ran Ran Ran Ran Ran Non Non
3-bit Temp (1111) Ran Non Non Non Non Non Non Non Non Non

6. Conclusion

Random sequences are used widely in cryptographic applications and it is vital to use a proper random number

generator to produce keys. Randomness testing is done by statistical randomness tests, and the NIST test

suite is the most popular suite for cryptographic applications. One of the randomness tests in this suite is the

overlapping template matching test.
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In this work, we classify all templates according to their number of overlapping bits and show that the

probabilities used in NIST’s overlapping template matching test are valid only for B = 111111111 and should

be recalculated for different overlapping blocks. Moreover, we find the exact distributions for all 4-bit templates

and propose new randomness tests, namely 4-bit template matching tests.

We apply the proposed tests to biased random data and observe that the new tests detect the nonrandom

behavior of the generator even for q = 0.001, where the template matching tests in NIST cannot detect that

bias. Moreover, NIST’s overlapping template matching test can only be applied to long sequences, i.e. sequences

of minimum length 106 , whereas the new proposed tests can be applied to any sequence whose length is greater

than 5504. Furthermore, for the new tests, it is also possible to change the subsequence length by calculating

the bin probabilities for the new subsequence length.

As a future work, exact distributions can be obtained for all 5-bit templates. The probabilities for the

other overlapping templates in NIST’s overlapping template matching test can also be calculated.
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