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Abstract: In this paper, we consider a local extension R of the Galois ring of the form GR(pn, d)[x]/(f(x)a) , where

n, d , and a are positive integers; p is a prime; and f(x) is a monic polynomial in GR(pn, d)[x] of degree r such that

the reduction f(x) in Fpd [x] is irreducible. We establish the exponent of R without complete determination of its

unit group structure. We obtain better analysis of the iteration graphs G(k)(R) induced from the k th power mapping

including the conditions on symmetric digraphs. In addition, we work on the digraph over a finite chain ring R . The

structure of G
(k)
2 (R) such as indegk 0 and maximum distance for G

(k)
2 (R) are determined by the nilpotency of maximal

ideal M of R .
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1. Introduction

Let G be a finite group. The exponent of G , denoted by expG , is the least positive integer n such that gn = e

for all g ∈ G . It gives some information on the order of an element of G . Note that expG divides |G| . In

particular, expG = lcm{o(a) : a ∈ G} , where o(a) is the order of a in G . Moreover, if G = G1 × G2 , then

expG = lcm(expG1, expG2). When G is abelian, the exponent of G also serves as an important tool to explore

deeper into its Sylow p -subgroup, which results in the structure theorem for finite abelian groups.

For a finite commutative ring R with identity, its exponent is defined to be the exponent of the group of

units of R . We write λ(R) for the exponent of R and R× for the group of units of R . That is, λ(R) = exp(R×).

We can easily determine the exponent of R if the structure of the group of units is known. That is the case

for the ring of integers modulo m , finite fields, Galois rings, and finite chain rings. The exponent of the ring of

integers modulo m is also known as the Carmichael λ-function [4, 5]. A local ring is a commutative ring with

identity that has a unique maximal ideal.

Let n and d be positive integers and let p be a prime. Then there exists a monic polynomial f(x)

in Zpn [x] of degree d such that the reduction f(x) in Zp[x] is irreducible. Consider the ring extension

Zpn [x]/(f(x)), called a Galois ring. It can be proved that up to isomorphism this Galois ring is unique

and hence we may denote it by GR(pn, d). Observe that GR(pn, 1) = Zpn and GR(p, d) = Fpd , the

field of pd elements. The Galois ring GR(pn, d) is a local ring of characteristic pn with maximal ideal
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pGR(pn, d) and residue field isomorphic to Fpd . Its unit group is well studied and is presented with its exponent

below.

Theorem 1.1 (Theorem XVI.9 of [6]) GR(pn, d)× ∼= H×F×
pd , where H is a group of order p(n−1)d such that:

(1) If (p is odd) or (p = 2 and n ≤ 2), then H is a direct product of d cyclic groups each of order pn−1 , and

so the exponent of GR(pn, d) in this case is pn−1(pd − 1) .

(2) If p = 2 and n ≥ 3 , then H is a direct product of a cyclic group of order 2 , a cyclic group of order 2n−2

and d−1 cyclic groups each of order 2n−1 , and so the exponent of GR(2n, d) in this case is 2n−1(2d−1)

for d ≥ 2 and 2n−2 for d = 1 , respectively.

A finite chain ring R is a finite commutative ring such that for any two ideals I and J of R , we have

I ⊆ J or J ⊆ I . It is a finite local ring with maximal principal ideal. Thus, a Galois ring is a finite chain ring.

By Theorem XVII.5 of [6], any finite chain ring R of nilpotency s is isomorphic to an extension ring

R = GR(pn, d)[x]/(z(x), pn−1xs−(n−1)e)

for some positive integers n , d , and e ; a prime p ; and z(x) = xe + p(ae−1x
e−1 + · · ·+ a0), a0 ∈ GR(pn, d)× ,

a1, . . . , ae−1 ∈ GR(pn, d), called an Eisenstein polynomial of degree e . Moreover, the group of units of a finite

chain ring was explicitly determined by Hou et al. [3]. Therefore, the exponent of a finite chain ring is known.

Recently, Chen et al. [1] studied the structure of the Gauss extension of a Galois ring and its unit group.

Besides the characteristic of the unit group, the exponent of the ring can be used to study the digraph of

the k th power mapping [2, 7–9]. This motivated Dang and Somer [2] to compute without the explicit structure

of unit group the exponent of the quotient ring Fq[x]/(f(x)
a), where a ≥ 1, Fq is the field of q elements and

f(x) is a monic irreducible polynomial over Fq[x] .

Let R be a finite commutative ring with identity 1. For k ≥ 2, let G(k)(R) be the k th power mapping

digraph over R whose vertex set is R and there is a directed edge from a to b if and only if ak = b .

A component of a digraph is a subdigraph that is a maximal connected subgraph of the associated

nondirected graph. We consider two disjoint subdigraphs G
(k)
1 (R) and G

(k)
2 (R) of G(k)(R) induced on the

set of vertices that are in the unit group R× and induced on the remaining vertices that are not invertible,

respectively. They are called the unit subdigraph and the zero divisor subdigraph, respectively. Observe that

there are no edges between G
(k)
1 (R) and G

(k)
2 (R); that is, G(k)(R) = G

(k)
1 (R) ∪̇ G

(k)
2 (R).

A cycle of length t ≥ 1 is said to be a t-cycle and we assume that all cycles are oriented counterclockwise.

We call a cycle of length one a fixed point. The distance from a vertex g ∈ R to a cycle is the length of the

directed path from g to a vertex in the cycle.

The indegree (respectively, outdegree) of a vertex a ∈ R of G(k)(R) is the number of directed edges

entering (respectively, leaving) a and is denoted by indeg(k) a (respectively, outdeg(k) a). The definition of

G(k)(R) implies that the outdegree of each vertex is equal to 1. This result implies the next result that each

component of the digraph G(k)(R) has exactly one cycle.
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Theorem 1.2 Let R be a finite commutative ring with identity, and let k ≥ 2 . Each component of the digraph

G(k)(R) has exactly one cycle. Therefore, the number of components of this digraph is equal to the number of

its cycles.

This functional digraph is defined using the idea of Somer and Kř́ıžek [4], who studied the structure

of digraphs G(2)(Zn). Later, they worked on the k th power mapping digraph G(k)(Zn) [5]. Meemark and

Wiroonsri [8, 9] worked on digraphs G(2)(Fpn [x]/(f(x))) and G(k)(Fpn [x]/(f(x))), respectively, where f(x) is

a monic polynomial of degree ≥ 1 in Fpn [x] , where Fpn is the field with pn elements, and gave some conditions

for symmetric digraphs. Again, Meemark and Maingam [7] studied the digraphs G(2)(Z[i]/(γ)), where Z[i] is
the ring of Gaussian integers and γ = a+ bi is a nonzero element in Z[i] . Next, Wei et al. [11] considered the

digraphs G(2)(R), where R is a finite commutative ring with identity, and determined the structure of R when

the digraphs have only 2, 3, and 4 components. Later, Wei et al. [10] investigated the structure of digraphs

G(k)(FprCn) for the group ring FprCn , where Fpr is a field with pr elements, and Cn is a cyclic group of

order n . They explained some conditions for symmetric digraphs. Deng and Somer [2] worked on the digraphs

G(k)(R), where R is a finite commutative ring of characteristic p . Recently, Wei and Tang [12] generalized

results on cycles, components, and semiregularity to finite commutative rings. They also continued working

more on symmetric digraphs.

In what follows, we consider a local extension R of the Galois ring GR(pn, d) of the form

GR(pn, d)[x]/(f(x)a),

where a ≥ 1 and f(x) is a monic polynomial in GR(pn, d)[x] of degree r such that the reduction f(x) in

Fpd [x] is irreducible. We compute the exponent of R without complete determination of its group structure in

Section 2. Applying this result leads to better analysis of the iteration graphs G(k)(R) including the conditions

on symmetric digraphs in the last two sections.

2. The exponent

In this section, we compute the exponent of the local extension R of the Galois ring GR(pn, d) of the form

GR(pn, d)[x]/(f(x)a),

where a ≥ 1 and f(x) is a monic polynomial in GR(pn, d)[x] of degree r such that the reduction f(x) in

Fpd [x] is irreducible. It is a local ring of characteristic pn with maximal ideal

M = (p, f(x))/(f(x)a)

= {h(x) + f(x)l(x) + (f(x)a) : h(x) ∈ pGR(pn, d)[x], l(x) ∈ GR(pn, d)[x], deg h < r, deg l < r(a− 1)}.

Then |R| = pndra , |M | = pdr(na−1) , and R/M ∼= Fpdr . If a = 1, then it follows from Theorem 14.23 of [13]

that R is isomorphic to GR(pn, dr), so its exponent is presented in Theorem 1.1. Now we assume that a ≥ 2

and proceed to compute the exponent of R . Recall that R× ∼= (1 + M) × F×
pdr and F×

pdr is cyclic of order

pdr − 1, so it suffices to determine the exponent of the p -group 1 +M . Following Deng and Somer [2], we let

s be the positive integer such that ps−1 < a ≤ ps . We shall show that every element in 1 + M is of order
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not exceeding ps+n−1 and the order of 1 + f(x) + (f(x)a) is ps+n−1 , so the exponent of the group 1 +M is

ps+n−1 . However, our computation is more complicated because the characteristic of the ring R is pn and the

binomial coefficients do not disappear easily like in the extension of the field case where it is of characteristic p .

For any m ∈ N , we write ep(m) for the maximum power of p in m ; that is, pep(m) | m but pep(m)+1 ∤ m .

The proof starts by deriving some facts on the maximum power of p that is binomial coefficients using

the de Polignac formula. We divide them into four lemmas as follows. The proofs of the first two lemmas are

routine and hence are omitted.

Lemma 2.1 ep(
(
pn

l1

)
) = ep(

(
pn

l2

)
) , where 1 ≤ l1, l2 ≤ p− 1 and n ∈ N . Moreover, ep(

(
pn

l1

)
) = n .

Lemma 2.2 Let a ≥ 2 , and s, n ∈ N , where ps−1 < a ≤ ps . For 0 ≤ i ≤ s − 2 , 1 ≤ k ≤ (p − 1)ps−2−i − 1 .

Then:

(1) ep(
(
ps+n−1

ps−1−i

)
) ≥ n .

(2) ep(
(

ps+n−1

ps−1−i+l1

)
) = ep(

(
ps+n−1

ps−1−i+l2

)
) , where 1 ≤ l1, l2 ≤ p− 1 . Moreover, ep(

(
ps+n−1

ps−1−i+l1

)
) ≥ n .

(3) ep(
(

ps+n−1

ps−1−i+kp

)
) ≥ n .

(4) ep(
(

ps+n−1

ps−1−i+kp+l1

)
) = ep(

(
ps+n−1

ps−1−i+kp+l2

)
) , where 1 ≤ l1, l2 ≤ p− 1 . Moreover, ep(

(
ps+n−1

ps−1−i+kp+l1

)
) ≥ n .

Lemma 2.3 (1) ep(
(
ps+n−1−t

ps−1

)
) = n− t for all t ∈ N .

(2) (1 + f + (fa))p
s+n−1−t ̸= 1 + (fa) for all t ∈ N .

Proof Note that ep((p
s+n−1−t)!) = ps+n−2−t + · · ·+ p+ 1,

ep((p
s+n−1−t − ps−1)!) = [

ps+n−1−t − ps−1

p
] + [

ps+n−1−t − ps−1

p2
] + · · ·+ [

ps+n−1−t − ps−1

ps−2
]+

[
ps+n−1−t − ps−1

ps−1
] + [

ps+n−1−t − ps−1

ps
] + · · ·+ [

ps+n−1−t − ps−1

ps+n−2
]

= (ps+n−2−t − ps−2) + (ps+n−3−t − ps−3) + · · ·+ (pn+1−t − p)+

(pn−t − 1) + (pn−1−t − 1) · · ·+ (p− 1)

= (ps+n−2−t + · · ·+ p+ 1)− (ps−2 + · · ·+ p+ 1 + (n− t))

and

ep((p
s−1)!) = ps−2 + · · ·+ p+ 1.

Thus,

ep(

(
ps+n−1−t

ps−1

)
) = ep((p

s+n−1−t)!)− ep((p
s+n−1−t − ps−1)!)− ep((p

s−1)!)

= n− t,
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which implies (1). For (2), we compute

(1 + f + (fa))p
s+n−1−t

= 1 +

(
ps+n−1−t

1

)
f + · · ·+

(
ps+n−1−t

ps−1

)
fps−1

+ · · ·+
(
ps+n−1−t

a− 1

)
fa−1 + (fa).

Since a ≥ 2 and ps−1 < a ≤ ps , we have (1 + f + (fa))p
s+n−1−t ̸= 1 + (fa) for all t ∈ N by (1). 2

Lemma 2.4 ep(m!) < m
p−1 for all m ∈ N .

Proof Let t ∈ N be such that pt ≤ m < pt+1 . For i ≥ t+ 2, we have 0 < m
pi < pt+1

pi < 1, so [mpi ] = 0. Hence,

ep(m!) =
∞∑
j=1

[
m

pj
] =

t+1∑
j=1

[
m

pj
] +

∞∑
j=t+2

[
m

pj
] =

t+1∑
j=1

[
m

pj
] ≤

t+1∑
j=1

m

pj
<

∞∑
j=1

m

pj
=

n

p− 1
.

2

Now we are ready to compute the exponent.

Theorem 2.5 Let f(x) ∈ GR(pn, d)[x] be a monic polynomial of degree r such that the reduction f(x) in

Fpd [x] is irreducible, and a ≥ 2 . If s is the positive integer such that ps−1 < a ≤ ps , then

λ(GR(pn, d)[x]/(f(x)a)) = ps+n−1(pdr − 1).

Proof Let h(x) ∈ pGR(pn, d)[x] , l(x) ∈ GR(pn, d)[x] , deg h < r , deg l < r(a− 1). Then

(1 + h+ fl + (fa))p
s+n−1

=(1 + fl)p
s+n−1

+

(
ps+n−1

1

)
(1 + fl)p

s+n−1−1h+ · · ·+

(
ps+n−1

ps+n−1 − 1

)
(1 + fl)hps+n−1−1 + hps+n−1

+ (fa).

Since h(x) ∈ pGR(pn, d)[x] , we have h(x)j ∈ pjGR(pn, d)[x] for all j ∈ N . By Lemma 2.4, ep(j!) < j and

s+ n− 1 ≥ n , so
(
ps+n−1

j

)
hj ∈ ps+n−1GR(pn, d)[x] = {0} for all 1 ≤ j ≤ ps+n−1 . It follows that

(
ps+n−1

1

)
h = · · · =

(
ps+n−1

ps+n−1 − 1

)
hps+n−1−1 = hps+n−1

= 0.

Thus,

(1 + h+ fl+(fa))p
s+n−1

= (1 + fl)p
s+n−1

+ (fa)

= 1 +

(
ps+n−1

1

)
fl + · · ·+

(
ps+n−1

ps−1

)
(fl)p

s−1

+ · · ·+
(
ps+n−1

a− 1

)
(fl)a−1 + (fa).

Lemmas 2.1 and 2.2 show that pn |
(
ps+n−1

i

)
for all i ∈ {1, 2, · · · , a − 1} . Hence, (1 + h + fl + (fa))p

s+n−1

=

1+(fa). Thus, Lemma 2.3 implies that ps+n−1 is the order of 1+ f +(fa) ∈ 1+M , so exp(1+M) = ps+n−1 .

Therefore, λ(GR(pn, d)[x]/(f(x)a)) = lcm(exp(1 +M), expF×
pdr ) = ps+n−1(pdr − 1). 2
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3. Cycles and components

In this section, we find necessary and sufficient conditions for the existence of a t -cycle with t ≥ 1 in G
(k)
1 (R),

and we find the number of t-cycles in G
(k)
1 (R) for a finite commutative ring R with identity. Later, we present

some properties in G
(k)
2 (R) over a finite local ring R .

3.1. Number of cycles

For a finite commutative ring R with identity, we set λ(R) = uv , where u is the largest divisor of λ(R)

relatively prime to k .

Theorem 3.1 Let R be a finite commutative ring with identity. Let t be a positive integer, and k ≥ 2 . The

following statements are equivalent:

(1) There exists a t-cycle, where t ≥ 1 in G
(k)
1 (R) .

(2) There exists b ∈ R× with t the least positive integer such that o(b) | kt − 1 .

(3) t = ordd k for some divisor d of u .

Proof (1) ⇒ (2). Let a be a vertex of t -cycle, and then t is the least positive integer such that ak
t

= a , so

a(ak
t−1 − 1) = 0. Since a ∈ R× , ak

t−1 − 1 = 0. Thus, t is the least positive integer such that ak
t−1 = 1, and

we set b = a . Hence, we have (2) as required.

(2) ⇒ (3). Suppose there exists b ∈ R× such that o(b) | kt − 1, but o(b) ∤ kl − 1, for all 1 ≤ l < t . Then t is

the least positive integer such that bk
t−1 = 1, and gcd(o(b), k) = 1, so o(b) | u . Set d = o(b). Thus, t = ordd k

for some divisor d of u .

(3) ⇒ (1). Suppose t = ordd k for some divisor d of u . Since R× is abelian, then there exists a ∈ R× such

that o(a) = λ(R). Set b = a
λ(R)

d . Since t = ordd k , t is the least positive integer such that bk
t−1 = a

λ(R)(kt−1)
d

and so b ∈ R× . This means that bk
t

= b ; that is, there exists a t -cycle, where t ≥ 1 in G
(k)
1 (R). 2

Corollary 3.2 Let R be a finite commutative ring with identity, and let k ≥ 2 . If k ≡ 1 (mod u) , then every

cycle in G
(k)
1 (R) is a fixed point.

Proof Assume that k ≡ 1 (mod u). Since d | u , d | k − 1. This mean that 1 = ordd k for all divisors d of

u . By Theorem 3.1, every cycle in G
(k)
1 (R) is a fixed point. 2

Let R be a finite commutative ring with identity. The number of t-cycles in G(k)(R) is denoted by

At(G
(k)(R)). For a finite local ring R with unique maximal ideal M , let pnr be the order of R and the residue

field R/M ∼= Fpr We have known that R× ∼= (1 + M) × F×
pr , where 1 + M is a p -group of order pr(n−1) .

Assume that 1 +M ∼= Zps1 × Zps2 × · · · × Zpsq , where for some q ∈ N , and 0 ≤ s1 ≤ s2 ≤ · · · ≤ sq such that

s1 + s2 + · · ·+ sq = r(n− 1). Then we can find the number of t-cycles in G
(k)
1 (R) by the following theorem.
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Theorem 3.3 Let R be a finite local ring of order pnr with unique maximal ideal M and residue field

R/M ∼= Fpr . Assume that R× as in the above setup, and let k ≥ 2 , t ∈ N . Then

At(G
(k)
1 (R)) =

1

t
[(

q∏
i=1

gcd(psi , kt − 1))(gcd(pr − 1, kt − 1))−
∑

d|t,d ̸=t

dAd(G
(k)
1 (R))].

Proof Let g ∈ R× be a vertex in a t-cycle. Then t is the least positive integer such that gk
t

= g , so

gk
t−1 = 1. Notice that h in G

(k)
1 (R) satisfies hkt

= h if and only if h is a vertex in a d-cycle of G
(k)
1 (R) for

some d | t and the number of vertices in a d-cycle is dAd(G
(k)
1 (R)). Then the number of vertices in G

(k)
1 (R)

that satisfy equation gk
t−1 = 1 is equal to (

q∏
i=1

gcd(psi , kt − 1))(gcd(pr − 1, kt − 1)) −
∑

d|t,d̸=t

dAd(G
(k)
1 (R)).

Consequently,

At(G
(k)
1 (R)) =

1

t
[(

q∏
i=1

gcd(psi , kt − 1))(gcd(pr − 1, kt − 1))−
∑

d|t,d ̸=t

dAd(G
(k)
1 (R))],

as required. 2

The group of units of the Galois ring GR(pn, r) presented in Theorem 1.1 gives us the next result.

Theorem 3.4 Let R = GR(pn, r) be a Galois ring, where n , r are positive integers and p is a prime. Let

k ≥ 2 and t ∈ N . Then:

(1) If (p is an odd prime) or (p = 2 , and n ≤ 2), then

At(G
(k)
1 (R)) = 1

t [gcd(p
r − 1, kt − 1)(gcd(pn−1, kt − 1))r −

∑
d|t,d̸=t

dAd(G
(k)
1 (R))] .

(2) If p = 2 , and n ≥ 3 , then At(G
(k)
1 (R)) =

1
t [gcd(2

r − 1, kt − 1) gcd(2, kt − 1) gcd(2n−2, kt − 1)(gcd(2n−1, kt − 1))r−1 −
∑

d|t,d̸=t

dAd(G
(k)
1 (R))] .

3.2. Distance

Let R be a finite commutative ring with identity. First, we work on the distance from any vertex to the unique

cycle in the component of the digraph G
(k)
1 (R) and the trees attached to it. The proofs are similar to Theorems

3.6–3.8 of [9].

Theorem 3.5 Let R be a finite commutative ring with identity, and let k = pk1
1 pk2

2 . . . pkr
r , where p1, p2, . . . , pr

are distinct primes, ki ≥ 1 for all i . Write λ(R) = exp(R×) = pa1
1 pa2

2 . . . par
r m , ai ≥ 0 for all i and

gcd(p1 . . . pr,m) = 1 . For each component of G
(k)
1 (R) , the maximum distance from a vertex in the component

to the unique cycle of the component is equal to l = max
1≤i≤r

⌈ai
ki
⌉ .
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Theorem 3.6 Let R be a finite commutative ring with identity, and let k ≥ 2 . The set

H = {w ∈ R× : wkj

= 1 for some j ∈ {0, 1, . . . , l}},

where l is given in Theorem 3.5, consists of all vertices of the component containing 1 . Moreover, every H is

on the tree attached to the fixed point 1 .

Corollary 3.7 Let R be a finite commutative ring with identity. Let k ≥ 2 and t ∈ N . Let g ∈ R× be a

vertex on a t-cycle. Then the tree attached to g is isomorphic to the tree attached to 1 . Moreover, any two

components in G
(k)
1 (R) containing a t-cycle are isomorphic.

For the graph G
(k)
2 (R), we let R be a finite local ring of order pnr with unique maximal ideal M , residue

field R/M ∼= Fpr , and let s ∈ N be the nilpotency of M . It is clear that there is only one cycle in G
(k)
2 (R),

that is, the cycle of the fixed point 0, so A1(G
(k)
2 (R)) = 1 and At(G

(k)
2 (R)) = 0 for t ≥ 2.

For the unique component of G
(k)
2 (R), we shall study indeg(k) 0 and the maximum distance from a vertex

in the component to the unique cycle of the component by looking at the chain

{0} ⊆ Ms−1 ⊆ · · · ⊆ M ⊆ R,

and calculating |M j | , where 1 ≤ j ≤ s . Note that M i/M i+1 is an R/M -vector space where the action of

R/M on M i/M i+1 is given by (r + M)(η + M i+1) = rη + M i+1 for all r ∈ R and η ∈ M i . Assume that

dimR/M (M i/M i+1) = ti for all 1 ≤ i ≤ s − 1. Since |M | = pr(n−1) and |R/M | = pr , |M/M2| = prt1 , so

|M2| = pr(n−1−t1) . Continuing this calculation gives |M j | = pr(n−1−t1−t2−···−tj−1) for all 1 ≤ j ≤ s .

Theorem 3.8 Let R be a finite local ring of order pnr with unique maximal ideal M , residue field R/M ∼= Fpr

and let s be the nilpotency of M . Let dimR/M (M i/M i+1) = ti for all 1 ≤ i ≤ s−1 . For the unique component

of G
(k)
2 (R) , let l be the maximum distance from a vertex in the component to the unique cycle of the component

and let k ≥ 2 . Then indeg(k) 0 ≥ pr(n−1−T ) , where T =

⌈ s
k ⌉−1∑
i=1

ti and l = ⌈logk s⌉ . In particular, if k ≥ s , then

G
(k)
2 (R) has one component and indeg(k) 0 = |M | = pr(n−1) ; that is, every directed edge terminates at 0 .

Proof If k ≥ s , then the result is immediate. Next, we assume that k < s . Clearly, M⌈ s
k ⌉ ⊆ {x ∈ M : xk = 0} .

Thus, indeg(k) 0 = |{x ∈ M : xk = 0}| ≥ |M⌈ s
k ⌉| = pr(n−1−T ) , where T = t1 + t2 + · · · + t⌈ s

k ⌉−1 . Next, let

l = ⌈logk s⌉ and let x ∈ M . Since l = ⌈logk s⌉ , so kl ≥ s . Then xkl

= 0. Let j be the distance from x to

0. Then xkj

= 0 and hence j ≤ l . Let y be any element in M ∖ M2 . Then yk
l

= 0. Since l = ⌈logk s⌉ ,

l − 1 < logk s , k
l−1 < s . Since y ∈ M ∖M2 , yk

l−1 ̸= 0. Hence, l = ⌈logk s⌉ is the maximum distance from a

vertex in the component to the unique cycle of the component. 2

In particular, for a finite chain ring R with unique maximal ideal M and residue field R/M ∼= Fpr , we

have for any θ ∈ M ∖M2 , M = Rθ and M j = Rθj for all 1 ≤ j ≤ s , where s is the nilpotency of M . Since

dimR/M (M i/M i+1) = ti = 1 for all 1 ≤ i ≤ s − 1, it follows that |M i/M i+1| = pr for all 1 ≤ i ≤ s − 1, so
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|R| = prs , |M | = pr(s−1) and |M j | = pr(s−j) for all 1 ≤ j ≤ s . Therefore, the above theorem implies the next

corollary.

Corollary 3.9 Let R be a finite chain ring with unique maximal ideal M and let s be the nilpotency of M .

For the unique component of G
(k)
2 (R) , let l be the maximum distance from a vertex in the component to the

unique cycle of the component and let k ≥ 2 . Then indeg(k) 0 = pr(s−⌈ s
k ⌉) and l = ⌈logk s⌉ . In particular, if

k ≥ s , then G
(k)
2 (R) has one component and indeg(k) 0 = |M | = pr(s−1) ; that is, every directed edge terminates

at 0 . Moreover, if R = GR(pn, r) is a Galois ring, the result holds with s = n .

Proof If k ≥ s , then the result is immediate. Suppose that k < s . Clearly, M⌈ s
k ⌉ ⊆ {x ∈ M : xk = 0} .

Let x ∈ M be such that xk = 0 and assume that x does not belong to M⌈ s
k ⌉ . Suppose that x ̸∈ M⌈ s

k ⌉ .

Then x = rθj for some r ∈ R× and j < ⌈ s
k ⌉ . This implies that kj < s and so xk = rkθkj ̸= 0, which is a

contradiction. Hence, indeg(k) 0 = |{x ∈ M : xk = 0}| = |M⌈ s
k ⌉| = pr(s−⌈ s

k ⌉) . By Theorem 3.8, the maximum

distance from a vertex in the component to the unique cycle of the component is ⌈logk s⌉ . 2

4. Symmetric digraphs

In this section, we present some conditions when the digraphs are symmetric using the exponents discovered in

the previous sections. Let R be a finite commutative ring with identity. Let N ≥ 2 be an integer. The digraph

G(k)(R) is said to be symmetric of order N , if its set of components can be partitioned into subsets of size N

and each containing N isomorphic components. For any a ∈ R , the component contains vertex a , which is

denoted by Com(a). The following results are immediate.

Theorem 4.1 Let R be a finite local ring and let k ≥ 2 . If G
(k)
1 (R) is symmetric of order N ≥ 2 , then

G(k)(R) is not symmetric of order N .

Theorem 4.2 Let R be a finite local ring and let k ≥ 2 , ti ∈ N .

(1) If Ati(G
(k)
1 (R)) = Nli for some N ≥ 2 , li ≥ 1 for any i such that there are ti -cycles in G

(k)
1 (R) , then

G
(k)
1 (R) is symmetric of order N .

(2) If A1(G
(k)
1 (R)) = Nl1− 1 for some N ≥ 2 , l1 ≥ 1 and Ati(G

(k)
1 (R)) = Nli for some li ≥ 1 for any i such

that there are ti -cycles in G
(k)
1 (R) and Com(0) ∼= Com(1) , then G(k)(R) is symmetric of order N .

We also need the indeg(k) 1 recalled in the next theorem.

Theorem 4.3 (Theorem 2.3 of [12]) Let R be a finite local ring of order pnr with maximal ideal M and residue

field R/M ∼= Fpr , and let k ≥ 2 . Assume that

R× ∼= (1 +M)× F×
pr

∼= Zps1 × Zps2 × · · · × Zpsq × F×
pr ,

where for some q ∈ N , and 0 ≤ s1 ≤ s2 ≤ · · · ≤ sq such that s1 + s2 + · · · + sq = r(n − 1) . Then

indeg(k) 1 =
( q∏
i=1

gcd(psi , k))(gcd(pr − 1, k)
)
.
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Together with Theorem 1.1, we have:

Corollary 4.4 Let R = GR(pn, r) be a Galois ring, where n , r are positive integers and p is a prime, and let

k ≥ 2 .

(1) If (p is odd) or (p = 2 and n ≤ 2), then indeg(k) 1 = gcd(pr − 1, k)(gcd(pn−1, k))r .

(2) If p = 2 and n ≥ 3 , then indeg(k) 1 = gcd(2r − 1, k) gcd(2, k) gcd(2n−2, k)(gcd(2n−1, k))r−1 .

First, we study symmetric digraphs over Galois rings.

Theorem 4.5 Let R = GR(pn, r) be a Galois ring, where n , r are positive integers and p is a prime, and let

k ≥ 2 . If k = pjm , where j ≥ n− 1 , p ∤ m and pr − 1 | k − 1 , then G(k)(R) is symmetric of order pr .

Proof First we consider the case when p is an odd prime. From Theorem 1.1 (1), λ(R) = pn−1(pr−1). Since

k = pjm and pr−1 | k−1, we have gcd(k, pr−1) = 1 = gcd(m, pr−1). Then u = pr−1 and k ≡ 1 (mod u). By

Corollary 3.2, every cycle in G
(k)
1 (R) is a fixed point. Also, Theorem 3.4 (1) implies that A1(G

(k)
1 (R)) = pr−1.

Since k = pjm , j ≥ n− 1 and gcd(m, pr − 1) = 1, l = ⌈n−1
j ⌉ = 1 by Theorem 3.5 if j > 0. Because j ≥ n− 1,

k = pjm ≥ n and by Theorem 3.8, G
(k)
2 (R) has one component and indeg(k) 0 = |R| − |R×| . Corollary 4.4 (1)

gives

indeg(k) 1 = p(n−1)r = |R| − |R×| = indeg(k) 0.

Since l = 1, Com(0) ∼= Com(1). Corollary 3.7 and A1(G
(k)
1 (R)) = pr − 1 allow us to conclude that G(k)(R) is

symmetric of order pr . For j = 0, we have n = 1, so indeg(k) 1 = 1 = indeg(k) 0 and A1(G
(k)
1 (R)) = pr − 1.

Hence, G(k)(R) is also symmetric of order pr . The proof of the case p = 2 can be done in a similar way. 2

Theorem 4.6 Let R = GR(2n, r) be a Galois ring, where n , r are positive integers, and let k ≥ 2 . If 2r − 1

is a prime for some r ≥ 3 , k = 2j , where j ≥ n− 1 and gcd(j, r) = 1 , then G(k)(R) is symmetric of order 2 .

Proof From Theorem 1.1, λ(R) = 2n−1(2r − 1), so u = 2r − 1, and odd prime. The divisors d of u are 1

and u . If d = 1, then t = 1 (ord1 2
j = 1), so A1(G

(k)
1 (R)) = 1 by Theorem 3.4. Assume that d = u . Then

t = ordu 2
j , which is the least positive integer such that u = d = 2r − 1 | 2jt − 1. Since gcd(j, r) = 1, r | t .

Since 2r − 1 is a prime for some r ≥ 3, r is an odd prime. Let t = 2im for some integer i ≥ 0 and some

positive odd integer m . If i > 0, then r | 2im and r | m , which is a contradiction because m < t . Thus, t is

odd. By Theorem 3.4,

At(G
(k)
1 (R)) =

1

t
[gcd(2r − 1, 2jt − 1)− 1] =

1

t
(2)(2r−1 − 1).

Since At(G
(k)
1 (R)) is a positive integer and t is odd, At(G

(k)
1 (R)) is even. From j ≥ n − 1, k = 2j ≥ n .

This implies that G
(k)
2 (R) has one component and indeg(k) 0 = |R| − |R×| by Theorem 3.8. Theorem 3.5 gives

l = ⌈n−1
j ⌉ = 1. Thus, it follows from Corollary 4.4 that

indeg(k) 1 = 2(n−1)r = |R| − |R×| = indeg(k) 0.
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Since l = 1, Com(0) ∼= Com(1). By Corollary 3.7 and At(G
(k)
1 (R)) being even (t > 1), we finally have that

G(k)(R) is symmetric of order 2. 2

Next, we study symmetric digraphs over local extension rings R = GR(pn, d)[x]/(f(x)a), a ≥ 2, in

Theorems 4.7–4.9. To use the exponent, we let s be a positive integer such that ps−1 < a ≤ ps .

Theorem 4.7 If k = pjm , where 0 ≤ j < s + n − 1 , p ∤ m and k ≥ na , then G(k)(R) is not symmetric of

any order N ≥ 2 .

Proof The result is clear for j = 0 because p ∤ indeg(k) 1 but p | indeg(k) 0. Assume that j ≥ 1. By

Theorem 2.5, λ(R) = ps+n−1(pdr−1). By Theorem 3.5, for each component of G
(k)
1 (R) has maximum distance

l ≥ ⌈ s+n−1
j ⌉ ≥ 2. Since k ≥ na , G

(k)
2 (R) has one component and the maximum distance is 1 by Theorem 3.8.

Hence, G(k)(R) is not symmetric of any order N ≥ 2. 2

Theorem 4.8 If k ≥ na and p ∤ k , then G(k)(R) is not symmetric of any order N ≥ 2 .

Proof Since k ∤ p , by Theorem 4.3, indeg(k) 1 = gcd(pdr − 1, k), which is not a power of p . However, because

k ≥ na , it follows from Theorem 3.8 that G
(k)
2 (R) has one component and indeg(k) 0 = |R| − |R×| = pdr(na−1) ,

which is a power of p . Hence, G(k)(R) is not symmetric of any order N ≥ 2. 2

Theorem 4.9 If k = pjm , where j ≥ s+n−1 , p ∤ m and pdr −1 | k−1 , then G(k)(R) is symmetric of order

pdr .

Proof By Theorem 2.5, λ(R) = ps+n−1(pdr − 1). Since k = pjm and pdr − 1 | k − 1, gcd(k, pdr − 1) = 1 =

gcd(m, pdr − 1). Then u = pdr − 1. Since k ≡ 1 (mod u), every cycle in G
(k)
1 (R) is a fixed point by Corollary

3.2. Also, A1(G
(k)
1 (R)) = pdr − 1 by Theorem 3.3. Since j ≥ s + n − 1, k ≥ na , and so G

(k)
2 (R) has one

component and indeg(k) 0 = |R|− |R×| = pdr(na−1) by Theorem 3.8. In addition, l = ⌈ s+n−1
j ⌉ = 1 by Theorem

3.5. Recall that |R×| = pdr(na−1)(pdr − 1) and A1(G
(k)
1 (R)) = pdr − 1, so

indeg(k) 1 = pdr(na−1) = |R| − |R×| = indeg(k) 0.

Hence, Com(0) ∼= Com(1). Since there are pdr − 1 components with 1-cycles in G
(k)
1 (R) and they are all

isomorphic by Corollary 3.7, together with Com(0) ∼= Com(1), we can conclude that G(k)(R) is symmetric of

order pdr . 2

Finally, let R = GR(pn, d)[x]/(z(x), pn−1xs−(n−1)e) be a finite chain ring with s ≥ 2. We end this work

by giving some results for symmetric digraphs over R .

Theorem 4.10 If k = pjm , where p ∤ m and gcd(m, pd− 1) ̸= 1 , then G(k)(R) is not symmetric of any order

N ≥ 2 .

Proof Since k = pjm and gcd(m, pd − 1) ̸= 1, it follows from Theorem 4.3 that indeg(k) 1 is not a power

of p . However, indeg(k) 0 is a power of p by Corollary 3.9. Hence, Corollary 3.7 implies that G(k)(R) is not

symmetric of any order N ≥ 2. 2
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Theorem 4.11 If p ∤ k , then G(k)(R) is not symmetric of any order N ≥ 2 .

Proof Clearly, A1(G
(k)
1 (R)) ≥ 1. Recall that indeg(k) 1 = gcd(pd − 1, k) and p ∤ gcd(pd − 1, k). By Corollary

3.9, we have p | indeg(k) 0. Hence, it follows from Corollary 3.7 that G(k)(R) is not symmetric of any order

N ≥ 2. 2

Theorem 4.12 If k = pjm , where p ∤ m , pd − 1 | k − 1 and Com(1) ∼= Com(0) , then G(k)(R) is symmetric

of order pd .

Proof Its proof is similar to that of Theorem 4.5 and omitted. 2
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