
Turk J Math

(2017) 41: 326 – 336

c⃝ TÜBİTAK
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Abstract: Let L be a multiplicative lattice and M be an L -module. In this study, we present a topology said to be

the Zariski topology over σ(M), the collection of all prime elements of an L -module M. We research some results on

the Zariski topology over σ(M). We show that the topology is a T0 -space and a T1 -space under some conditions. Some

properties and results are studied for the topology over σ(L) , the collection of all prime elements of a multiplicative

lattice L.
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1. Introduction

A complete lattice L is called a multiplicative lattice if there exists a commutative, associative, completely join

distributive product on the lattice with compact greatest element 1L, which is the multiplicative identity, and

least element 0L . Note that L/a = {b ∈ L|a ≤ b} is a multiplicative lattice with product x ◦ y = xy
∨
a where

L is multiplicative lattice and a ∈ L. Several authors have studied multiplicative lattices in a series of articles

[1–3,6–9].

Throughout this study, we suppose that L is multiplicative lattice and L∗ is the collection of all compact

elements of L .

An element a in L is said to be proper if a < 1L. A proper element p in L is called prime if whenever

x, y ∈ L with xy ≤ p , then x ≤ p or y ≤ p. A proper element m of L is called a maximal element if m < x ≤ 1L

implies x = 1L . The residual of a by b for any a, b ∈ L, denoted by (a :L b), is defined as the join of all c ∈ L

with cb ≤ a. The radical of an element a ∈ L is
√
a =

∨
{x ∈ L|xn ≤ a for some n ∈ Z+}.

An element a of L is called compact if the following condition is satisfied: a ≤
∨
bα implies a ≤

bα1

∨
bα2

∨
...
∨
bαn for some subset {α1, α2, ..., αn} . A complete multiplicative (but not necessarily modular)

lattice L is called a C -lattice if a multiplicatively closed subset C of L∗ generates L under joins and L has least

element 0L and compact greatest element 1L. The ideal lattice L(R) of a commutative ring R with identity is

an example for a C -lattice. Since 1L is a compact element, then maximal elements exist in L . Let σ(L) be the

collection of all prime elements of a multiplicative lattice L. It is easily shown that
√
a =

∧
{p ∈ σ(L)|a ≤ p}

for any element a of a C -lattice L (see [15, Theorem 3.6] and [3]).

In the literature, there are many distinct generalizations of the Zariski topology over the set of all prime

submodules of a ring R -module M . In [10], the Zariski topology was introduced on the prime spectrum of a
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module over a commutative ring. In [14], the Zariski topology was studied on the prime spectrum of a module

over a noncommutative ring. In [16], the Zariski topology was investigated over the prime spectrum of a module

over an arbitrary associative ring. In [5], the authors introduced a new class of modules over R, called X -

injective R -modules, where X is the prime spectrum of M . This class contains the family of top modules

and that of weak multiplication modules properly. Some conditions under which the prime spectrum of M is

a spectral space for its Zariski topology over a top module M were also studied. In [4], the authors specified

the differences of topological properties of these Zariski topologies and investigated them in terms of spectral
space.

In this study, we give some topological properties for the topology over σ(L), which was introduced in

[15]. Additionally, we investigate irreducible closed subsets. It is also considered that the topology is a T0 -space

and a T1 -space under some conditions.

A complete lattice M is called a lattice module (or an L -module) on the multiplicative lattice L provided

that there exists a product among elements of L and M that satisfies the following properties:

1. (ka)K = k (aK) ,

2.

(∨
α
kα

)(∨
β

Kβ

)
=
∨
α,β

kαKβ ,

3. 1LK = K,

4. 0LK = 0M

for every k, kα, a ∈ L and K,Kβ ∈ M.

Let M be an L-module. We denote the greatest element of M with 1M . K in M is called a proper

element if K < 1M . An element K < 1M in M is prime if aA ≤ K for some a ∈ L, and A ∈M implies either

A ≤ K or a1M ≤ K. We know that (K :L 1M ) is prime in L in the case that K is prime in M (see [14]). An

element K ∈M with K < 1M is a maximal if K < A ≤ 1M implies A = 1M . If 1M is compact, then M has

a maximal element by [12]. If N and K belong to M, (N :L K) is the join of all a ∈ L such that aK ≤ N.

For any a ∈ L , (0M :M a) is the join of all H ∈M such that aH = 0M . We say that M is a faithful L -module

when Ann (M) = (0M :L 1M ) = 0L.

An element K of an L -module M is compact if K ≤
∨
Ai implies N ≤ Ai1

∨
Ai2

∨
...
∨
Ain for some

subset {i1, i2, ..., in} .
In this study, we define a topology that we call the Zariski topology over σ(M), the family of all prime

elements of an L-module M. For this topology, we assume that a closed set is a variety V (K) = {P ∈
σ(M)|(K :L 1M ) ≤ (P :L 1M )} for any K ∈ M. We investigate some topological properties of this topology.

We also show that the topology is a T0 -space and a T1 -space under some conditions.

Rings, semirings, graded rings, and polynomial rings are examples of multiplicative lattices. In this study,

our aim is to extend the topology on rings to multiplicative lattices.

2. A topology on σ(L) over L

By V (a), we denote the set of all prime elements p of L with a ≤ p for any a ∈ L , that is, V (a) = {p ∈
σ(L)|a ≤ p} . A topology over σ(L) is introduced since the varieties satisfy the axioms for the closed sets. Now

we prove the following proposition given in [15] without proof.
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Proposition 1 The following axioms hold by means of the above definition.

1. V (0L) = σ(L) and V (1L) = ∅ .
2.

∩
i∈∆

V (ai) = V (
∨
i∈∆

ai) for any index set △ .

3. V (a) ∪ V (b) = V (a ∧ b) = V (ab) .

Proof 1. It is clear.

2. p ∈
∩
i∈∆

V (ai) ⇔ p ∈ V (ai) for any i ∈ △ ⇔ ai ≤ p for every i ∈ ∆ ⇔
∨
i∈∆

ai ≤ p⇔ p ∈ V (
∨
i∈∆

ai).

3. Let p ∈ V (a) ∪ V (b). Then a ≤ p or b ≤ p , so a ∧ b ≤ p . Thus, p ∈ V (a ∧ b) and so

V (a) ∪ V (b) ⊆ V (a ∧ b). Since ab ≤ a ∧ b , then V (a ∧ b) ⊆ V (ab). Let p ∈ V (ab). Then ab ≤ p , so

a ≤ p or b ≤ p . Hence, p ∈ V (a) ∪ V (b). 2

Any open set in σ(L) is denoted by σ(L)\V (a) for some a ∈ L since V (a) is a closed set in σ(L).

Let Da = σ(L)\V (a) for any a ∈ L .

Recall that an element a ∈ L is called a nilpotent element if an = 0 for some n ∈ Z+ .

Proposition 2 Let Da = σ(L)\V (a) for any a ∈ L . The following hold:

1. For any a, b ∈ L , Da ∩Db = Dab .

Suppose that L is a C -lattice for 2., 3., and 4.

2. Da = ∅ ⇔ a is nilpotent.

3. Da = Db ⇔
√
a =

√
b .

4. σ(L) is a quasi-compact space.

Proof 1. p ∈ Da ∩Db for any a, b ∈ L.⇔ a ≰ p and b ≰ p⇔ ab ≰ p⇔ p ∈ Dab for any a, b ∈ L.

2. Let Da = ∅ . Then V (a) = σ(L) and so a ≤ p for all elements p ∈ σ(L). Then a ≤
√
0. Thus, an = 0

for any n ∈ Z+, that is, a is a nilpotent element. Conversely, if a is nilpotent, then an = 0 for some n ∈ Z+

and so an ≤ p for all elements p ∈ σ(L). Thus, a ≤ p for all elements p ∈ σ(L). Then V (a) = σ(L), that is,

Da = ∅ .

3. Da = Db for any a, b ∈ L.⇔ V (a) = V (b) ⇔
√
a =

√
b for any a, b ∈ L .

4. Let {Gi|i ∈ ∇} be an open cover of σ(L). Without loss of generality, we may assume that Gi = Dci

for any i ∈ ∇ , ci ∈ L∗ . Then σ(L) =
∪

ci∈L∗
i∈∇

Gi =
∪

ci∈L∗
i∈∇

Dci =
∪

ci∈L∗
i∈∇

(σ(L)\V (ci)) = σ(L)\
∩

ci∈L∗
i∈∇

V (ci) =

σ(L)\V (
∨

ci∈L∗
i∈∇

ci) so V (
∨

ci∈L∗
i∈∇

ci) = ∅ , that is,
∨

ci∈L∗
i∈∇

ci is not contained by any prime element. Thus,
∨

ci∈L∗
i∈∇

ci =

1L . Since 1L is compact element, then there is a finite subset I of ∇ such that
∨

ci∈L∗
j∈I

cj = 1L. Then

V (
∨

ci∈L∗
j∈I

cj) = ∅ and so σ(L) = σ(L)\V (
∨

ci∈L∗
j∈I

cj) = σ(L)\
∩

ci∈L∗
j∈I

V (cj) =
∪

ci∈L∗
j∈I

(σ(L)\V (cj)) =
∪

ci∈L∗
j∈I

Dcj . Hence,

σ(L) is a quasi-compact space since σ(L) is covered by finite number Dci . 2

By the following proposition, we have a basis for the topology with Da for some a ∈ L∗.

Proposition 3 The set {Da|a ∈ L∗} is a basis of the topology over σ(L) where L is a C -lattice.
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Proof Let G be an open set. Then there is an element a ∈ L such that G = σ(L)\V (a). Then

G = σ(L)\V (a) = σ(L)\V (
∨

c∈L∗

c) = σ(L)\
∩

c∈L∗

V (c) =
∪

c∈L∗

(σ(L)\V (c)) =
∪

c∈L∗

Dc since L is a C -lattice.

As G is any open set, {Da|a ∈ L∗} is a basis of the topology on σ(L). 2

Definition 4 A topological space F is called irreducible space if F ̸= ∅ and we have F = F1 or F = F2 for

any decomposition F = F1 ∪ F2 where there are nonempty closed subsets F1 and F2 of F . This statement is

equal to G1 ∩G2 ̸= ∅ for any two nonempty open sets G1 and G2 of F . A nonempty subset K of F is called

irreducible if K is irreducible as a subspace of F [13].

Lemma 5 Let L be a C -lattice. Then σ(L) is irreducible if and only if
√
0 is a prime element of L .

Proof (=⇒) : Assume that
√
0 is not a prime element of L. Then there are some elements a, b ∈ L with

ab ≤
√
0 but a, b ≰

√
0. Since a ≰

√
0, then we get V (a) ̸= σ(L). Thus, σ(L)\V (a) = Ga ̸= ∅ . Similarly,

σ(L)\V (b) = Gb ̸= ∅ . For open sets Ga and Gb, we have that Ga ∩ Gb = (σ(L)\V (a)) ∩ (σ(L)\V (b)) =

σ(L)\(V (a) ∪ V (b)) = σ(L)\V (ab). Hence, Ga ∩ Gb = σ(L)\V (ab) = ∅ since ab ≤
√
0 =

∧
p∈σ(L)

p and

V (ab) = σ(L). Consequently, σ(L) is not irreducible.

(⇐=) : Suppose that
√
0 is a prime element of L. Let G1 and G2 be two nonempty open sets of σ(L).

Let p ∈ G1, q ∈ G2 and G1 = σ(L)\V (a) for any a ∈ L . Since p /∈ V (a) and
√
0 ≤ p, then we get a ≰ p and

√
0 /∈ V (a). Therefore,

√
0 ∈ σ(L)\V (a), that is,

√
0 ∈ G1 . Similarly,

√
0 ∈ G2 . Thus,

√
0 ∈ G1 ∩G2 and so

G1 ∩G2 ̸= ∅ . Hence, σ(L) is irreducible. 2

Remark 6 Since any singleton is irreducible, so is its closure.

Let S be a subset of σ(L). The meet of all elements of S will be represented by ξ∗(S) and the closure

of S will be represented by cl(S) for the Zariski topology.

Proposition 7 The following hold:

1. cl(S) = V (ξ∗(S)).

2. S is a closed set if and only if V (ξ∗(S)) = S .

3. S is irreducible if and only if ξ∗(S) is prime.

Proof 1. If S is contained by a closed set V (a), then a ≤ p for each element p ∈ S , and hence a ≤ ξ∗(S).

As a result of this, V (ξ∗(S)) ⊆ V (a), and since S ⊆ V (ξ∗(S)), then the smallest closed set of σ(L) containing

S is V (ξ∗(S)).

2. It is clear from (1 ).

3. Let us denote ξ∗(S) = p. Assume that S is irreducible and ab ≤ p for some a, b ∈ L . Then

S ⊆ V (ab) = V (a) ∪ V (b). Since S is irreducible and V (a) and V (b) are closed sets, then S ⊆ V (a) or

S ⊆ V (b). Therefore, a ≤ p or b ≤ p. On the contrary, suppose that p is prime. By (1 ), we obtain

cl(S) = V (ξ∗({p})) = cl({p}) as p = ξ∗({p}). Thus, S is irreducible because a single point set is irreducible.
2

Let (F, τ) be a topological space. We denote cl(f) = cl({f}) for all f ∈ F .
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Proposition 8 Let p ∈ σ(L) . Then the following hold:

1. cl(p) = V (p) .

2. {p} is a closed set if and only if p is a maximal element of L.

Proof 1. It is obvious from Proposition 7 when Y = {p}.
2. (⇐=) : Let p ∈ σ(L) be a maximal element of L. Then {p} = V (p) = cl(p). Hence, {p} is a closed

set.(=⇒) : If {p} is a closed set, then {p} = cl(p) = V (p). Thus, p ∈ σ(L) is a maximal element of L . 2

The next propositions show that σ(L) is a T0 -space and a T1 -space under some conditions.

Proposition 9 Let L be a C -lattice . Then σ(L) is a T0 -space.

Proof Let p, q ∈ σ(L). We suppose that q ≰ p . Since L is a C -lattice, then there is an element a in L∗

with a ≤ p and a ≰ q , so p ∈ V (a) and q /∈ V (a). Hence, p /∈ σ(L)\V (a) and q ∈ σ(L)\V (a). Thus, σ(L) is

a T0 -space. 2

It is known that a topological space F is a T1 -space if and only if every singleton subset of F is closed.

Proposition 10 σ(L) is a T1 -space if and only if max(L) = σ(L) with max(L) = {p ∈ σ(L)|p is a maximal

element of L} .

Proof (=⇒) : It is clear from Proposition 8(2 ).

(⇐=) : Assume that max(L) = σ(L) with max(L) = {p ∈ σ(L)|p is a maximal element} . If

{p} ̸= cl({p}), there is an element q ∈ V (p)\{p} . Then p ≨ q . This contradicts the hypothesis, so

{p} = cl({p}). Thus, σ(L) is a T1 -space. 2

Definition 11 A space (X, τ) is an R0 -space if for every U ∈ τ and x ∈ U , we have cl(x) ⊆ U [13].

Theorem 12 Let L be a C -lattice. Then the following are equivalent:

1. max(L) = σ(L) with max(L) = {p ∈ σ(L)|p is a maximal element of L} .

2. σ(L) is a T1 -space.

3. σ(L) is an R0 -space.

Proof (1) ⇔ (2) : It is easily shown by Proposition 10.

(2) ⇔ (3) : It is clear from T1 = T0 +R0 (see [13]). 2

3. A topology on σ(M) over M

In this section, our aim is to introduce a topology over σ(M) the set of all prime elements of an L -module

M , so we define a variety of any element K of M as the set V ∗(K) = {P ∈ σ(M)|K ≤ P}. Then we get the

following proposition.

Proposition 13 The following hold by means of the above definition:
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1. V ∗(0) = σ(M) and V ∗(1M ) = ∅ .

2.
∩
i∈∆

V ∗(Ki) = V ∗(
∨
i∈∆

Ki) for any index set △ .

3. V ∗(N) ∪ V ∗(K) ⊆ V ∗(N ∧K) .

Proof

1. Straightforward.

2. P ∈
∩
i∈∆

V ∗(Ki) ⇔ P ∈ V ∗(Ki) for any i ∈ △ ⇔ Ki ≤ P for every i ∈ ∆ ⇔
∨
i∈∆

Ki ≤ P ⇔ P ∈

V ∗(
∨
i∈∆

Ki).

3. P ∈ V ∗(N) ∪ V ∗(K) ⇒ N ≤ P or K ≤ P and so N ∧K ≤ P ⇒ P ∈ V ∗(N ∧K).

2

According to the above proposition, the varieties do not satisfy the property that is to be closed under

finite union, so we define a new variety of any element K of M with V (K) = {P ∈ σ(M)|(K :L 1M ) ≤ (P :L

1M )}. Then we have the next proposition.

Proposition 14 Let M be an L-module. Then the following hold:

1. V (0M ) = σ(M) and V (1M ) = ∅.

2.
∩
i∈△

V (Ki) = V (
∨

i∈△
(Ki :L 1M )1M ) for any index set △ .

3. V (N) ∪ V (K) = V (N ∧K) .

Proof

1. Is obvious.

2. (=⇒) : Let P ∈
∩
i∈△

V (Ki). Then P ∈ V (Ki) for any i ∈ △ . We have (Ki :L 1M ) ≤ (P :L 1M )

for every i ∈ ∆. Then (Ki :L 1M )1M ≤ (P :L 1M )1M . We get
∨
i∈△

(Ki :L 1M )1M ≤ P . Clearly,

(
∨

i∈△
(Ki :L 1M )1M :L 1M ) ≤ (P :L 1M ). Thus, P ∈ V (

∨
i∈△

(Ki :L 1M )1M ).

(⇐=) : Let P ∈ V (
∨
i∈△

(Ki :L 1M )1M ). Then (
∨

i∈△
(Ki :L 1M )1M :L 1M ) ≤ (P :L 1M ). Since

∨
i∈△

(Ki :L

1M ) ≤ (
∨

i∈△
(Ki :L 1M )1M :L 1M ) ≤ (P :L 1M ), we have

∨
i∈△

(Ki :L 1M )1M ≤ P . Hence, (Ki :L 1M )1M ≤

P for every i ∈ △. We get (Ki :L 1M ) ≤ (P :L 1M ) for every i ∈ △. Then P ∈ V (Ki) for any i ∈ △ .

Thus, P ∈
∩
i∈△

V (Ki).

3. (=⇒) : Let P ∈ V (N) ∪ V (K). Then (N :L 1M ) ≤ (P :L 1M ) or (K :L 1M ) ≤ (P :L 1M ). Thus,

(N :L 1M ) ∧ (K :L 1M ) ≤ (P :L 1M ) and so ((N ∧K) :L 1M ) ≤ (P :L 1M ). Therefore, P ∈ V (N ∧K).

(⇐=) : Let P ∈ V (N ∧K). Then (N ∧K :L 1M )) ≤ (P :L 1M ) and we get (N :L 1M ) ∧ (K :L 1M ) ≤
(P :L 1M ). Hence, (N :L 1M ) ≤ (P :L 1M ) or (K :L 1M ) ≤ (P :L 1M ) as (P :L 1M ) is a prime of

element L . Thus, P ∈ V (N) ∪ V (K).
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2

Proposition 13, it is clear that there is a topology, denoted by τ∗, over σ(M), called the quasi-Zariski

topology if and only if the family of all closed sets ζ∗(M) = {V ∗(N)|N ≤ M} is closed under finite union. If

ζ∗(M) induces τ∗, then the L-module M is called a top L -module. See [11] for more information about top

modules.

Lastly, we concentrate on ζ(M) = {V (K)|K ≤ M} , the collection of all closed sets. By Proposition 14,

it is obvious that there is always a topology on σ(M), denoted by τ , for any L-module M . The topology τ is

said to be the Zariski topology over σ(M). In this study, we especially study the structure of it.

Proposition 15 Let M be an L-module. Let N and K be elements of M .

1. If (N :L 1M ) = (K :L 1M ), then V (N) = V (K). Also, the converse holds when N and K are prime.

2. V (K) = V ((K :L 1M )1M ) = V ∗((K :L 1M )1M ). Notably, V (a1M ) = V ∗(a1M ) for any a ∈ L .

Proof 1. If (N :L 1M ) = (K :L 1M ), then it is obvious that V (N) = V (K). Conversely, we assume that N

and K are prime elements in M . Since (N :L 1M ) ≤ (K :L 1M ) and (K :L 1M ) ≤ (N :L 1M ), consequently

we get (N :L 1M ) = (K :L 1M ).

2. Let P ∈ V (K). Then (K :L 1M ) ≤ (P :L 1M ), so (K :L 1M )1M ≤ (P :L 1M )1M ≤ P . As

((K :L 1M )1M :L 1M ) ≤ (P :L 1M ), we have P ∈ V ((K :L 1M )1M ). Conversely, let P ∈ V ((K :L 1M )1M ).

Then ((K :L 1M )1M :L 1M ) ≤ (P :L 1M ), so (K :L 1M ) ≤ (P :L 1M ) and P ∈ V (K). Thus, V (K) = V ((K :L

1M )1M ).

Now let us confirm that V ((K :L 1M )1M ) = V ∗((K :L 1M )1M ). Let P ∈ V ((K :L 1M )1M ). Then

((K :L 1M )1M :L 1M ) ≤ (P :L 1M ) and so (K :L 1M ) ≤ (P :L 1M ). Hence, (K :L 1M )1M ≤ P . Therefore,

P ∈ V ∗((K :L 1M )1M ). Conversely, let P ∈ V ∗((K :L 1M )1M ). Then (K :L 1M )1M ≤ P , so ((K :L 1M )1M :L

1M ) ≤ (P :L 1M ), and thus P ∈ V ((K :L 1M )1M ). Hence, V ((K :L 1M )1M ) = V ∗((K :L 1M )1M ).

Let P ∈ V (a1M ). Then ( a1M :L 1M ) ≤ (P :L 1M ), so a1M ≤ P . Hence, P ∈ V ∗(a1M ). Con-

versely, let P ∈ V ∗(a1M ). Then a1M ≤ P and so ( a1M :L 1M ) ≤ (P :L 1M ). Thus, P ∈ V (a1M ). Hence,

V (a1M ) = V ∗(a1M ) for any a ∈ L . 2

Definition 16 An L-module M is said to be a multiplication lattice module if there is an element a ∈ L with

K = a1M for each element K ∈M [6] .

It is true that M is a multiplication lattice module if and only if K = (K :L 1M )1M for any element K

of M (see [6, Proposition 3]).

Theorem 17 A multiplication L-module M is a top L-module where τ∗ = τ .

Proof Let N and K be any two elements in M and P ∈ V ∗(N ∧K). Then N ∧K ≤ P ⇒ (N ∧K :L 1M ) ≤
(P :L 1M ) ⇒ (N :L 1M ) ∧ (K :L 1M ) ≤ (P :L 1M ) and so (N :L 1M ) ≤ (P :L 1M ) or (K :L 1M ) ≤ (P :L 1M )

since (P :L 1M ) is a prime element in L . Then (N :L 1M )1M ≤ (P :L 1M )1M or (K :L 1M )1M ≤ (P :L 1M )1M ,

and thus N ≤ P or K ≤ P since M is multiplication, and so P ∈ V ∗(N) ∪ V ∗(K). 2

In the rest of this paper, we suppose that σ(M) is nonempty unless indicated otherwise. Accordingly, the

Zariski topology can be applied to σ(M) for any L-module M . The set σ(L⧸Ann(1M )) will be represented
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by σ(L). Besides, the cardinality of any subset S of σ(M) will be represented by |S| . Let ψ : σ(M) −→

σ(L⧸Ann(1M )) be a map defined by ψ(P ) = (P :L 1M ) for each element P ∈ σ(M). The map is said to be

the natural map of σ(M).

Proposition 18 The natural map ψ : σ(M) −→ σ(L⧸Ann(1M )) is continuous; particularly, ψ−1(V L(a)) =

V (a1M ) for every element a in L where a ≥ Ann(1M ) .

Proof Let S be a closed set in σ(L). Then we get S = V L(a) for any element a of L . Then for any

P ∈ ψ−1(S), ψ(P ) = (P :L 1M ) ∈ V L(a) if and only if a ≤ (P :L 1M ), if and only if a ≤ (P :L 1M ),

if and only if a1M ≤ P , if and only if (a1M :L 1M ) ≤ (P :L 1M ), if and only if P ∈ V (a1M ). Thus,

ψ−1(S) = ψ−1(V L(a)) = V (a1M ) is a closed set of σ(M), so ψ is continuous. 2

Proposition 19 The following are equivalent for any L-module M and P,Q ∈ σ(M) .

1. ψ : σ(M) −→ σ(L⧸Ann(1M )) is an injective map.

2. V (P ) = V (Q) ⇒ P = Q .

3. |σp(M)| ≤ 1 for every p ∈ σ(L) where σp(M) = {P ∈ σ(M)|(P :L 1M ) = p where p ∈ σ(L)} .

Proof (1) ⇒ (2) : Let ψ : σ(M) −→ σ(L⧸Ann(1M )) be injective. We assume that V (P ) = V (Q). Then

(P :L 1M ) = (Q :L 1M ), so ψ(P ) = ψ(Q). Thus, P = Q .

(2) ⇒ (3) : If (P :L 1M ) = (Q :L 1M ) = p , then V (P ) = V (Q). Thus, P = Q .

(3) ⇒ (1) : Let ψ(P ) = ψ(Q). Then (P :L 1M ) = (Q :L 1M ) = cl(p). Therefore, (P :L 1M ) = (Q :L

1M ) = p . Thus, P = Q . 2

Theorem 20 Let ψ : σ(M) −→ σ(L⧸Ann(1M )) be the natural map of σ(M) for an L-module M . If ψ is

surjective, then it is a closed and open map.

Proof By Proposition 18, ψ : σ(M) −→ σ(L⧸Ann(1M )) is continuous map such that ψ−1(V L(a)) = V (a1M )

for every element a in L with a ≥ Ann(1M ). Then for any K ≤ 1M , ψ−1(V L((K :L 1M )) = V ((K :L

1M )1M ) = V (K) by Proposition 15. Since ψ is surjective, ψ(V (K)) = V L((K :L 1M ). Accordingly,

ψ(σ(M)\V (K)) = ψ(ψ−1(σ(L⧸Ann(1M )))\ψ−1(V L((K :L 1M )))) = σ(L⧸Ann(1M ))\V L((K :L 1M )). 2

We know that the set Da = σ(L)\V (a) is open set in σ(L) for any element a of L and if L is a C -lattice,

the set {Da|a ∈ L∗} is a basis of the topology over σ(L).

We define Xa = σ(M)\V (a1M ) for any a ∈ L . It is obvious that every Xa is an open set in σ(M).

Proposition 21 Let M be an L-module and ψ : σ(M) −→ σ(L⧸Ann(1M )) be the natural map. Then the

following hold:

1. ψ−1(Da) = Xa.

2. ψ(Xa) ⊆ Da.

3. If ψ is surjective, then ψ(Xa) = Da.
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4. Xab = Xa ∩Xb for any elements a, b of L .

Proof 1. ψ−1(Da) = ψ−1(σ(L⧸Ann(1M ))\V L(a)) = σ(M)\ψ−1(V L(a)) = σ(M)\V (a1M ) = Xa by

Proposition 18.

2. ψ(Xa) = ψ(ψ−1(Da)) ⊆ Da.

3. It is clear from (2).

4. Xab = ψ−1(Dab) = ψ−1(Da ∩ Db) = ψ−1(Da) ∩ ψ−1(Db) = Xa ∩ Xb for any elements a, b of L by

Proposition 2. 2

In the next proposition, it is proved that there is a basis for the Zariski topology over σ(M) with Xa for

some a ∈ L∗.

Theorem 22 The set {Xa|a ∈ L∗} is a basis of the Zariski topology over σ(M) for an L-module M where L

is a C -lattice.

Proof Assume that G is an open set in σ(M). For some element a of L , G = σ(M)\V (a1M ) by Proposition

15. Then G = σ(M)\V (a1M ) = σ(M)\V ((
∨

ai∈L∗

ai)1M ) = σ(M)\V (
∨

ai∈L∗

ai1M ) = σ(M)\
∩

ai∈L∗

V (ai1M ) =∪
ai∈L∗

(σ(M)\V (ai1M )) =
∪

ai∈L∗

Xai . Hence, the set {Xa|a ∈ L∗} is a basis of the Zariski topology over σ(M).

2

Theorem 23 Let L be a C -lattice and M be an L-module. If the natural map of σ(M) is surjective, then

σ(M) is quasi-compact.

Proof Since the set {Xa|a ∈ L∗} is a basis of the Zariski topology over σ(M), then σ(M) =
∪

ai∈L∗
i∈∆

Xai for

any open cover of σ(M). Hence, σ(L⧸Ann(1M )) = ψ(σ(M)) = ψ(
∪

ai∈L∗
i∈∆

Xai) =
∪

ai∈L∗
i∈∆

ψ(Xai) =
∪

ai∈L∗
i∈∆

Dai . It

follows that there exists a finite subset ∆∗ of ∆ such that σ(L⧸Ann(1M )) =
∪

ai∈L∗
j∈∆∗

Daj as σ(L⧸Ann(1M )) is

quasi-compact by Proposition 2. As a result, we get σ(M) =
∪

ai∈L∗
j∈∆∗

Xaj by Proposition 21. 2

Let S be a subset of σ(M) for an L -module M . The meet of all elements in S will be represented by

ξ(S) and the closure of S in σ(M) will be represented by cl(S) for the Zariski topology over σ(M).

Proposition 24 Let M be an L-module and S ⊆ σ(M) . Then V (ξ(S)) = cl(S) . Hence, S is closed if and

only if V (ξ(S)) = S .

Proof Let P ∈ S . Then ξ(S) ≤ P ⇒ (ξ(S) :L 1M ) ≤ (P :L 1M ) and so P ∈ V (ξ(S)). Thus, S ⊆ V (ξ(S)).

Then cl(S) ⊆ V (ξ(S)). Now, let us indicate that V (ξ(S)) is the smallest subset of σ(M) containing S . Let

V (K) be a closed subset of σ(M) where S ⊆ V (K). For every P ∈ S , it is true that (K :L 1M ) ≤ (P :L 1M )

and so (K :L 1M ) ≤ (ξ(S) :L 1M ). Hence, we have (K :L 1M ) ≤ (ξ(S) :L 1M ) ≤ (Q :L 1M ) for each

Q ∈ V (ξ(S)), namely V (ξ(S)) ⊆ V (K). Therefore, V (ξ(S)) is the smallest closed set of σ(M), which contains

S . Then V (ξ(S)) = cl(S). 2
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Proposition 25 Let M be an L-module and P ∈ σ(M) . Then the following hold:

1. cl({P}) = V (P ).

2. Q ∈ cl({P}) for any Q ∈ σ(M) iff (P :L 1M ) ≤ (Q :L 1M ) iff V (Q) ⊆ V (P ) .

3. If M is a multiplication L-module, then the set {P} is a closed set of σ(M) if and only if P is a maximal

element of M.

Proof 1.cl({P}) = V (ξ({P})) = V (P ).

2. Clear.

3. Suppose that the set {P} is closed in σ(M). Then V (P ) = {P} by (1). Since every prime el-

ement J that satisfies J ≥ P must be in V (P ) = {P}, then P is a maximal element of M . On the

contrary, let Q ∈ cl({P}). Then (P :L 1M ) ≤ (Q :L 1M ) by (2). As M is a multiplication L -module, then

P = (P :L 1M )1M ≤ (Q :L 1M )1M = Q and so P = Q . Thus, cl({P}) = {P}. 2

Corollary 26 V (P ) is an irreducible closed subset of σ(M) for any P ∈ σ(M) .

Proof It is clear from Proposition 25 and Remark 6. 2

Proposition 27 Let S be a subset of σ(M) for an L-module M . If ξ(S) is a prime element in M , then

S is irreducible. On the contrary, if S is irreducible, then ℑ = {(P :L 1M )|P ∈ S} is irreducible such that

ξ∗(ℑ) = (ξ(S) : 1M ) is a prime element in L .

Proof Assume that ξ(S) = Q is a prime element of M . It is clear that V (Q) = V (ξ(S)) = cl(S) is irreducible

from Corollary 26. Thus, S is irreducible. On the contrary, let S be irreducible. As the natural map ψ of

σ(M) is continuous, the image ψ(S) = S∗ of S is an irreducible subset of σ(L). Consequently, by Proposition

7(3), ξ∗(S∗) = (ξ(S) :L 1M ) is a prime element of L. Hence, ξ∗(ℑ) = (ξ(S) :L 1M ) is a prime element of L

and so ℑ is an irreducible subset of σ(L). 2

Theorem 28 Let S be a subset of σ(M) for an L-module M and the natural map ψ : σ(M) −→ σ(L⧸Ann(1M )) be

surjective. Then S is an irreducible closed subset if and only if S = V (P ) for any P ∈ σ(M).

Proof Let S = V (P ) for any P ∈ σ(M). Then S = V (P ) is an irreducible closed subset of σ(M) from

Corollary 26. In contrast, if S is an irreducible closed subset of σ(M), then S = V (K) for some element K

of M such that (ξ(V (K)) :L 1M ) = (ξ(S) :L 1M ) is a prime element of L by Proposition 27. By surjectivity

of ψ, there is P ∈ σ(M) with (ξ(V (K)) :L 1M ) = (P :L 1M ), so V (ξ(V (K))) = V (P ) by Proposition 15(1).

Thus, V (K) = V (P ) as V (K) is closed by Proposition 24. 2

Theorem 29 The following are equivalent for an L-module M :

1. σ(M) is a T0 -space,

2. The natural map ψ is injective,
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3. V (P ) = V (Q) ⇒ P = Q for all P,Q ∈ σ(M),

4. |σp(M)| ≤ 1 for every p ∈ σ(L).

Proof (1) ⇔ (3): It is obvious from Proposition 25 and the statement that a topological space is T0 if and

only if the closures of different points are distinct.

(2) ⇔ (3) ⇔ (4): It is obvious from Proposition 19. 2

Proposition 30 Let M be a multiplication L-module. Then σ(M) is a T1 -space if and only if Max(M) =

σ(M) where Max(M) = {P |P is a maximal element of M} .

Proof Is obvious from Proposition 25(3). 2
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