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1Department of Mathematics, Marmara University, Kadıköy, İstanbul, Turkey
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Abstract: In this paper, the authors consider the Pv,2n -transform, the Gn -transform, and the Kv,n -transform as

generalizations of the Widder potential transform, the Glasser transform, and the Kv -transform, respectively. Many

identities involving these transforms are given. A number of new Parseval–Goldstein type identities are obtained for

these and many other well-known integral transforms. Some useful corollaries for evaluating infinite integrals of special

functions are presented. Illustrative examples are given for the results.
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1. Introduction, definitions, and preliminaries

The Laplace-type integral transform called the L2 -transform was introduced by Yürekli and Sadek [19] and is

denoted as follows:

L2{f(x); y} =

∞∫
0

x exp(−x2y2)f(x)dx. (1.1)

In [5] Dernek and Aylıkçı introduced the Ln (n ∈ N) and L2n transforms as generalizations of the Laplace

transform, respectively:

Ln{f(x); y} =

∞∫
0

xn−1 exp(−xnyn)f(x)dx, (1.2)

L2n{f(x); y} =

∞∫
0

x2n−1 exp(−x2ny2n)f(x)dx. (1.3)

The Ln -transform and the L2n -transform are related to the Laplace transform with

Ln{f(x); y} =
1

n
L{f(x1/n); yn}, (1.4)

L2n{f(x); y} =
1

2n
L{f(x1/2n); y2n}. (1.5)

∗Correspondence: ndernek@marmara.edu.tr

2010 AMS Mathematics Subject Classification: Primary 44A10, 44A15, secondary 33C10, 44A35.

337



DERNEK and AYLIKÇI/Turk J Math

The Widder transform was introduced by Widder [13, 17] as follows:

P{f(x); y} =

∞∫
0

xf(x)

x2 + y2
dx. (1.6)

Glasser [10] defined the Glasser transform as:

G{f(x); y} =

∞∫
0

f(x)√
x2 + y2

dx. (1.7)

The Pv,2 -transform,

Pv,2{f(x); y} =

∞∫
0

xf(x)

(x2 + y2)v
dx, (1.8)

was introduced by Dernek et al. [6] as a generalization of the Widder-potential transform and the Glasser

transform. If we put v = 1 and v = 1
2 in (1.8), we obtain the Widder potential transform (1.6) and the Glasser

transform (1.7), respectively.

The Hankel transform is defined by

Hv{f(x); y} =

∞∫
0

√
xyJv{xy}f(x)dx, (1.9)

where Jv(x) is the Bessel function of the first kind of order v .

The K -transform is defined by

Kv{f(x); y} =

∞∫
0

√
xyKv(xy)f(x)dx, (1.10)

where Kv is the Bessel function of the second kind of order v .

In this article, we introduce new generalizations of the Widder potential transform and the Glasser transform

as follows:

Pv,2n{f(x); y} =

∞∫
0

x2n−1f(x)

(x2n + y2n)v
dx (1.11)

and

Gn{f(x); y} =

∞∫
0

f(x)√
x2n + y2n

dx, n ∈ N, (1.12)

respectively. If we put v = 1 in definition (1.11), we obtain

P1,2n{f(x); y} = P2n{f(x); y}. (1.13)
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P2n{f(x); y} was defined in [5] by

P2n{f(x); y} =

∞∫
0

x2n−1f(x)

x2n + y2n
dx. (1.14)

In this article the Kv,n -transform is defined by

Kv,n{f(x); y} =

∞∫
0

xn−1(xnyn)1/2Kv(x
nyn)f(x)dx, (1.15)

where Kv(x
nyn) is the Macdonald function. It is also known as the Bessel function of the second kind.

The Kv,n -transform is related to the Kv -transform and the Kv,2 [7, p. 329, Eq. (20)] transform with the

identities respectively

nKv,n{f(x); y} = Kv{f(x1/n); yn}, (1.16)

nKv,n{f(x); y} = 2Kv,2{f(x2/n); yn/2}. (1.17)

The generalized Hankel transform is defined by

Hv,n{f(x); y} =

∞∫
0

xn−1(xnyn)1/2Jv(x
nyn)f(x)dx, (1.18)

which is related to the Hankel transform, the Hv,2 -transform [7, p. 329, Eq. (19)] with the following identities:

nHv,n{f(x); y} = Hv{f(x1/n); yn}, (1.19)

nHv,n{f(x); y} = 2Hv,2{f(x2/n); yn/2}. (1.20)

The Fourier sine-transform and Fourier cosine-transform are defined as, respectively,

Fs{f(x); y} =

∞∫
0

f(x) sin(xy)dx, (1.21)

Fc{f(x); y} =

∞∫
0

f(x) cos(xy)dx. (1.22)

We define the Fs,n -transform and the Fc,n -transform as follows:

Fs,n{f(x); y} =

∞∫
0

xn−1 sin(xnyn)f(x)dx, (1.23)

Fc,n{f(x); y} =

∞∫
0

xn−1 cos(xnyn)f(x)dx, n ∈ N, (1.24)
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which are related to the Fourier sine-transform and Fourier cosine-transform by means of the following relations:

nFs,n{f(x); y} = Fs{f(x1/n); yn}, (1.25)

nFc,n{f(x), y} = Fc{f(x1/n); yn}. (1.26)

Dernek et al. [6] gave the Parseval–Goldstein type theorem,

∞∫
0

y2v−1L2{f(x); y}L2{g(u); y}dy =
Γ(v)

2

∞∫
0

xf(x)Pv,2{g(u);x}dx, (1.27)

for the L2 -transform and the Pv,2 -transform. Various Parseval–Goldstein type identities were given (for

example in [5–7,16,18]) for the L2 -transform and the L2n -transform and the Widder potential transform.

In Section 2 of this paper, we show that the Pv,2n -transform (1.11) is an iteration of the L2n -transform

(1.3). The main theorem is shown to yield new identities for the integral transforms introduced above. In

Section 3, some illustrative examples are given.

2. The main theorem

Lemma 2.1. The identity

L2n{u2n(v−1)L2n{g(x);u}; y} =
Γ(v)

2n
Pv,2n{g(x); y} (2.1)

holds true, provided that Re(v) > 0 and the integrals involved converge absolutely.

Proof Using definition (1.3) of the L2n -transform and then changing the order of integration, which is

permissible by absolute convergence of the integrals involved, we get

L2n{u2n(v−1)L2n{g(x);u}; y} =

∞∫
0

u2nv−1 exp(−u2ny2n)

∞∫
0

x2n−1g(x)

exp(x2nu2n)
dxdu

=

∞∫
0

x2n−1g(x)L2n{u2n(v−1); (x2n + y2n)1/2n}. (2.2)

Utilizing the relation (1.5) and the formula [8, p. 133, Entry (3)], we arrive at identity (2.1).

Corollary 2.1. We have

2nL2n{L2n{f(x);u}; y} = P2n{g(x); y}. (2.3)

Proof Setting v = 1 in (2.1) of Lemma 2.1 and using relation (1.13), we obtain identity (2.3). (2.3) was

previously obtained in [5].

Corollary 2.2. We have for −1 < Re(µ) < Re(2v − 1
2 )

Pv,2n{xnµJµ(z
nxn); y} =

zn(v−1)

nΓ(v)2v−1
yn(µ−v+1)Kv−µ−1(z

nyn). (2.4)
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Proof Substituting

g(x) = xnµJµ(z
nxn) (2.5)

in (2.1) of Lemma 2.1 and using relation (1.5), then the known formula [8, p. 185, Entry (30)], we get

L2n{xnµJµ(z
nxn);u} =

1

2n

(zn
2

)µ

(u2n)−µ−1 exp(−z2n/4u2n), (2.6)

where Re(µ) > −1. Multiplying both sides of equation (2.6) with u2n(v−1) , then applying the L2n -transform

and using relation (1.5) once again and the well-known formula [8, p. 146, Entry (29)], we have

L2n{u2n(v−µ−2) exp(−z2n/4u2n); y} =
1

n

zn(v−µ−1)

2v−µ−1yn(v−µ−1)
Kv−µ−1(z

nyn). (2.7)

Substituting (2.7) into identity (2.1) of Lemma 2.1, we obtain assertion (2.4).

Remark 2.1. Using definition (1.11) of the Pv,2n -transform, we obtain the following relation from formula

(2.4) of Corollary 2.2:

∞∫
0

xn(µ+2)−1Jµ(z
nxn)

(x2n + y2n)v
dx =

zn(v−1)

nΓ(v)2v−1
yn(µ−v+1)Kv−µ−1(z

nyn). (2.8)

Remark 2.2. Setting v = µ+ 3
2 in (2.8) and using the formula

K1/2(x) = K−1/2(x) =
( π

2x

)1/2

exp(−x), (2.9)

we obtain
∞∫
0

xn(µ+2)−1Jµ(z
nxn)

(x2n + y2n)µ+3/2
dx =

√
πznµy−n

nΓ(µ+ 3/2)2µ+1
exp(−znyn). (2.10)

Similarly, setting v = µ+ 1
2 in (2.8) and using formula (2.9), we get

∞∫
0

xn(µ+2)−1Jµ(z
nxn)

(x2n + y2n)µ+1/2
dx =

√
πzn(µ−1)

nΓ(µ+ 1/2)2µ
exp(−znyn), (2.11)

where Re(µ) > −1
2 .

Remark 2.3. If we set n = 1 in (2.10) and (2.11), we obtain the known formulas [12, p. 686, Entry 6.565

(3)] and [12, p. 686, Entry 6.565 (2)].

Corollary 2.3. We have the following identities:

Gn{xn(µ+2)−1Jµ(z
nxn); y} =

( 2

πzn

)1/2 yn(µ+1/2)

n
Kµ+1/2(z

nyn), (2.12)

where −1 < Re(µ) < 1
2 ,

Gn{xn(µ+2)−1Jµ(z
nxn); y} = P1/2,2n{xnµJµ(z

nxn); y} (2.13)
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and

P2n{xnµJµ(z
nxn); y} =

1

n
ynµKµ(z

nyn). (2.14)

Theorem 2.1. If the conditions stated in Lemma 2.1 are satisfied, then the following Parseval–Goldstein type

relations hold true:

∞∫
0

y2nv−1L2n{f(x), y}L2n{g(u); y}dy =
Γ(v)

2n

∞∫
0

x2n−1f(x)Pv,2n{g(u);x}dx, (2.15)

∞∫
0

y2nv−1L2n{f(x), y}L2n{g(u); y}dy =
Γ(v)

2n

∞∫
0

u2n−1g(u)Pv,2n{f(x);u}du, (2.16)

and
∞∫
0

x2n−1f(x)Pv,2n{g(u);x}dx =

∞∫
0

u2n−1g(u)Pv,2n{f(x);u}du. (2.17)

Proof We only give a proof of (2.15), since the proof of (2.16) is similar. Assertion (2.17) follows from the

identities (2.15) and (2.16).

Using definition (1.3) of the L2n -transform twice and changing the order of integration, which is permissible

by absolute convergence of the integrals involved, we find

∞∫
0

y2nv−1L2n{f(x), y}L2n{g(u); y}dy

=

∞∫
0

y2nv−1L2n{g(u); y}
∞∫
0

x2n−1 exp(−x2ny2n)f(x)dxdy

=

∞∫
0

x2n−1f(x)L2n{y2n(v−1)L2n{g(u); y};x}dx. (2.18)

Now, using identity (2.1) of Lemma 2.1, we arrive at assertion (2.15).

Corollary 2.4. If the conditions stated in Lemma 2.1 are satisfied, then the Parseval–Goldstein type relations,

∞∫
0

y2n−1L2n{f(x), y}L2n{g(u); y}dy =
1

2n

∞∫
0

f(x)

x1−2n
P2n{g(u);x}dx, (2.19)

∞∫
0

y2n−1L2n{f(x), y}L2n{g(u); y}dy =
1

2n

∞∫
0

u2n−1g(u)P2n{f(x);u}du, (2.20)
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and
∞∫
0

x2n−1f(x)P2n{g(u);x}dx =

∞∫
0

u2n−1g(u)P2n{f(x);u}du, (2.21)

hold true.

Proof Setting v = 1 in identities (2.15)–(2.17) of Theorem 2.1 and using relations (1.13) and (2.4), we get

assertion (2.19). The proof of (2.20) is similar and (2.21) follows from identities (2.19) and (2.20).

Corollary 2.5. If the integrals involved converge absolutely, then we have

L2n{y2n(µ−v)L2n{f(x);
1

21/ny
}; z} =

zn(v−µ−3/2)

2µ−v+1
Kv−µ−1,n{xn(µ−v+3/2)f(x); z}, (2.22)

L2n{y2n(µ−v)L2n{f(x);
1

21/ny
}; z} =

22v−µ−2

zn(µ+1/2)
Γ(v)Hµ,n{un(µ+1/2)Pv,2n{f(x);u}; z}, (2.23)

and

Hµ,n{un(µ+1/2)Pv,2n{f(x);u}; z} =
(zn
2

)v−1 1

nΓ(v)
Kv−µ−1,n{xn(µ−v+3/2)f(x); z}. (2.24)

Proof We put

g(u) = uµJµ(zu) (2.25)

in (2.15) of Theorem 2.1. Using relation (1.5) and the formula [8, p. 185, Entry (30)], we have

L2n{unµJµ(z
nun); y} =

znµ

n2µ+1
y−2n(µ+1) exp(−z2n/4y2n). (2.26)

Utilizing (2.4) of Corollary 2.2, we have

Pv,2n{unµJµ(z
nun);x} =

zn(v−1)

nΓ(v)2v−1
xn(µ−v+1)Kv−µ−1(z

nxn). (2.27)

Substituting the relations (2.25), (2.26), and (2.27) into (2.15) of Theorem 2.1, we get

∞∫
0

y2n(v−µ−1)−1 exp(−z2n/4y2n)L2n{f(x); y}dy

=
1

n

(zn
2

)v−µ−1
∞∫
0

xn(µ−v+3)−1Kv−µ−1(z
nxn)f(x)dx. (2.28)

Changing the variable of the integration to y = 1
2u and then using the definition (1.3) of the L2n -transform on

the left-hand side of (2.28) and the definition (1.15) of the Kv,n -transform on the right-hand side of (2.28), we

obtain assertion (2.22).

To prove identity (2.23), we substitute the relations (2.25) and (2.26) into (2.16) of Theorem 2.1 and change the
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variable of the integration to y = 1
2u on the left-hand side. Then, using the definition (1.3) of the L2n -transform,

we obtain (zn
2

)µ 1

22(v−µ−1)
L2n{y2n(µ−v)L2n{f(x);

1

21/ny
}; z}

= Γ(v)

∞∫
0

un(µ+2)−1Jµ(z
nun)Pv,2n{f(x);u}du. (2.29)

Using the definition (1.18) of the generalized Hankel transform on the right-hand side of (2.29), we arrive at

assertion (2.23).

The proof of assertion (2.24) follows from identities (2.22) and (2.23).

Remark 2.4. Setting v = 1 in Corollary 2.5, we have for Re(µ) > −1 ,

L2n{y2n(µ−1)L2n{f(x);
1

21/ny
}; z} =

z−n(µ+1/2)

n2µ
Kµ,n{xn(µ+1/2)f(x); z}, (2.30)

L2n{y2n(µ−1)L2n{f(x);
1

21/ny
}; z} =

2−µ

zn(µ+1/2)
Hµ,n{un(µ+1/2)P2n{f(x);u}; z}, (2.31)

and

Hµ,n{un(µ+1/2)P2n{f(x);u}; z} =
1

n
Kµ,n{xn(µ+1/2)f(x); z}, (2.32)

where we use the fact that Kµ(x) is an even function with respect to the index and relationship (1.13). If we

set µ = −1
2 in (2.32) and use the relations

J−1/2(x) =
( 2

πx

)1/2

cos(x), (2.33)

K−1/2(x) =
( π

2x

)1/2

exp(−x), (2.34)

we obtain
2nFc,n{P2n{f(x);u}; z} = πLn{f(x); z}. (2.35)

Corollary 2.6. If the integrals involved converge absolutely, then we have

∞∫
0

y2n(v−µ)−1L2n{g(u); y}dy =
Γ(v)

Γ(µ)

∞∫
0

x2nµ−1Pv,2n{g(u);x}dx, (2.36)

∞∫
0

y2n(v−µ)−1L2n{g(u); y}dy =
Γ(v − µ)

2n

∞∫
0

u2n(µ−v+1)−1g(u)du, (2.37)

and
∞∫
0

x2nµ−1Pv,2n{g(u);x}dx =
B(v − µ, µ)

2n

∞∫
0

u2n(µ−v+1)−1g(u)du, (2.38)

where 0 < Re(µ) < Re(v) and B(x, y) [15, p. 18] denotes the beta function.
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Proof If we put

f(x) = x2n(µ−1) (2.39)

into (2.15) of Theorem 2.1, we get

∞∫
0

y2nv−1L2n{x2n(µ−1); y}L2n{g(u);x}dx =
Γ(v)

2n

∞∫
0

Pv,2n{g(u);x}
x−2nµ+1

dx. (2.40)

Using relation (1.5) and the known formula [8, p. 137, Entry (1)] on the left-hand side of (2.40), we have

assertion (2.36).

Corollary 2.7. If the integrals involved converge absolutely, then we have

Pµ,2n{Pv,2n{g(u);x}; t}

=
1

Γ(v)

∞∫
0

y2n(µ+v−1)−1 exp(t2ny2n)Γ(−µ+ 1, t2ny2n)L2n{g(u); y}dy, (2.41)

Gn{x−2n+1Pv,2n{g(u);x}; t}

=

√
π

Γ(v)

∞∫
0

yn(2v−1)−1 exp(t2ny2n)erfc(tnyn)L2n{g(u); y}dy, (2.42)

where 0 < Re(µ) < Re(v) .

Proof We put

f(x) = (x2n + t2n)−µ (2.43)

in relation (2.15) of Theorem 2.1. Using the known formula [8, p. 137, Entry (4)] and the definition (1.11) of

the Pv,2n -transform, we obtain
∞∫
0

y2nv−1L2n{(x2n + t2n)−µ; y}L2n{g(u); y}dy

=

∞∫
0

y2n(v+µ−1)−1 exp(t2ny2n)Γ(−µ+ 1, t2ny2n)L2n{g(u); y}dy

= Γ(v)

∞∫
0

x2n−1

(x2n + t2n)µ
Pv,2n{g(u);x} dx = Γ(v)Pµ,2n{Pv,2n{g(u);x}; t}. (2.44)

In order to prove (2.42), we substitute f(x) = (x2n + t2n)−1/2 and the formula [8, p. 135, Entry (18)] into

(2.15) of Theorem 2.1. We thus obtain

∞∫
0

y2nv−1L2n{(x2n + t2n)−1/2; y}L2n{g(u); y}dy
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=
√
π

∞∫
0

yn(2v−1)−1 exp(t2ny2n)erfc(tnyn)L2n{g(u); y}dy

= Γ(v)

∞∫
0

x2n−1Pv,2n{g(u);x}
(x2n + t2n)1/2

dx. (2.45)

If we use the definition (1.12) of the Gn -transform on the right-hand side of (2.45), we arrive at assertion (2.42).

3. Illustrative examples

Example 3.1. We show

Pv,2n{x2nµ exp(−a2nx2n); y} =
Γ(µ+ 1)

2
a2n(v−µ−1)Ψ(v, v − µ; a2ny2n) (3.1)

where Re(µ) > −1 , Re(v) > 0 , v − µ ̸∈ Z and Ψ(a, b; z) is the Tricomi hypergeometric function [14, p. 517].

Demonstration. If we set

g(x) = x2nµ exp(−a2nx2n) (3.2)

in assertion (2.1) of Lemma 2.1, and use relationship (1.5) and the known formula [8, p. 144, Entry(3)], we get

L2n{x2nµ exp(−a2nx2n);u} =
1

2n
Γ(µ+ 1)(u2n + a2n)−µ−1. (3.3)

Multiplying both sides of (3.2) by u2n(v−1) and applying the L2n -transform, we obtain

L2n{u2n(v−1)L2n{x2nµ exp(−a2nx2n);u}; y}

=
Γ(µ+ 1)

2n
L2n{u2n(v−1)(u2n + a2n)−µ−1; y}. (3.4)

Using relationship (1.5) once again and the formula [14, p. 18, Entry 2.1.3-(1)], we have

L{uv−1(u+ a2n)−µ−1; y2n} = Γ(v)a2n(v−µ−1)Ψ(v, v − µ; a2ny2n). (3.5)

Substituting (3.2), (3.4), and (3.5) into (2.1) of Lemma 2.1, we obtain assertion (3.1).

Example 3.2. We show

Pv,2n{Ei(−a2n

x2n
); y} =

−Γ(v − 1)

4n2an(v − 1)
y−2nv+3n exp(a2n/2y2n)W−v+3/2,0(

a2n

y2n
), (3.6)

where Re(v) > 1 , Wλ,µ(x) denotes Whittaker’s function [11].
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Demonstration. We set

g(x) = Ei(−a2n

x2n
) (3.7)

in identity (2.1). Ei(x) is the exponential integral function. The exponential integral Ei(x) = −E1(−x) is

defined by

E1(x) =

∞∫
x

exp(−u)

u
du. (3.8)

Using (1.5) and the known identity [14, p. 136, Entry 3.4.1-(13)], we get

L2n{Ei(−a2n

x2n
);u} = − 1

2n2u2n
K0(2a

nun). (3.9)

Multiplying both sides of (3.9) by u2n(v−1) , applying the L2n -transform, and then using relation (1.5) once

more and the known formula [14, p. 353, Entry 3.16.2-(3)], we obtain

L2n{u2n(v−2)L2n{Ei(−a2n

x2n
);u}; y}

= L2n{−
1

n
u2n(v−2)K0(2a

nun); y}

= − 1

4n2an
(y2n)−v+3/2(Γ(v − 1))2 exp(

a2n

y2n
)W−v+3/2,0(

a2n

y2n
). (3.10)

Substituting (3.7) and (3.10) in (2.1) of Lemma 2.1, we arrive at assertion (3.6).

Example 3.3. We show

Pv,2n{erf(anxn); y} =
an(v−

3
2 )

2n(v − 1)
(yn)−v+ 1

2 exp(−a2ny2n

2
)W 3−2v

4 , 2v−3
4

(a2ny2n), (3.11)

where y > 0 , Re(v) > 1 .

Demonstration. We put

g(x) = erf(anxn) (3.12)

in identity (2.1) of Lemma 2.1. Using relation (1.5) and the identity [8, p. 176, Entry (4)], we find

L2n{erf(anxn);u} =
1

2n
anu−2n(u2n + a2n)−1/2. (3.13)

Multiplying both sides of (3.13) by u2n(v−1) , applying the L2n -transform, and then using (1.3) once more and

the known identity [8, p. 139, Entry (22)], we obtain assertion (3.11).

Remark 3.5. If we set v = 2µ+ 3
2 , we get for y > 0 , Re(µ) > − 3

4 ,

P2µ+ 3
2 ,2n

{erf(anxn); y} =
a2nµ

n(4µ+ 1)(yn)2µ+1
exp(−a2ny2n

2
)W−µ,µ(a

2ny2n). (3.14)
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Example 3.4. We show for Re(µ− v) > −4 ,

Kv−µ−1,n{xn(µ−v+ 7
2 )J2(a

nxn); z} =
a2n

n2

Γ(µ− v + 4)

(z2n + a2n)µ−v+4

2µ−v+3

zn(v−µ−3/2)
(3.15)

and

Hµ,n{un(µ+1/2)Pv,2n{x2nJ2(a
nxn);u}; z} =

zn(µ+
1
2 )Γ(µ− v + 4)

22v−µ−4n3Γ(v)

a2n

(z2n + a2n)µ−v+4
, (3.16)

where J2 is the Bessel function of the first kind of order 2 .

Demonstration. If we put

f(x) = x2nJ2(a
nxn) (3.17)

in relation (2.22) of Corollary 2.5, then use (1.5) and the formula [14, p. 264, Entry 3.12.2.(25)], we have

L2n{x2nJ2(a
nxn);

1

21/ny
} =

23a2n

n
y6n exp(−a2ny2n) (3.18)

where J2(a
nxn) is the Bessel function of the first kind of order 2 and Re(a) > 0. Multip-

lying by y2n(µ−v) and applying the L2n -transform for both sides of (3.18), using the relation (1.5) and the

known formula [14, p. 28, Entry 2.2.1.(2)], we find that

8a2n

n
L2n{y2n(µ−v+3) exp(−a2ny2n); z} = (

2an

n
)2

Γ(µ− v + 4)

(z2n + a2n)µ−v+4
, (3.19)

where Re(µ − v) > −4. Substituting relations (3.18) and (3.19) into identities (2.22) and (2.23), we arrive at

assertions (3.15) and (3.16), respectively.

4. Conclusion

Generalized integral transforms could be used in many areas of applied mathematics. Different types of

generalized integral transforms were investigated similarly before and many related articles could be found

in literature.
For example, using a new integral transform, Aghili and Ansari gave a Cauchy type fractional diffusion

equation on fractals and expressed its solution in terms of the Laplace type integral in [4]. In addition, generalized

integral transforms were used to solve singular integral equations and partial fractional differential equations in

[1, 2]. Furthermore, the fundamental solutions of the single-order and distributed-order Cauchy type fractional

diffusion equations were given using generalized integral transforms in [3].

In conclusion, many other infinite integrals, as in [8, 9], could be evaluated in this manner applying the

lemma, theorem, and corollaries considered in this paper.
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[6] Dernek N, Kurt V, Şimşek Y, Yürekli O. A generalization of the Widder potential transform and applications.

Integral Transform Spec Funct 2011; 22: 391-401.
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