Positive solutions of first order boundary value problems with nonlinear nonlocal boundary conditions

Smita PATI ${ }^{1}$, Seshadev PADHI ${ }^{2, *}$

${ }^{1}$ Department of Applied Mathematics, Cambridge Institute of Technology, Tatisilwai, Ranchi, India
${ }^{2}$ Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India
Received: 15.12.2015 • Accepted/Published Online: 06.05.2016 • Final Version: 03.04.2017

Abstract: We consider the existence of positive solutions of the nonlinear first order problem with a nonlinear nonlocal boundary condition given by

$$
\begin{aligned}
x^{\prime}(t) & =r(t) x(t)+\sum_{i=1}^{m} f_{i}(t, x(t)), \quad t \in[0,1] \\
\lambda x(0) & =x(1)+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right), \quad \tau_{j} \in[0,1]
\end{aligned}
$$

where $r:[0,1] \rightarrow[0, \infty)$ is continuous, the nonlocal points satisfy $0 \leq \tau_{1}<\tau_{2}<\ldots<\tau_{n} \leq 1$, the nonlinear functions f_{i} and Λ_{j} are continuous mappings from $[0,1] \times[0, \infty) \rightarrow[0, \infty)$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$ respectively, and $\lambda>1$ is a positive parameter. The Leray-Schauder theorem and Leggett-Williams fixed point theorem were used to prove our results.

Key words: Positive solutions, Leray-Schauder fixed point theorem, nonlinear boundary conditions

1. Introduction

Consider the first order boundary value problem (BVP) with nonlinear nonlocal boundary condition

$$
\begin{align*}
& x^{\prime}(t)=r(t) x(t)+\sum_{i=1}^{m} f_{i}(t, x(t)), \quad t \in[0,1] \tag{1.1}\\
& \lambda x(0)=x(1)+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right), \quad \tau_{j} \in[0,1], \tag{1.2}
\end{align*}
$$

where $r:[0,1] \rightarrow[0, \infty)$ is continuous, $f_{i}:[0,1] \times[0, \infty) \rightarrow[0, \infty), i=1,2, \cdots, m$, and the nonlocal points $\Lambda_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty), j=1,2, \ldots, n$ are continuous with $0 \leq \tau_{1}<\tau_{2}<\ldots<\tau_{n} \leq 1$, the nonlinear functions Λ_{j} satisfy

$$
\begin{equation*}
0 \leq \Lambda_{j}(t, x) \leq x \Psi_{j}(t, x), \quad t \in[0,1], x \in[0, \infty) \tag{1.3}
\end{equation*}
$$

*Correspondence: ses_2312@yahoo.co.in
2010 AMS Mathematics Subject Classification: 34B08, 34B18, 34B15, 34B10.
for some positive continuous functions $\Psi_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$, and the scalar λ satisfies

$$
\begin{equation*}
\lambda>\left(1+\sum_{j=1}^{n} \beta_{j}\right) \exp \left(\int_{0}^{1} r(\eta) d \eta\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{j}=\max _{[0,1] \times[0, c]} \Psi_{j}(t, x) \tag{1.5}
\end{equation*}
$$

for some real constant c.
The BVP (1.1)-(1.2) was first studied by Anderson [1], who used the Leggett-William multiple fixed point theorem to obtain three positive solutions of the BVP (1.1)-(1.2). The results obtained by Anderson [1] are motivated by the results obtained for time scales in [2, 5-9, 12, 16-19]. Recently, Padhi et al. [15] used the Leggett-Williams multiple fixed point theorem to establish a sufficient condition for the existence of at least three positive solutions of the BVP (1.1)-(1.2), and improved the results in [1].

Motivated by the work by Anderson [1], Çetin and Topal in [3] used monotone iteration and established an iterative scheme for the existence and approximation of two positive solutions of the nonlinear nonlocal first-order multipoint problem with sign changing nonlinearities

$$
\begin{aligned}
x^{\prime}(t)+r(t) x(t) & =\sum_{i=1}^{m} f_{i}(t, x(t)), t \in[0,1] \\
x(0)=x(1) & +\sum_{j=1}^{n} g_{j}\left(t_{j}, x\left(t_{j}\right)\right), \quad \tau_{j} \in[0,1],
\end{aligned}
$$

where $r:[0,1] \rightarrow[0, \infty)$ is continuous, $f_{i}:[0,1] \times[0, \infty) \rightarrow(-\infty, \infty), i=1,2, \cdots, m$, and the nonlocal points $g_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty), j=1,2, \ldots, n$ are continuous, and satisfy $0 \leq t_{1}<t_{2}<\ldots<t_{n} \leq 1$.

This work has been divided into three sections. Section 1 is the Introduction, which contains the basic notations and the fixed point theorems used in this paper. Statements of two theorems, namely the LeraySchauder theorem and Leggett-Williams multiple fixed point theorem, are given in this section. In Section 3, we give an example to show that the use of the Leray-Schauder theorem is not sufficient to have a complete study on the existence of positive solutions. This forces us to use the Leggett-Williams multiple fixed point theorem in the example to find the number of positive solutions. Thus, we have applied the Leray-Schauder theorem and Leggett-Williams multiple fixed point theorem in Section 2 to obtain three theorems on the existence of positive solutions of the BVP (1.1)-(1.2). In Section 3, all these three theorems are applied to an example to get a complete study on the existence of positive solutions. The motivation for the study of this example for a particular case came from [4] and [14]. An extensive use the Leggett-Williams fixed point theorem can be found in [13] for the existence of positive periodic solutions of first order functional differential equations.

We shall use the following notations for our use in the sequel: Let X be a Banach space. For any cone K on X, we denote $K_{a}=\{x \in K:\|x\|<a\}, \bar{K}_{a}=\{x \in K:\|x\| \leq a\}$ and

$$
K(\psi, b, c)=\{x \in K ; \psi(x) \geq b \text { and }\|x\| \leq c\}
$$

for any constants $a>0, b>0$, and $c>0$. With the above notations, we now state the following fixed point theorems.

PATI and PADHI/Turk J Math

Theorem 1.1 ([10], Leray-Schauder) Let K be a convex subset of a Banach space $X, 0 \in K, A: K \rightarrow K$ be a completely continuous operator. Then either (i) A has at least one fixed point in K, or (ii) the set $\{x \in K: x=\mu A x, 0<\mu<1\}$ is unbounded.

Theorem 1.2 ([11, Theorem 3.3]) (Leggett-Williams fixed point theorem) Let $X=(X,\|\cdot\|)$ be a Banach space and $K \subset X$ be a cone, and $c_{4}>0$ be a constant. Suppose there exists a concave nonnegative continuous function ψ on K with $\psi(x) \leq\|x\|$ for $x \in \bar{K}_{c_{4}}$ and let $A: \bar{K}_{c_{4}} \rightarrow \bar{K}_{c_{4}}$ be a continuous compact map. Assume that there are numbers c_{1}, c_{2}, and c_{3} with $0<c_{1}<c_{2}<c_{3} \leq c_{4}$ such that
(i) $\left\{x \in K\left(\psi, c_{2}, c_{3}\right) ; \psi(x)>c_{2}\right\} \neq \phi$ and $\psi(A x)>c_{2}$ for all $x \in K\left(\psi, c_{2}, c_{3}\right)$;
(ii) $\|A x\|<c_{1}$ for all $x \in \bar{K}_{c_{1}}$;
(iii) $\psi(A x)>c_{2}$ for all $x \in K\left(\psi, c_{2}, c_{4}\right)$ with $\|A x\|>c_{3}$.

Then A has at least three fixed points x_{1}, x_{2}, and x_{3} in $\bar{K}_{c_{4}}$. Furthermore, we have $x_{1} \in \bar{K}_{c_{1}}, x_{2} \in\{x \in$ $\left.K\left(\psi, c_{2}, c_{4}\right): \psi(x)>c_{2}\right\}$, and $x_{3} \in \bar{K}_{c_{4}} \backslash\left\{K\left(\psi, c_{2}, c_{4}\right) \cup \bar{K}_{c_{1}}\right\}$.

Remark 1 According to the localization of the fixed points in Theorem 1.2, one of them is possibly a zero (namely $x_{1} \in \bar{K}_{c_{1}}$). Thus, the operator A, stated in Theorem 1.2, has at least two positive fixed points and a zero fixed point as can be easily observed. Accordingly, the BVP (1.1)-(1.2) has two positive T-periodic solutions and a possible trivial solution (if the conditions of Theorem 1.2 are satisfied).

2. Main results

Clearly, the BVP (1.1)-(1.2) is equivalent to the integral equation

$$
\begin{equation*}
x(t)=\sum_{i=1}^{m} \int_{0}^{1} G(t, s) f_{i}(s, x(s)) d s+\frac{\exp \left(\int_{0}^{t} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)} \tag{2.1}
\end{equation*}
$$

where $G(t, s)$ is Green's kernel, given by

$$
G(t, s)=\frac{\exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \times\left\{\begin{array}{cl}
\lambda & ; \tag{2.2}\\
\text { if } 0 \leq s \leq t \leq 1 \\
\exp \left(\int_{0}^{1} r(\eta) d \eta\right) ; & \text { if } 0 \leq t \leq s \leq 1
\end{array}\right.
$$

Theorem 2.1 Let

$$
\begin{equation*}
f_{i 0}=\limsup _{x \rightarrow 0+, 0 \leq t \leq 1} \frac{f_{i}(t, x)}{x}=0, i=1,2, \cdots, m \tag{2.3}
\end{equation*}
$$

hold. Then the BVP (1.1)-(1.2) has at least one positive solution.
Proof Let $X=C[0,1]$; then X is a Banach space endowed with the sup. norm. From (2.3), there exist constants ϵ and $B>0$ such that

$$
f_{i}(t, x)<\epsilon x \text { for } 0<x \leq B, 0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

holds, where $\epsilon>0$ is chosen such that it satisfies

$$
\begin{equation*}
0<\epsilon<\frac{\lambda-\left(1+\sum_{j=1}^{n} \beta_{j}\right) \exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\lambda m \int_{0}^{1} \exp \left(\int_{s}^{1}(r(\eta) d \eta) d s\right)} \tag{2.4}
\end{equation*}
$$

On X, we define a convex set K by

$$
\begin{equation*}
K=\{x(t) ; x(t) \in X, x(t) \geq 0, x(t) \text { is nondecreasing, } x(t) \leq B, 0 \leq t \leq 1\} \tag{2.5}
\end{equation*}
$$

and an operator $A: K \rightarrow X$ by

$$
\begin{equation*}
(A x)(t)=\sum_{i=1}^{m} \int_{0}^{1} G(t, s) f_{i}(s, x(s)) d s+\frac{\exp \left(\int_{0}^{t} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \tag{2.6}
\end{equation*}
$$

where $G(t, s)$ is Green's kernel given in (2.2). The operator A in (2.6) can be rewritten as

$$
\begin{align*}
A x(t)= & \sum_{i=1}^{m} \int_{0}^{t} \frac{\lambda \exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s \\
& +\sum_{i=1}^{m} \int_{t}^{1} \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right) \exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s \\
& +\frac{\exp \left(\int_{0}^{t} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)} \tag{2.7}
\end{align*}
$$

Let $x \in K$. Then the positivity of $f_{i}, i=1,2, \ldots, m$ and $\Lambda_{j}, j=1,2, \ldots, n$ shows that $(A x)(t) \geq 0$ for all $t \in[0,1]$. Now we show that the fixed points of the operator A are the solutions of the BVP (1.1)-(1.2). In fact, if $x=A x$, then from (2.7), we have

$$
\begin{aligned}
\lambda x(0)-x(1)= & \sum_{i=1}^{m} \int_{0}^{1} \frac{\lambda \exp \left(\int_{s}^{1} r(s) d s\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(s) d s\right)\right)} f_{i}(s, x(s)) d s \\
& +\lambda \frac{\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& -\sum_{i=1}^{m} \int_{0}^{1} \frac{\lambda \exp \left(\int_{s}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s \\
& -\frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right) \\
& =\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right), \tau_{j} \in[0,1] .
\end{aligned}
$$

Hence the boundary condition (1.2) is satisfied. Again differentiating (2.7) with respect to t, with $A x=x$, we obtain

$$
\begin{aligned}
x^{\prime}(t)= & \sum_{i=1}^{m} \int_{0}^{t} \frac{\lambda r(t) \exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s+\sum_{i=1}^{m} \frac{\lambda}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(t, x(t)) \\
& +\sum_{i=1}^{m} \int_{t}^{1} \frac{r(t) \exp \left(\int_{0}^{1} r(\eta) d \eta\right) \exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s \\
& -\sum_{i=1}^{m} \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(t, x(t))+\frac{r(t) \exp \left(\int_{0}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right) \\
= & r(t)\left[\sum_{i=1}^{m} \int_{0}^{t} \lambda \frac{\exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s\right] \\
& +r(t)\left[\sum_{i=1}^{m} \int_{t}^{1} \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right) \exp \left(\int_{s}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} f_{i}(s, x(s)) d s\right] \\
& +r(t)\left[\frac{\exp \left(\int_{0}^{t} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)\right]+\sum_{i=1}^{m} f_{i}(t, x(t)) \\
= & r(t) x(t)+\sum_{i=1}^{m} f_{i}(t, x(t)),(\operatorname{using}(2.1)),
\end{aligned}
$$

which shows that $x(t)$ satisfies (1.1). Moreover, $(A x)^{\prime}(t)=r(t) x(t)+\sum_{i=1}^{m} f_{i}(t, x(t)), t \in[0,1]$ shows that $A x$ is nondecreasing, $t \in[0,1]$.

Next, for $0<x \leq B$, we have

$$
\begin{align*}
(A x)(t) & \leq\|A x\|=A x(1)=\sum_{i=1}^{m} \int_{0}^{1} G(1, s) f_{i}(s, x(s)) d s+\frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+x(t) \sum_{j=1}^{n} \beta_{j}\right] \tag{2.8}\\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \epsilon \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right)\|x\| d s+\|x\| \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{B \exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \epsilon m \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) d s+\sum_{j=1}^{n} \beta_{j}\right] \\
& \leq B . \tag{2.9}
\end{align*}
$$

This proves that $A(K) \subset K$. One may verify that A is completely continuous.
In order to use Theorem 1.1, we consider $x \in K$ with $x(t)=\mu(A x)(t), 0<\mu<1$. Then, using (2.9), we have

$$
x(t)=\mu(A x)(t)<(A x)(t) \leq B
$$

PATI and PADHI/Turk J Math

which implies that the set

$$
\{x \in K: x=\mu A x, 0<\mu<1\}
$$

is bounded. Hence, by Theorem 1.1, the operator A has a fixed point in X, which is a positive solution of the BVP (1.1)-(1.2). This completes the proof of the theorem.

Theorem 2.2 Let

$$
\begin{equation*}
f_{i \infty}=\limsup _{x \rightarrow \infty, 0 \leq t \leq 1} \frac{f_{i}(t, x)}{x}=0, i=1,2, \cdots, m \tag{2.10}
\end{equation*}
$$

hold. Then the BVP (1.1)-(1.2) has at least one positive solution.
Proof Let $X=C[0,1]$; then X is a Banach space endowed with the sup. norm. From (2.10), there exist positive constants ϵ and N such that

$$
f_{i}(t, x)<\epsilon x \text { for } x \geq N, 0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

where ϵ is chosen such that (2.4) is satisfied. Let

$$
\gamma=\max _{0 \leq t \leq 1,0 \leq x \leq N, 1 \leq i \leq m} f_{i}(t, x)
$$

Then

$$
f_{i}(t, x)<\epsilon x+\gamma \text { for } x \geq 0,0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

For the above choice of ϵ and γ, we consider a constant B by

$$
\begin{equation*}
B \geq \frac{\lambda \gamma m \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) d s}{\lambda-\left(1+\sum_{j=1}^{n} \beta_{j}\right) \exp \left(\int_{0}^{1} r(\eta) d \eta\right)-\lambda \epsilon m \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) d s} \tag{2.11}
\end{equation*}
$$

Now we define a convex set K on X by (2.5) and an operator $A: K \rightarrow X$ by (2.6), where $G(t, s)$ is Green's kernel given in (2.2). One may verify that A is completely continuous. Proceeding as in Theorem 2.1, we can prove that a fixed point of the operator A in the cone K is equivalent to the existence of a positive solution of the BVP (1.1)-(1.2), $(A x)(t) \geq 0$ and $A x$ is nondecreasing for $0 \leq t \leq 1$. Now we show that $A x \leq B$ for $0 \leq t \leq 1$, where B is defined in (2.11). For $0<x \leq B$, from (2.8), we have

$$
\begin{align*}
(A x)(t) & \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right)(\epsilon\|x\|+\gamma) d s+\|x\| \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda m(\epsilon B+\gamma) \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) d s+B \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq B \tag{2.12}
\end{align*}
$$

This proves that $A(K) \subset K$.
Next suppose that $x \in K$ with $x(t)=\mu(A x)(t), 0<\mu<1$. Then, using (2.12), we have

$$
x(t)=\mu(A x)(t)<(A x)(t) \leq B
$$

which, in turn, implies that the set

$$
\{x \in K: x=\mu A x, 0<\mu<1\}
$$

is bounded. Hence, by Theorem 1.1, the operator A has a fixed point in X, which is a positive solution of the BVP (1.1)-(1.2). This completes the proof of the theorem.

Remark 2 Theorems 2.1 and 2.2 require at least one of the conditions (2.3) or (2.10) to guarantee the existence of a positive solution of the BVP (1.1)-(1.2). In Section 3, we give an example, that is the BVP (3.1)-(3.2), where both Theorems 2.1 and 2.2 are applicable, guaranteeing the existence of a positive solution independently. Therefore, now we are confronted with a question regarding the number of positive solutions admitted by the BVP (3.1)-(3.2). In this case, we shall use the following theorem regarding the number of positive solutions admitted by the BVP (3.1)-(3.2).

Theorem 2.3 Suppose that the conditions (2.3) and (2.10) are satisfied, and there exists a positive constant $c_{2}>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+\frac{\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}>c_{2}\left[\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right], c_{2} \leq x \leq \lambda c_{2} \tag{2.13}
\end{equation*}
$$

for $0 \leq t \leq 1$ holds. Then the BVP (1.1)-(1.2) has at least two positive solutions.
Proof Let $X=C[0,1]$ be a Banach space endowed with the sup. norm. On the space X, we define a cone K by

$$
K=\{x \in X ; x(t) \geq 0, x(t) \text { nondecreasing }, t \in[0,1]\}
$$

and an operator $A: K \rightarrow X$ by (2.6), where $G(t, s)$ is Green's kernel given in (2.2). Proceeding as in the lines of Theorem 2.1, we can show that $A(K) \subset K$ and : $K \rightarrow K$ is completely continuous. Further, the existence of a positive solution of the BVP (1.1)-(1.2) is equivalent to the existence of a fixed point of the operator A in K.

First we consider (2.10). Then there exist constants $\epsilon>0$ and $N>0$ such that

$$
f_{i}(t, x)<\epsilon x \text { for } x \geq N, 0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

where $\epsilon>0$ is chosen so that it satisfies the property (2.4). Let

$$
\gamma=\max _{0 \leq t \leq 1,0 \leq x \leq N, 1 \leq i \leq m} f_{i}(t, x)
$$

Then

$$
f_{i}(t, x)<\epsilon x+\gamma \text { for } x \geq 0,0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

Choose a constant $c_{4}>0$ such that

$$
c_{4} \geq\left\{\lambda c_{2}, \frac{\lambda \gamma m \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) d s}{\lambda-\left(1+\sum_{j=1}^{n} \beta_{j}\right) \exp \left(\int_{0}^{1} r(\eta) d \eta\right)-\lambda \epsilon m \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) d s}\right\}
$$

PATI and PADHI/Turk J Math

For $x \in \bar{K}_{c_{4}}$, we have

$$
\begin{aligned}
(A x)(t) & \leq\|A x\|=A x(1)=\sum_{i=1}^{m} \int_{0}^{1} G(1, s) f_{i}(s, x(s)) d s+\frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+x(t) \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right)(\epsilon\|x\|+\gamma) d s+\|x\| \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda m\left(\epsilon c_{4}+\gamma\right) \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) d s+c_{4} \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq c_{4}
\end{aligned}
$$

that is, $A: \bar{K}_{c_{4}} \rightarrow \bar{K}_{c_{4}}$.
Next we consider (2.3). Then there exist constants ϵ and $c_{1} \in\left(0, c_{2}\right)$ such that

$$
f_{i}(t, x)<\epsilon x \text { for } 0<x \leq c_{1}, 0 \leq t \leq 1 \text { and } 1 \leq i \leq m
$$

where ϵ satisfies the property (2.4).
For $x \in \bar{K}_{c_{1}}$, we have

$$
\begin{aligned}
(A x)(t) & \leq\|A x\|=A x(1)=\sum_{i=1}^{m} \int_{0}^{1} G(1, s) f_{i}(s, x(s)) d s+\frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right) \sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+x(t) \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{\exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \epsilon \sum_{i=1}^{m} \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right)\|x\| d s+\|x\| \sum_{j=1}^{n} \beta_{j}\right] \\
& \leq \frac{c_{1} \exp \left(\int_{0}^{1} r(\eta) d \eta\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\lambda \epsilon m \int_{0}^{1} \exp \left(-\int_{0}^{s} r(\eta) d \eta\right) d s+\sum_{j=1}^{n} \beta_{j}\right] \\
& <c_{1} .
\end{aligned}
$$

This proves the condition (ii) of Theorem 1.2.
Set $c_{3}=\lambda c_{2}$. In order to verify the condition (i) of Theorem 1.2 , we set $\theta(t)=\lambda c_{2}$ for $t \in[0,1]$. Let $\psi(t)=\min _{t \in[0,1]} x(t)$ be a nonnegative concave functional on K. Since $\psi(\theta(t))=\min _{t \in[0,1]} \theta(t)=\lambda c_{2}>$ $c_{2} ; c_{2} \leq \psi(x),\|x\|=\lambda c_{2}$, then the set $\left\{x \in K ; c_{2} \leq \psi(x),\|x\| \leq \lambda c_{2}\right\}$ is nonempty. Let $x \in\left(K, \psi, c_{2}, c_{3}\right)$; then
$c_{2} \leq \psi(x) \leq x \leq\|x\|=x(1)=\lambda c_{2}=c_{3}$, and hence

$$
\begin{aligned}
\psi(A x)(t) & =A x(0)=\sum_{i=1}^{m} \int_{0}^{1} G(0, s) f_{i}(s, x(s)) d s+\frac{\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& =\frac{1}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)}\left[\sum_{i=1}^{m} \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)\right] \\
& \geq \frac{1}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \sum_{i=1}^{m} \int_{0}^{1} \exp \left(\int_{s}^{1} r(\eta) d \eta\right) f_{i}(s, x(s)) d s+\frac{\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, x\left(\tau_{j}\right)\right)}{\left(\lambda-\exp \left(\int_{0}^{1} r(\eta) d \eta\right)\right)} \\
& >c_{2}(\operatorname{using}(2.13))
\end{aligned}
$$

holds. Thus, the condition (i) of Theorem 1.2 is satisfied.
Finally, suppose that $x \in K\left(\psi, c_{2}, c_{3}\right)$ with $\|A x\|>\lambda c_{2}=c_{3}$. Then

$$
\psi(A x)=(A x)(0) \geq \frac{1}{\lambda}(A x)(1)=\frac{\|A x\|}{\lambda}>\frac{\lambda c_{2}}{\lambda}=c_{2}
$$

implies that the condition (iii) of Theorem 1.2 is satisfied. Hence the BVP (1.1)-(1.2) has at least three solutions. Consequently, the BVP (1.1)-(1.2) has at least two positive solutions. This completes the proof of the theorem.

Remark 3 Anderson in [1] and Padhi et al. in [15] applied the Leggett-Williams multiple fixed point theorem [11] to obtain sufficient conditions for the existence of three positive solutions of the BVP (1.1)-(1.2). Although the conditions of Theorem 2.3 imply the conditions obtained in [15] and [1], the conditions of Theorem 2.3 are easy to use. We have used Theorem 2.3 to complete the example given in Section 3.

3. A complete example

Consider the first order BVP

$$
\begin{align*}
x^{\prime}(t) & =x(t)+\frac{x^{n}(t)}{1+x^{m}(t)}, \quad t \in[0,1] \tag{3.1}\\
\lambda x(0) & =x(1)+\Lambda(\tau, x(\tau)), \tag{3.2}\\
& \tau \in[0,1]
\end{align*}
$$

where $\lambda>\frac{3 e}{2}$,

$$
\Lambda(t, x)=\left\{\begin{array}{cl}
\frac{x}{4}\left(1+e^{-\frac{1}{x(t)-1}}\right), & x>1 \\
\frac{x}{2}, & x \leq 1
\end{array}\right.
$$

and m and n are nonnegative integers satisfying the property

$$
\begin{equation*}
1>\frac{(\lambda-e)}{(e-1)} \lambda^{n-1} \frac{m}{m-n+1}\left(\frac{m-n+1}{n-1}\right)^{\frac{n-1}{m}} \text { for } 1<n<m \tag{3.3}
\end{equation*}
$$

Here $r(t) \equiv 1$ and $f(t, x)=\frac{x^{n}}{1+x^{m}}, t \in[0,1]$. Clearly $\Lambda(t, x) \leq \frac{x}{2}$ with $\beta=\frac{1}{2}$. Consequently, $\lambda>(1+\beta) e=\frac{3 e}{2}$.

PATI and PADHI/Turk J Math

First we consider the case $0 \leq n \leq 1$. Then $\lim _{x \rightarrow \infty} \frac{f(t, x)}{x}=0$ implies that Theorem 2.2 can be applied to the BVP (3.1)-(3.2). On the other hand, $\lim _{\inf }^{x \rightarrow 0+}{ }^{f(t, x)} \underset{x}{f} \neq 0$ implies that Theorem 2.1 cannot be applied to the BVP (3.1)-(3.2). Hence, by Theorem 2.2, the BVP (3.1)-(3.2) has a positive solution.

Next we consider the case when $n \geq m+1$. Then

$$
\lim _{x \rightarrow \infty} \frac{f(t, x)}{x}=\lim _{x \rightarrow \infty} \frac{x^{n-1}}{1+x^{m}}=\lim _{x \rightarrow \infty} \frac{x^{n-m-1}}{\frac{1}{x^{m}}+1} \neq 0
$$

implies that Theorem 2.2 cannot be applied to this example. On the other hand,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{f(t, x)}{x}=\lim _{x \rightarrow 0} \frac{x^{n-1}}{1+x^{m}}=0 \tag{3.4}
\end{equation*}
$$

implies, by Theorem 2.1, that the BVP (3.1)-(3.2) has a positive solution. Note that (3.4) holds for any $n>1$. Thus, for any $n>1$, the BVP (3.1)-(3.2) has a positive solution.

Finally, we consider the case $1<n<m$. Since both the conditions (2.3) or (2.10) are satisfied, we shall use Theorem 1.2 to find the number of positive solutions of the BVP (3.1)-(3.2). For this, we need to find a constant $c_{2}>0$ such that

$$
\begin{equation*}
\int_{0}^{1} e^{1-s} \frac{x^{n}(s)}{1+x^{m}(s)} d s>c_{2}(\lambda-e) \text { for } c_{2} \leq\|x\| \leq \lambda c_{2} \tag{3.5}
\end{equation*}
$$

holds. For $x \in K$ and $c_{2} \leq\|x\| \leq \lambda c_{2}$, we have

$$
\int_{0}^{1} e^{1-s} \frac{x^{n}(s)}{1+x^{m}(s)} d s>\frac{c_{2}^{n}}{1+\lambda^{m} c_{2}^{m}}(e-1)
$$

This, in turn, implies that (3.5) holds if

$$
\begin{equation*}
1>\frac{(\lambda-e)}{(e-1)} \frac{\left(1+\lambda^{m} c_{2}^{m}\right)}{c_{2}^{n-1}} \tag{3.6}
\end{equation*}
$$

holds. Set $c_{2}=\frac{1}{\lambda}\left(\frac{n-1}{m-n+1}\right)^{1 / m}$, which is the minimizer of $\frac{(\lambda-e)}{(e-1)} \frac{\left(1+\lambda^{m} c_{2}^{m}\right)}{c_{2}^{n-1}}$. Then the inequality (3.6) follows from (3.3). Thus for the case $1<n<m$, the BVP (3.1)-(3.2) has at least two positive solutions.

Acknowledgment

The authors are thankful to the referee for his/her comments in revising the manuscript to the present form.

References

[1] Anderson DR. Existence of three solutions for a first order problem with nonlinear nonlocal boundary conditions. J Math Anal Appl 2013; 408: 318-323.
[2] Anderson DR. Existence of solutions for first order multipoint problems with changing-sign nonlinearities. J Diff Equ Appl 2008; 14: 657-666.

PATI and PADHI/Turk J Math

[3] Çetin E, Topal FS. Existence of solutions for a first-order nonlocal boundary value problem with changing-sign nonlinearity. Turk J Math 2015; 39: 556-563.
[4] Dix JG, Padhi S, Pati S. Existence of three nonnegative periodic solutions for functional differential equations and applications to Hematopoiesis. PanAmerican Math J 2009; 19: 27-36.
[5] Gao CH, Luo H. Positive solutions to nonlinear nonlocal BVPs with parameter on time scales. Bound Value Probl 2011; 15: 198598.
[6] Gilbert H. Existence theorem for first order equations on time scales with Δ-Caratheodory functions. Adv Diff Equ 2010; 20: 650827.
[7] Goodrich CS. Existence of a positive solutions to a first order p-Laplacian bvp on a time scale. Nonl Anal 2011; 74: 1926-1936.
[8] Goodrich CS. Positive solutions to boundary value problems with nonlinear boundary conditions. Nonl Anal 2011; 75: 417-432.
[9] Graef JR, Kong L. First order singular boundary value problems with p-Laplacian on time scales. J Diff Equ Appl 2011; 17: 831-839.
[10] Granas A, Dugundji J. Fixed Point Theory. New York, NY, USA: Springer-Verlag, 2003.
[11] Leggett RW, Williams LR. Multiple positive fixed points of nonlinear operators on ordered Banach Spaces. Indiana Univ Math J 1979; 28: 673-688.
[12] Otero-Espinar V, Vivero DR. The existence and approximation of extremal solutions to several first order discontinuous dynamic equations with nonlinear boundary value conditions. Nonl Anal 2008; 68: 2027-2037.
[13] Padhi S, Graef JR, Srinivasu PDN. Periodic Solutions of First order Functional Differential Equations in Population Dynamics. New Delhi, India: Springer India, 2014.
[14] Padhi S, Pati S. Multiple periodic solutions for a nonlinear first order functional difference equation with application to hematopoiesis model. Comm Appl Anal 2014; 18: 1-10.
[15] Padhi S, Pati S, Hota DK. Positive solutions of boundary value problems with nonlinear nonlocal boundary conditions. Opus Math 2016; 36: 69-79.
[16] Shu W, Deng C. Three positive solutions of nonlinear first order boundary value problems on time scales. Int J Pure Appl Math 2010; 63: 129-136.
[17] Tian Y, Ge WG. Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales. Nonl Anal 2008; 69: 2833-2842.
[18] Zhao YH. First-order boundary value problem with nonlinear boundary condition on time scales. Discrete Dyn Nat Soc 2011; 8: 845107.
[19] Zhao YH, Sun JP. Monotone iterative technique for first-order nonlinear periodic boundary value problems on time scales. Adv Diff Equ 2010; 10: 620459.

