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Abstract: In this paper, we give sufficient conditions on nonunitary operators on the Bergman space that imply the

unitary operators.
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1. Introduction

Let dA(z) denote the Lebesgue area measure on the open unit disk D , normalized so that the measure of the

disk D equals 1. The Bergman space L2
a(D) is the Hilbert space consisting of analytic functions on D that are

also in L2(D, dA). For z ∈ D , the Bergman reproducing kernel is the function Kz ∈ L2
a(D) such that f(z)

= ⟨f,Kz⟩ for every f ∈ L2
a(D). The normalized reproducing kernel kz is the function Kz

∥Kz∥2
. Here the norm

∥ · ∥2 and the inner product ⟨, ⟩ are taken in the space L2(D, dA). For any n ≥ 0, n ∈ Z , let en(z) =
√
n+ 1zn.

Then {en} forms an orthonormal basis for L2
a(D). Let K(z, w̄) = Kz(w) = 1

(1−zw)2 =
∞∑
n=0

en(z)en(w). For

ϕ ∈ L∞(D), the Toeplitz operator Tϕ with symbol ϕ is the operator on L2
a(D) defined by Tϕf = P (ϕf); here

P is the orthogonal projection from L2(D, dA) onto L2
a(D).

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of D . We can define for

each a ∈ D an automorphism ϕa in Aut(D) such that:

(i) (ϕa o ϕa)(z) ≡ z ;

(ii) ϕa(0) = a, ϕa(a) = 0;

(iii) ϕa has a unique fixed point in D .

In fact, ϕa(z) =
a−z
1−az for all a and z in D . An easy calculation shows that the derivative of ϕa at z is equal

to −ka(z). It follows that the real Jacobian determinant of ϕa at z is Jϕa(z) = |ka(z)|2 =
(1−|a|2)

2

|1−az|4 . Given

z ∈ D and f any measurable function on D , we define a function Uzf on D by Uzf(w) = kz(w)f(ϕz(w)).

Notice that Uz is a bounded linear operator on L2(D, dA) and L2
a(D) for all z ∈ D . Furthermore, it can be

verified that U2
z = I , the identity operator, U∗

z = Uz, Uz(L
2
a(D)) ⊂ L2

a(D) and Uz((L
2
a(D))⊥) ⊂ (L2

a(D))⊥ for

all z ∈ D . Thus, UzP = PUz for all z ∈ D .

Let ϕ : D → D be analytic. Define the composition operator Cϕ from L2
a(D) into itself by Cϕf = f ◦ ϕ .
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The operator Cϕ is a bounded linear operator on L2
a(D) and ∥Cϕ∥ ≤ 1+|ϕ(0)|

1−|ϕ(0)| . Given a ∈ D and f any

measurable function on D , we define the function Caf = foϕa , where ϕa ∈ Aut(D). The map Ca is a

composition operator on L2
a(D). Let L(H) denote the algebra of bounded, linear operators from a Hilbert

space H into itself. Let H(D) be the space of holomorphic functions from D into itself. Let us denote

En,ϕ =
⟨
Tϕ

√
n+ 1zn,

√
n+ 1zn

⟩
.

If T is a compact operator on a separable Hilbert space H, then there exist orthonormal sets {un}∞n=0

and {σn}∞n=0 in H such that Tx =

∞∑
n=0

λn⟨x, un⟩σn; x ∈ H where λn is the nth singular value of T. Given

0 < p <∞ , we define the Schatten p -class of H, denoted by Sp(H) or simply Sp , to be the space of all compact

operators T on H with its singular value sequence {λn} belonging to lp (the p-summable sequence space). We

will focus in the range 1 ≤ p < ∞ . In this case, Sp is a Banach space with the norm ∥T∥p =

[∑
n

|λn|p
] 1

p

.

The class S1 is also called the trace class of H and S2 is usually called the Hilbert–Schmidt class. One can

easily verify that if T is a compact operator on H and p ≥ 1, then T ∈ Sp if and only if |T |p = (T ∗T )
p
2 ∈ S1

and ∥T∥pp = ∥|T |∥pp = ∥|T |p∥1.

The Berezin transform ϕ̃ of a function ϕ ∈ L∞(D) is defined to be the Berezin transform of the Toeplitz

operator Tϕ. In other words, ϕ̃ = T̃ϕ. Furthermore, ϕ̃(z) = T̃ϕ(z) = ⟨Tϕkz, kz⟩ = ⟨P (ϕkz), kz⟩ = ⟨ϕkz, kz⟩ for

each z ∈ D.
For ϕ ∈ L2(D, dA) and λ ∈ D , let

ϕ̃(λ) = ⟨ϕkλ, kλ⟩ =
∫
D
ϕ(z)

(1− |λ|2)2

|1− λz|4
dA(z).

For more details, see [12]. A nice survey of earlier known results relating to the unitary operators on the Hilbert

space can be found in [3, 4, 10, 11].

Theorem 1 ([4]) Let T, V,W ∈ L(H), where T is a paranormal contraction operator, V is a coisometry, and

W has a dense range. Assume that TW =WV. Then T is unitary. In particular, if W is injective and has a

dense range, then V is also a unitary operator.

Theorem 2 ([11]) Let A, V,X ∈ L(H) be such that V,X are isometries and A∗ is p-hyponormal. If V X =

XA, then A is unitary.

Theorem 3 ([4]) Let T, S,W ∈ L(H) where W has a dense range. Assume that TW = WS and T ∗W =

WS∗. Then T is unitary if S is unitary.

Theorem 4 ([3]) Let T be a k-paranormal contraction, and let

M = {x ∈ H : ∥T ∗nx∥ ≥ εx > 0 for n = 1, 2, · · · }.

Then T |M is unitary.
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Corollary 1 ([3]) Let A be a k-paranormal contraction, let B be a right invertible operator with a power

bounded right inverse B1, and let X be an operator with dense range such that AX = XB. Then A is unitary.

Theorem 5 ([10]) If T is a k-paranormal contraction operator, V has a right inverse Vr , which is power

bounded, and operator W has a dense range such that TW = WVr, and then T ∗W = WVr. Moreover, T is

unitary.

Main results

Proposition 1 Let ϕ ∈ L∞(D) be such that ∥ϕ∥∞ ≤ 1. Suppose that ζ = inf
z∈D

|ϕ̃(z)| > 0 and there exists a

sequence µ = {ψn}n≥0 ⊂ D such that

λµϕ =

( ∞∑
n=0

(1− 2Re (ϕ̃(ψ̄n)En,ϕ) + |ϕ̃(ψn)|2)

) 1
2

<∞. (1.1)

If ζ > λµϕ, and T−1
ϕ = Tϕoϕz for some z ∈ D, then Tϕ is unitary.

Proof From [5] it follows that the Toeplitz operator Tϕ is invertible on L2
a(D), since T

−1
ϕ = Tϕoϕz = UzTϕUz

for some z ∈ D. This implies T−1
ϕ is unitarily equivalent to Tϕ. Therefore, ∥T−1

ϕ ∥ = ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1.

Thus, for any f ∈ L2
a(D), ∥f∥ = ∥T−1

ϕ Tϕf∥ ≤ ∥Tϕf∥ ≤ ∥f∥. Hence, ∥Tϕf∥ = ∥f∥ , which implies TϕTϕ = I.

Furthermore, since ∥Tϕ∥ = ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1 and ∥(Tϕ)−1∥ = ∥(T−1
ϕ )∗∥ = ∥T−1

ϕ ∥ = ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1, we

get for any g ∈ L2
a(D), ∥g∥ = ∥(Tϕ)−1Tϕg∥ ≤ ∥Tϕg∥ ≤ ∥g∥. Thus, ∥Tϕg∥ = ∥g∥ , which implies that TϕTϕ = I.

Hence, Tϕ is unitary. 2

Theorem 6 Let ϕ ≥ 0. If V ∈ L(L2
a(D)) be an isometry such that Tϕ − V ∈ Sp, 1 ≤ p < ∞. Then V is

unitary.

Proof The Schatten ideal Sp, 1 ≤ p < ∞ is a two-sided ideal. Given that Tϕ − V ∈ Sp, 1 ≤ p < ∞. Hence,

TϕV − V ∗Tϕ = V ∗(V − Tϕ) − (V ∗ − Tϕ)V ∈ Sp. Hence, T
2
ϕ − I = (V ∗ + Tϕ)(Tϕ − V ) + TϕV − V ∗Tϕ ∈ Sp.

As Tϕ is positive, (Tϕ + I) is invertible and so Tϕ − I = (T 2
ϕ − I)(Tϕ + I)−1 ∈ Sp, 1 ≤ p < ∞. So

V − I = (Tϕ − I) − (Tϕ − V ) ∈ Sp. Hence, V − I = A, say, is compact. Now V = I + A is isometric

and hence one-one, so ker(I +A) = {0} and hence −1 is not an eigenvalue of the compact operator A; other-

wise, ker(I + A) would contain a nonzero eigenvector of A with corresponding eigenvalue −1. Therefore, by

the Fredholm alternative [6], A− (−1)I(= V ) is invertible and hence unitary. 2

Theorem 7 Let ϕ ∈ H(D) and ψ ∈ L∞(D) such that ψ ≥ 0. If Tψ ≤ Re(C∗
ϕTψ),

lim
|z|→1−

1− |z|2

1− |ϕ(z)|2
= 0 , and 1+|ϕ(0)|

1−|ϕ(0)| ≤ 1 ; then Cϕ is unitary.
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Proof For f ∈ L2
a(D), by Heinz inequality [7], we obtain

⟨Tψf, f⟩ ≤ ⟨Re(C∗
ϕTψ)f, f⟩

= Re⟨C∗
ϕTψf, f⟩

≤ |⟨C∗
ϕTψf, f⟩|

= |⟨Tψf, Cϕf⟩|

≤ ⟨Tψf, f⟩
1
2 ⟨TψCϕf, Cϕf⟩

1
2 .

Hence, ⟨Tψf, f⟩ ≤ ⟨C∗
ϕTψCϕf, f⟩ for all f ∈ L2

a(D), so Tψ ≤ C∗
ϕTψCϕ. The operator T

1
2

ψ Cϕ is compact [12]

since lim
|z|→1−

1− |z|2

1− |ϕ(z)|2
= 0. Let M = T

1
2

ψ Cϕ. Then

MM∗ = T
1
2

ψ CϕC
∗
ϕT

1
2

ψ ≤ Tψ.

Hence, 0 ≤ C∗
ϕTψCϕ−Tψ ≤ C∗

ϕTψCϕ−T
1
2

ψ CϕC
∗
ϕT

1
2

ψ =M∗M −MM∗. That is, the operator M is hyponormal.

Hence, M is normal [2] as M is compact. Therefore, Tψ = C∗
ϕTψCϕ = T

1
2

ψ CϕC
∗
ϕT

1
2

ψ and hence C∗
ϕ is an

isometry on Ran (Tψ). Furthermore, Tψ commutes with Cϕ and also with C∗
ϕ, so

C∗
ϕCϕTψ = C∗

ϕTψCϕ = Tψ = TψCϕC
∗
ϕ.

Hence, Cϕ is unitary. 2

Theorem 8 Let ϕ ∈ L∞(D) be such that ϕ ≥ 0 with ∥ϕ∥∞ ≤ 1 and ∥T1+ϕ∥ < 1. Then Tϕ can expressed as

the mean of two unitary operators.

Proof Since ϕ ≥ 0, Tϕ is positive on L2
a(D). Then, by ([1], Theorem 3.1), for every unitary operator U on

L2
a(D), we obtain, ∥U−Tϕ∥ ≤ ∥I+Tϕ∥ = ∥T1+ϕ∥ < 1. Since ∥U−Tϕ∥ < 1, that implies ∥I−U∗Tϕ∥ < 1 so that

U∗Tϕ and Tϕ are invertible. Let Tϕ = V Q be the polar decomposition of Tϕ with V as partial isometry and

Q as positive operator on L2
a(D). Since Tϕ is invertible, V is unitary and Q is a positive invertible operator

on the Bergman space L2
a(D).

Since ∥Tϕ∥ ≤ 1, that implies ∥Q∥ ≤ 1. Therefore, I − Q2 is a positive operator and ∥I − Q2∥ ≤ 1.

Let us define W1 = Q + i(I − Q2)
1
2 and W2 = Q − i(I − Q2)

1
2 . One can easily observe that W ∗

1 = W2 and

W1W
∗
1 = Q2 + I −Q2 = I. Similarly, W ∗

1W1 = I. Hence, W1W
∗
1 =W ∗

1W1 = I and also W2W
∗
2 =W ∗

2W2 = I.

That implies that W1 and W2 are two unitary operators on the Bergman space L2
a(D). Therefore, Tϕ = V Q =

V (W1+W2

2 ) = 1
2 (VW1 + VW2) =

V1+V2

2 where V1 = VW1 and V2 = VW2 are two unitary operators on L2
a(D).

The result follows. 2

Definition 1 An operator T ∈ L(H) is a Fredholm operator if and only if range of T is closed, dim kerT is

finite, and dim kerT ∗ is finite.
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Let F(H) denote the collection of Fredholm operators on H. Recall that the index of an operator T ∈ L(H)

denoted as i(T ) is a function from F(H) to Z defined by i(T ) = dim kerT - dim kerT ∗. For more details,

see [9].

Corollary 2 Let ϕ ∈ L∞(D) and ∥ϕ∥∞ ≤ 1. If Tϕ ∈ L(L2
a(D)) has index zero then the Toeplitz operator Tϕ

can be expressed as the mean of two unitary operators.

Proof Since ϕ ∈ L∞(D) and ∥ϕ∥∞ ≤ 1, so ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1. Hence, ∥Tϕ∥ ≤ 1. Let Tϕ = UQ be the polar

decomposition of Tϕ where U is a partial isometry and Q is a positive operator on L2
a(D). If a Toeplitz operator

Tϕ with symbol ϕ has index zero then dim(ker(Tϕ)) = dim(ker(T ∗
ϕ )). Thus, the partial isometry U of an oper-

ator Tϕ can be extended to a unitary operator. Therefore, the corollary is evident from the above Theorem 8. 2

Corollary 3 Let ϕ ∈ L∞(D) and ∥ϕ∥∞ ≤ 1. If ∥Uz −Tϕ∥ < 1 , then the Toeplitz operator Tϕ can be expressed

as 1
4 times the alternating finite series of four unitary operators. That is, Tϕ =

4∑
k=1

(−1)k+1

4
Uk where Uk are

unitary operators.

Proof Since ∥ϕ∥∞ ≤ 1, so ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1. Given that ∥Uz − Tϕ∥ < 1, then by ([8], Corollary-1) Tϕ

is invertible. Let Tϕ = V Q be the polar decomposition of Tϕ with V as partial isometry and Q as positive

operator on L2
a(D). Since Tϕ is invertible, so V is unitary and Q is a positive invertible operator on the

Bergman space L2
a(D).

Since ∥Tϕ∥ ≤ 1, that implies ∥Q∥ ≤ 1. Therefore, I −Q2 is a positive operator and ∥I −Q2∥ ≤ 1. Let

us define W1 = Q+ i(I −Q2)
1
2 , W2 = −Q+ i(I −Q2)

1
2 , W3 = Q− i(I −Q2)

1
2 , and W4 = −Q− i(I −Q2)

1
2 .

One may observe that W ∗
1 = W3,W

∗
2 = W4 and W1W

∗
1 = I,W ∗

1W1 = I. Similarly, W2W
∗
2 = I,W ∗

2W2 = I ,

W3W
∗
3 = I,W ∗

3W3 = I , and W4W
∗
4 = I,W ∗

4W4 = I. Hence, W1,W2,W3 and W4 are unitary operators on

the Bergman space L2
a(D). Therefore, Tϕ = V Q = V (W1−W2+W3−W4

4 ) = 1
4 (VW1 − VW2 + VW3 − VW4) =

V1−V2+V3−V4

4 where V1 = VW1, V2 = VW2, V3 = VW3 , and V4 = VW4 are four unitary operators on L2
a(D).

Hence, the result follows. 2

Corollary 4 If W ∈ L(L2
a(D)) with ∥W∥ ≤ 1 is of finite rank then WW ∗ and W ∗W are unitarily equivalent.

Proof Assume that W ∈ L(L2
a(D)) and ∥W∥ ≤ 1. Let W = V Q be the polar decomposition of W with V as

a partial isometry and Q is a positive operator on the Bergman space. Since the operator W is of finite rank,

so dim(kerW ) = dim(kerW ∗). Therefore, by using Corollary 2, we can conclude that the partial isometry V

of the polar decomposition W extends to the unitary operator. Now

V ∗WW ∗V = V ∗V QQ∗V ∗V

= Q2

= Q∗IQ

= Q∗V ∗V Q

=W ∗W.

2
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Theorem 9 For a Toplitz operator Tϕ ∈ L(L2
a(D)), let T ∗

ϕTϕ = S ⊕ 0 defined on L2
a(D) = Range T ∗

ϕ ⊕ kerTϕ

and TϕT
∗
ϕ = T ⊕ 0 defined on L2

a(D) = Range Tϕ ⊕ kerT ∗
ϕ . Then S and T are unitarily equivalent.

Proof Since Range T ∗
ϕ = Range (T ∗

ϕTϕ)
1
2 and Range Tϕ = Range (TϕT ∗

ϕ )
1
2 we may define V : Range T ∗

ϕ →

Range Tϕ by V ((T ∗
ϕTϕ)

1
2 f) = Tϕf for f ∈ L2

a(D) and W : Range Tϕ → Range T ∗
ϕ ) by W ((TϕT

∗
ϕ )

1
2 g) = T ∗

ϕg

for g ∈ L2
a(D). Then V and W are surjective isometries satisfying

⟨V (T ∗
ϕTϕ)

1
2 f, (T ∗

ϕTϕ)
1
2 g⟩ = ⟨Tϕf, (TϕT ∗

ϕ )
1
2 g⟩

= ⟨f, T ∗
ϕ (TϕT

∗
ϕ )

1
2 g⟩

= ⟨f, (T ∗
ϕTϕ)

1
2T ∗

ϕg⟩

= ⟨(T ∗
ϕTϕ)

1
2 f,W (TϕT

∗
ϕ )

1
2 g⟩ for all f, g ∈ L2

a(D).

Thus, V =W ∗. We have

(V ∗TV )(T ∗
ϕTϕ)

1
2 f =WTTϕf

=W (TϕT
∗
ϕ )Tϕf

=W (TϕT
∗
ϕ )

1
2 (TϕT

∗
ϕ )

1
2Tϕf

= T ∗
ϕ (TϕT

∗
ϕ )

1
2Tϕf

= (T ∗
ϕTϕ)(T

∗
ϕTϕ)

1
2 f

= S(T ∗
ϕTϕ)

1
2 f,

which shows that V ∗TV = S, completing the proof. 2

Corollary 5 Let S, T ∈ L(L2
a(D)). If ⟨TUzkz, kz⟩ = ⟨Skz, Uzkz⟩ for all z ∈ D then |PS|2 is unitarily

equivalent to |QT |2 for any isometries P and Q in L(L2
a(D)).

Proof Suppose ⟨TUzkz, kz⟩ = ⟨Skz, Uzkz⟩ for all z ∈ D, and then ⟨UzSkz, kz⟩ = ⟨TUzkz, kz⟩ for all

z ∈ D. That is, TUz = UzS. Thus, S = UzTUz for all z ∈ D. Therefore, S∗S = UzT
∗TUz. Now

Uz|QT |2Uz = UzT
∗Q∗QTUz = UzT

∗TUz = S∗S = S∗P ∗PS = |PS|2 for any isometries P and Q in L(L2
a(D)).

2
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