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Abstract: In this paper, we give sufficient conditions on nonunitary operators on the Bergman space that imply the

unitary operators.
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1. Introduction

Let dA(z) denote the Lebesgue area measure on the open unit disk I, normalized so that the measure of the
disk D equals 1. The Bergman space L2 (D) is the Hilbert space consisting of analytic functions on D that are
also in L?(D,dA). For z € D, the Bergman reproducing kernel is the function K, € L2(D) such that f(z)

= (f,K.) for every f € L2(D). The normalized reproducing kernel k, is the function Hfé(izlb Here the norm

|- |l2 and the inner product (,) are taken in the space L?(DD,dA). For any n > 0,n € Z, let e,(z) = v/n + 12™.

o0
Then {e,} forms an orthonormal basis for L2(D). Let K(z,w) = K,(w) = (1—,1;@2 = Zen(z)en(w). For
n=0

¢ € L>(D), the Toeplitz operator T with symbol ¢ is the operator on L2(D) defined by Ty f = P(¢f); here
P is the orthogonal projection from L?(D,dA) onto L?(D).

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of . We can define for
each a € D an automorphism ¢, in Aut(D) such that:
() (6u 0 6a)(2) = 2
(i) ¢a(0) = a, ¢q(a) = 0;
(iii) ¢4 has a unique fixed point in D.

In fact, ¢,(z) = 2=£ for all a and z in D. An easy calculation shows that the derivative of ¢, at z is equal

T—as
to —ka(2). It follows that the real Jacobian determinant of ¢, at z is Jy,(2) = ko (2)]> = %
z € D and f any measurable function on D, we define a function U,f on D by U, f(w) = k,(w)f(¢.(w)).
Notice that U, is a bounded linear operator on L?(D,dA) and L2(D) for all z € D. Furthermore, it can be
verified that U2 = I, the identity operator, U} = U,,U.(L2(D)) C L2(D) and U,((L2(D))*) C (L2(D))* for
all ze€D. Thus, U,P = PU, for all z €D.

Let ¢ : D — D be analytic. Define the composition operator Cy from L2(D) into itself by Cyf = fo ¢.

Given
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1+]¢(0)]
1-[o(0)] -

measurable function on D, we define the function C,f = fo¢,, where ¢, € Aut(D). The map C, is a

The operator Cy is a bounded linear operator on L2(D) and ||Cyll < Given a € D and f any

composition operator on L2(D). Let L£(H) denote the algebra of bounded, linear operators from a Hilbert
space H into itself. Let H(D) be the space of holomorphic functions from D into itself. Let us denote
E"Ai’ = <T¢,\/’I’L + 12’", vn + 12’"> .

If T is a compact operator on a separable Hilbert space H, then there exist orthonormal sets {u,}32,

and {0,}52, in H such that Tz = Z AT, updon; x € H where A, is the nth singular value of T. Given
n=0

0 < p < 0o, we define the Schatten p-class of H, denoted by S,(H) or simply S, to be the space of all compact

operators T on H with its singular value sequence {)\,} belonging to I (the p-summable sequence space). We

1

P
will focus in the range 1 < p < co. In this case, S, is a Banach space with the norm ||T||, = [Z |)\n|p] .

n

The class S is also called the trace class of H and Sy is usually called the Hilbert—Schmidt class. One can
easily verify that if T is a compact operator on H and p > 1, then T € S, if and only if |T|P = (T*T)% €5
and ([ T[5 = IT[5 = N1

The Berezin transform ¢ of a function ¢ € L> (D) is defined to be the Berezin transform of the Toeplitz

operator Ty. In other words, ¢ = ,T\(; Furthermore, ¢(z) = T;(z) = (Tyks, ko) = (P(dk.), k.) = (pk., k) for
each z € D.
For ¢ € L?(D,dA) and X € D, let

gy 1-A?)?

500 = ks, ) = [ o0 T2,

For more details, see [12]. A nice survey of earlier known results relating to the unitary operators on the Hilbert

space can be found in [3, 4, 10, 11].

Theorem 1 ([4]) Let T,V,W € L(H), where T is a paranormal contraction operator, V is a coisometry, and
W has a dense range. Assume that TW = WV. Then T is unitary. In particular, if W 1is injective and has a

dense range, then V is also a unitary operator.

Theorem 2 ([11]) Let A,V,X € L(H) be such that V, X are isometries and A* is p-hyponormal. If VX =
XA, then A is unitary.

Theorem 3 ([4]) Let T,S,W € L(H) where W has a dense range. Assume that TW = WS and T*W =
WS*. Then T is unitary if S is unitary.

Theorem 4 ([3]) Let T be a k-paranormal contraction, and let
M={zeH:|T"z||>e; >0 for n=1,2,---}.

Then T|M is unitary.
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Corollary 1 ([3]) Let A be a k-paranormal contraction, let B be a right invertible operator with a power

bounded right inverse B, and let X be an operator with dense range such that AX = XB. Then A is unitary.

Theorem 5 ([10]) If T is a k-paranormal contraction operator, V has a right inverse V., which is power
bounded, and operator W has a dense range such that TW = WV, and then T*W = WV,.. Moreover, T is

unstary.

Main results

Proposition 1 Let ¢ € L>®(D) be such that ||d|lec < 1. Suppose that ¢ = m]g\qg(zﬂ > 0 and there exists a
ze

sequence = {tntn>0 C D such that
Ny = (Za —2Re () Eng) + 5(%)?)) < o0. (1.1)
n=0

If ¢ > M, and T(;l = T4op, for some z €D, then Ty is unitary.

Proof From [5] it follows that the Toeplitz operator Ty is invertible on L7 (D), since T V= Tyop. = U.TyU,

for some z € D. This implies Tg;l is unitarily equivalent to Tj. Therefore, ||T¢?1|| = Tyl < |[¢lec < 1.
Thus, for any f € L(D), | f|| = IT; ' Tofll < |Tsf]l < IIf[l. Hence, [Tof| = |IfIl, which implies T5T, = I.
Furthermore, since ||T5]| = [|To]| < [[¢lloc < 1 and [|(T5) M| = I(T; )l = 1T, 1l = Tl < lIglle <1, we

get for any g € L2(D),||g]| = ||(T$)_1T$g|| < |79l < llgll- Thus, [|Tzg[| = [lg]l, which implies that TyT5 = I.
Hence, Ty is unitary. O

Theorem 6 Let ¢ > 0. If V. € L(L2(D)) be an isometry such that Ty —V € S,,1 < p < co. Then V s
unitary.

Proof The Schatten ideal Sp,,1 < p < oo is a two-sided ideal. Given that Ty —V € §,,1 < p < oo. Hence,
T,V —V*T, = VXV —Ty) — (V¥ —Ty)V € S,. Hence, Tf, —I = (V*4+Ty)(Tp = V) + T,V = V*Ty € S,,.
As T, is positive, (Ty + I) is invertible and so Ty — I = (T; — I)(T, + 1)~ € S,,1 < p < oo. So
V—-I=T,-1I)—-T,—-V) €S, Hence, V-1 = A, say, is compact. Now V = I + A is isometric
and hence one-one, so ker(I + A) = {0} and hence —1 is not an eigenvalue of the compact operator A; other-
wise, ker(I + A) would contain a nonzero eigenvector of A with corresponding eigenvalue —1. Therefore, by
the Fredholm alternative [6], A — (—1)I(= V) is invertible and hence unitary. O

Theorem 7 Let ¢ € H(D) and ¢ € L>(D) such that ¢ > 0. If Ty, < Re(C3Ty),
. 1—z2
im ———

211 1= |o(2)[?

=0, and i}zgggl < 1; then Cy is unitary.
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Proof For f € L2(D), by Heinz inequality [7], we obtain

(Tyf, ) < (Re(C3Ty) f, f)
= Re(C3Tyf, f)
< [C3Ty f, )]
=Ty f,Cs )l

<A{Tuf, )3 (TyCof,Cof)?.

Hence, (Tyf, f) < (C5TyCyf, f) for all f € L;(D), so Ty, < C3T,,Cy. The operator chqﬁ is compact [12]

. . 1— |2
since lim

1
M W =0. Let M = Tj C¢ Then

1 1
MM* =T} CyCiT} < Ty,

1 1
Hence, 0 < C3TyCy — Ty < C3TyCy —T,; CoCT,) = M*M — MM*. That is, the operator M is hyponormal.
Hence, M is normal [2] as M is compact. Therefore, T = CiTyCy = Tf CoCT, f and hence C7 is an

isometry on Ran (Ty). Furthermore, T, commutes with Cy and also with C, so
CyCyTy = CiTyCy =Ty = Ty CyCy.

Hence, Cy is unitary. O

Theorem 8 Let ¢ € L>(D) be such that ¢ > 0 with ||¢|lcc <1 and ||[Th44|| < 1. Then Ty can expressed as

the mean of two unitary operators.
Proof Since ¢ >0, T, is positive on L2(D). Then, by ([1], Theorem 3.1), for every unitary operator U on
L2(D), we obtain, [|[U—Ty| < [[I4+Ts|| = || T1+¢|l < 1. Since ||[U—Ty| < 1, that implies ||[I—U*Ty|| < 1 so that
U*Ty and Ty are invertible. Let Ty = V@ be the polar decomposition of T, with V' as partial isometry and
Q as positive operator on L2(DD). Since Ty is invertible, V' is unitary and @ is a positive invertible operator
on the Bergman space LZ(D).

Since ||T4]| < 1, that implies ||Q| < 1. Therefore, I — Q? is a positive operator and ||I — Q2| < 1.
Let us define Wy = Q +i(I — Q2)2z and Wy = Q — i(I — Q2)2. One can easily observe that W; = W, and
WiW; = Q?+1 —Q? = I. Similarly, W;W; = I. Hence, W, W; = W;W; = I and also WoWs5 = Wi W, = L.
That implies that W; and W, are two unitary operators on the Bergman space L2(ID). Therefore, To =VQ =
V(W) = %(VWl +VW,) = % where Vi = VW; and Vi = VW, are two unitary operators on L2(DD).
The result follows. O

Definition 1 An operator T € L(H) is a Fredholm operator if and only if range of T is closed, dim kerT s
finite, and dim ker T™* is finite.
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Let F(H) denote the collection of Fredholm operators on H. Recall that the index of an operator T' € L(H)
denoted as i(T) is a function from F(H) to Z defined by i(T) = dim kerT - dim ker T*. For more details,
see [9)].

Corollary 2 Let ¢ € L=(D) and ||§|lc < 1. If Ty € L(L2(D)) has index zero then the Toeplitz operator T,

can be expressed as the mean of two unitary operators.

Proof Since ¢ € L=(D) and || < 1, so |Tyl| < 6]l < 1. Hence, [ Ty] < 1. Let T = UQ be the polar

decomposition of Ty where U is a partial isometry and () is a positive operator on L2 (D). If a Toeplitz operator
T with symbol ¢ has index zero then dim(ker(7y)) = dim(ker(77;)). Thus, the partial isometry U of an oper-

ator T can be extended to a unitary operator. Therefore, the corollary is evident from the above Theorem 8. O

Corollary 3 Let ¢ € L>®(D) and ||¢|loo < 1. If U, —Ty|| < 1, then the Toeplitz operator Ty can be expressed

4
-1 k+1
as % times the alternating finite series of four unitary operators. That is, Ty = Z (=1)
k=1

Uy where Uy, are

unitary operators.

Proof Since ||¢]loc < 1, s0 ||Ty]| < ||4]loc < 1. Given that |U, — Ty|| < 1, then by ([8], Corollary-1) T,

is invertible. Let Ty = V@ be the polar decomposition of Ty with V' as partial isometry and @ as positive
operator on L2(D). Since Ty is invertible, so V' is unitary and @ is a positive invertible operator on the
Bergman space L2 (D).
Since ||Ty|| < 1, that implies ||Q|| < 1. Therefore, I — @Q? is a positive operator and ||[I — Q?|| < 1. Let
us define Wy = Q +i(I —Q2)2, Wy = —Q+i(I —Q%)z, Ws =Q —i(I —Q?)2, and Wy = —Q —i(I — Q?)z.
One may observe that Wi = W3, Wy = Wy and Wi W = I, W)W, = I. Similarly, WoWg = I, WiWy = I,
WasW3s = I, WiWs =1, and WaW) = I, W;W, = I. Hence, Wi, W, W3 and W, are unitary operators on
the Bergman space L2(D). Therefore, Ty = VQ = V(D=0 WamWa) — LV, — VW, + VW3 — VW) =
W where V) = VW, Vo = VWy, V3 = VW3, and V; = VW, are four unitary operators on L2(D).
O

Hence, the result follows.

Corollary 4 If W € L(L2(D)) with |W|| <1 is of finite rank then WW* and W*W are unitarily equivalent.
Proof Assume that W € £L(L2(D)) and |[W]| < 1. Let W = VQ be the polar decomposition of W with V as

a partial isometry and @ is a positive operator on the Bergman space. Since the operator W is of finite rank,
so dim(ker W) = dim(ker W*). Therefore, by using Corollary 2, we can conclude that the partial isometry V
of the polar decomposition W extends to the unitary operator. Now

VWW*V = V*VQQ*V*V
=Q?
=Q1Q
=QVVQ
=W*W.
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Theorem 9 For a Toplitz operator Ty € L(L%(D)), let T;Ty =S ® 0 defined on L2(D) = Range 17 e ker Ty
and TyTE =T @0 defined on L%(D) = Range Ty @ ker T;. Then S and T are unitarily equivalent.

Proof Since Range T} = Range (T;T(z,)% and Range Ty = Range (T¢T;§)% we may define V' : Range T; —

Range T, by V((T;T(b)%f) =T,f for f € L2(D) and W : Range Ty — Range T7) by W((T¢T$)%g) =T;g
for g € L2(D). Then V and W are surjective isometries satisfying
* 1 * 1 xy\ L
(V(T5Ty)2 1, (T5Ts)2 9) = (T f, (TsTE)29)
= (£, T5(TsT5)?g)
* 1 *
= (f,(T3Ty)>T5g)

= (T3 Ty)% f,W(T,T})%g) for all f,g e L2(D).

N

Thus, V = W*. We have
(V*TV)(T;Ty)% f = WTTyf
= W(TT5)T, f
= W(T,T5)2 (TT}) 3 Ty f
= T3(TyT;) > Ty f
= (T3 T)(T3T5)* f
= S(T}Ty)% ,

which shows that V*T'V = S, completing the proof. O

Corollary 5 Let S,T € L(L3(D)). If (TU.k.,k,) = (Sk,,U,k,) for all = € D then |PS|* is unitarily

equivalent to |QT|? for any isometries P and Q in L(L?(D)).

Proof Suppose (TU.,k,,k.) = (Sk,,U,k,) for all z € D, and then (U,Sk.,k,) = (TU,k,,k,) for all

z € D. That is, TU, = U,S. Thus, S = U,TU, for all z € D. Therefore, S*S = U, T*TU,. Now

U.lQT|?U, = U, T*Q*QTU, = U,T*TU, = S*S = S*P*PS = |PS|? for any isometries P and Q in £(L2(D)).
O
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