

http://journals.tubitak.gov.tr/math/

Research Article

Sufficient conditions on nonunitary operators that imply the unitary operators

Pabitra Kumar JENA*

Department of Mathematics, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India

Received: 23.01.2016 • Accepted/Published Online: 07.05.2016	•	Final Version: 03.04.2017
--	---	----------------------------------

Abstract: In this paper, we give sufficient conditions on nonunitary operators on the Bergman space that imply the unitary operators.

Key words: Unitary operators, Toeplitz operators, composition operators, Berezin transform

1. Introduction

Let dA(z) denote the Lebesgue area measure on the open unit disk \mathbb{D} , normalized so that the measure of the disk \mathbb{D} equals 1. The Bergman space $L_a^2(\mathbb{D})$ is the Hilbert space consisting of analytic functions on \mathbb{D} that are also in $L^2(\mathbb{D}, dA)$. For $z \in \mathbb{D}$, the Bergman reproducing kernel is the function $K_z \in L_a^2(\mathbb{D})$ such that $f(z) = \langle f, K_z \rangle$ for every $f \in L_a^2(\mathbb{D})$. The normalized reproducing kernel k_z is the function $\frac{K_z}{\|K_z\|_2}$. Here the norm $\|\cdot\|_2$ and the inner product \langle, \rangle are taken in the space $L^2(\mathbb{D}, dA)$. For any $n \geq 0, n \in \mathbb{Z}$, let $e_n(z) = \sqrt{n+1}z^n$. Then $\{e_n\}$ forms an orthonormal basis for $L_a^2(\mathbb{D})$. Let $K(z, \bar{w}) = \overline{K_z(w)} = \frac{1}{(1-z\bar{w})^2} = \sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$. For $\phi \in L^\infty(\mathbb{D})$, the Toeplitz operator T_ϕ with symbol ϕ is the operator on $L_a^2(\mathbb{D})$ defined by $T_\phi f = P(\phi f)$; here

P is the orthogonal projection from $L^2(D, dA)$ onto $L^2_a(\mathbb{D})$.

Let $Aut(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D} . We can define for each $a \in \mathbb{D}$ an automorphism ϕ_a in $Aut(\mathbb{D})$ such that:

(i) $(\phi_a \ o \ \phi_a)(z) \equiv z;$

(ii) $\phi_a(0) = a, \phi_a(a) = 0;$

(iii) ϕ_a has a unique fixed point in \mathbb{D} .

In fact, $\phi_a(z) = \frac{a-z}{1-\overline{az}}$ for all a and z in \mathbb{D} . An easy calculation shows that the derivative of ϕ_a at z is equal to $-k_a(z)$. It follows that the real Jacobian determinant of ϕ_a at z is $J_{\phi_a(z)} = |k_a(z)|^2 = \frac{(1-|a|^2)^2}{|1-\overline{az}|^4}$. Given $z \in \mathbb{D}$ and f any measurable function on \mathbb{D} , we define a function $U_z f$ on \mathbb{D} by $U_z f(w) = k_z(w) f(\phi_z(w))$. Notice that U_z is a bounded linear operator on $L^2(\mathbb{D}, dA)$ and $L^2_a(\mathbb{D})$ for all $z \in \mathbb{D}$. Furthermore, it can be verified that $U_z^2 = I$, the identity operator, $U_z^* = U_z, U_z(L_a^2(\mathbb{D})) \subset L_a^2(\mathbb{D})$ and $U_z((L_a^2(\mathbb{D}))^{\perp}) \subset (L_a^2(\mathbb{D}))^{\perp}$ for all $z \in \mathbb{D}$. Thus, $U_z P = PU_z$ for all $z \in \mathbb{D}$.

Let $\phi : \mathbb{D} \to \mathbb{D}$ be analytic. Define the composition operator C_{ϕ} from $L^2_a(\mathbb{D})$ into itself by $C_{\phi}f = f \circ \phi$.

^{*}Correspondence: pabitramath@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 47B38, 47B33, 47B35.

JENA/Turk J Math

The operator C_{ϕ} is a bounded linear operator on $L^2_a(\mathbb{D})$ and $\|C_{\phi}\| \leq \frac{1+|\phi(0)|}{1-|\phi(0)|}$. Given $a \in \mathbb{D}$ and f any measurable function on \mathbb{D} , we define the function $C_a f = fo\phi_a$, where $\phi_a \in Aut(\mathbb{D})$. The map C_a is a composition operator on $L^2_a(\mathbb{D})$. Let $\mathcal{L}(H)$ denote the algebra of bounded, linear operators from a Hilbert space H into itself. Let $H(\mathbb{D})$ be the space of holomorphic functions from \mathbb{D} into itself. Let us denote $E_{n,\phi} = \langle T_{\phi}\sqrt{n+1}z^n, \sqrt{n+1}z^n \rangle$.

If T is a compact operator on a separable Hilbert space H, then there exist orthonormal sets $\{u_n\}_{n=0}^{\infty}$

and $\{\sigma_n\}_{n=0}^{\infty}$ in H such that $Tx = \sum_{n=0}^{\infty} \lambda_n \langle x, u_n \rangle \sigma_n$; $x \in H$ where λ_n is the nth singular value of T. Given 0 , we define the Schatten*p* $-class of H, denoted by <math>S_p(H)$ or simply S_p , to be the space of all compact operators T on H with its singular value sequence $\{\lambda_n\}$ belonging to l^p (the p-summable sequence space). We

will focus in the range $1 \le p < \infty$. In this case, S_p is a Banach space with the norm $||T||_p = \left[\sum_n |\lambda_n|^p\right]^{\overline{p}}$.

The class S_1 is also called the trace class of H and S_2 is usually called the Hilbert–Schmidt class. One can easily verify that if T is a compact operator on H and $p \ge 1$, then $T \in S_p$ if and only if $|T|^p = (T^*T)^{\frac{p}{2}} \in S_1$ and $||T||_p^p = |||T|||_p^p = |||T|^p||_1$.

The Berezin transform ϕ of a function $\phi \in L^{\infty}(\mathbb{D})$ is defined to be the Berezin transform of the Toeplitz operator T_{ϕ} . In other words, $\phi = \widetilde{T_{\phi}}$. Furthermore, $\phi(z) = \widetilde{T_{\phi}}(z) = \langle T_{\phi}k_z, k_z \rangle = \langle P(\phi k_z), k_z \rangle = \langle \phi k_z, k_z \rangle$ for each $z \in \mathbb{D}$.

For $\phi \in L^2(\mathbb{D}, dA)$ and $\lambda \in \mathbb{D}$, let

$$\widetilde{\phi}(\lambda) = \langle \phi k_{\lambda}, k_{\lambda} \rangle = \int_{\mathbb{D}} \phi(z) \frac{(1 - |\lambda|^2)^2}{|1 - \overline{\lambda}z|^4} dA(z)$$

For more details, see [12]. A nice survey of earlier known results relating to the unitary operators on the Hilbert space can be found in [3, 4, 10, 11].

Theorem 1 ([4]) Let $T, V, W \in \mathcal{L}(H)$, where T is a paranormal contraction operator, V is a coisometry, and W has a dense range. Assume that TW = WV. Then T is unitary. In particular, if W is injective and has a dense range, then V is also a unitary operator.

Theorem 2 ([11]) Let $A, V, X \in \mathcal{L}(H)$ be such that V, X are isometries and A^* is p-hyponormal. If VX = XA, then A is unitary.

Theorem 3 ([4]) Let $T, S, W \in \mathcal{L}(H)$ where W has a dense range. Assume that TW = WS and $T^*W = WS^*$. Then T is unitary if S is unitary.

Theorem 4 ([3]) Let T be a k-paranormal contraction, and let

$$M = \{ x \in H : ||T^{*n}x|| \ge \varepsilon_x > 0 \text{ for } n = 1, 2, \cdots \}.$$

Then T|M is unitary.

Corollary 1 ([3]) Let A be a k-paranormal contraction, let B be a right invertible operator with a power bounded right inverse B_1 , and let X be an operator with dense range such that AX = XB. Then A is unitary.

Theorem 5 ([10]) If T is a k-paranormal contraction operator, V has a right inverse V_r , which is power bounded, and operator W has a dense range such that $TW = WV_r$, and then $T^*W = WV_r$. Moreover, T is unitary.

Main results

Proposition 1 Let $\phi \in L^{\infty}(\mathbb{D})$ be such that $\|\phi\|_{\infty} \leq 1$. Suppose that $\zeta = \inf_{z \in \mathbb{D}} |\widetilde{\phi}(z)| > 0$ and there exists a sequence $\mu = \{\psi_n\}_{n \geq 0} \subset \mathbb{D}$ such that

$$\lambda_{\phi}^{\mu} = \left(\sum_{n=0}^{\infty} (1 - 2Re \ (\widetilde{\phi}(\bar{\psi_n})E_{n,\phi}) + |\widetilde{\phi}(\psi_n)|^2)\right)^{\frac{1}{2}} < \infty.$$

$$(1.1)$$

If $\zeta > \lambda_{\phi}^{\mu}$, and $T_{\phi}^{-1} = T_{\phi o \phi_z}$ for some $z \in \mathbb{D}$, then T_{ϕ} is unitary.

Proof From [5] it follows that the Toeplitz operator T_{ϕ} is invertible on $L_a^2(\mathbb{D})$, since $T_{\phi}^{-1} = T_{\phi o \phi_z} = U_z T_{\phi} U_z$ for some $z \in \mathbb{D}$. This implies T_{ϕ}^{-1} is unitarily equivalent to T_{ϕ} . Therefore, $\|T_{\phi}^{-1}\| = \|T_{\phi}\| \le \|\phi\|_{\infty} \le 1$. Thus, for any $f \in L_a^2(\mathbb{D}), \|f\| = \|T_{\phi}^{-1}T_{\phi}f\| \le \|T_{\phi}f\| \le \|f\|$. Hence, $\|T_{\phi}f\| = \|f\|$, which implies $T_{\overline{\phi}}T_{\phi} = I$. Furthermore, since $\|T_{\overline{\phi}}\| = \|T_{\phi}\| \le \|\phi\|_{\infty} \le 1$ and $\|(T_{\overline{\phi}})^{-1}\| = \|(T_{\phi}^{-1})^*\| = \|T_{\phi}^{-1}\| \le \|\phi\|_{\infty} \le 1$, we get for any $g \in L_a^2(\mathbb{D}), \|g\| = \|(T_{\overline{\phi}})^{-1}T_{\overline{\phi}}g\| \le \|T_{\overline{\phi}}g\| \le \|g\|$. Thus, $\|T_{\overline{\phi}}g\| = \|g\|$, which implies that $T_{\phi}T_{\overline{\phi}} = I$. Hence, T_{ϕ} is unitary.

Theorem 6 Let $\phi \ge 0$. If $V \in \mathcal{L}(L^2_a(\mathbb{D}))$ be an isometry such that $T_{\phi} - V \in S_p, 1 \le p < \infty$. Then V is unitary.

Proof The Schatten ideal $S_p, 1 \le p < \infty$ is a two-sided ideal. Given that $T_{\phi} - V \in S_p, 1 \le p < \infty$. Hence, $T_{\phi}V - V^*T_{\phi} = V^*(V - T_{\phi}) - (V^* - T_{\phi})V \in S_p$. Hence, $T_{\phi}^2 - I = (V^* + T_{\phi})(T_{\phi} - V) + T_{\phi}V - V^*T_{\phi} \in S_p$. As T_{ϕ} is positive, $(T_{\phi} + I)$ is invertible and so $T_{\phi} - I = (T_{\phi}^2 - I)(T_{\phi} + I)^{-1} \in S_p, 1 \le p < \infty$. So $V - I = (T_{\phi} - I) - (T_{\phi} - V) \in S_p$. Hence, V - I = A, say, is compact. Now V = I + A is isometric and hence one-one, so ker $(I + A) = \{0\}$ and hence -1 is not an eigenvalue of the compact operator A; otherwise, ker(I + A) would contain a nonzero eigenvector of A with corresponding eigenvalue -1. Therefore, by the Fredholm alternative [6], A - (-1)I(=V) is invertible and hence unitary. \Box

Theorem 7 Let $\phi \in H(\mathbb{D})$ and $\psi \in L^{\infty}(\mathbb{D})$ such that $\psi \ge 0$. If $T_{\psi} \le Re(C_{\phi}^*T_{\psi})$,

$$\lim_{|z|\to 1^-} \frac{1-|z|^2}{1-|\phi(z)|^2} = 0, \text{ and } \frac{1+|\phi(0)|}{1-|\phi(0)|} \le 1; \text{ then } C_{\phi} \text{ is unitary}$$

Proof For $f \in L^2_a(\mathbb{D})$, by Heinz inequality [7], we obtain

$$\begin{split} T_{\psi}f,f\rangle &\leq \langle Re(C_{\phi}^{*}T_{\psi})f,f\rangle \\ &= Re\langle C_{\phi}^{*}T_{\psi}f,f\rangle \\ &\leq |\langle C_{\phi}^{*}T_{\psi}f,f\rangle| \\ &= |\langle T_{\psi}f,C_{\phi}f\rangle| \\ &\leq \langle T_{\psi}f,f\rangle^{\frac{1}{2}} \langle T_{\psi}C_{\phi}f,C_{\phi}f\rangle^{\frac{1}{2}}. \end{split}$$

Hence, $\langle T_{\psi}f, f \rangle \leq \langle C_{\phi}^*T_{\psi}C_{\phi}f, f \rangle$ for all $f \in L^2_a(\mathbb{D})$, so $T_{\psi} \leq C_{\phi}^*T_{\psi}C_{\phi}$. The operator $T_{\psi}^{\frac{1}{2}}C_{\phi}$ is compact [12] since $\lim_{|z|\to 1^-} \frac{1-|z|^2}{1-|\phi(z)|^2} = 0$. Let $M = T_{\psi}^{\frac{1}{2}}C_{\phi}$. Then

$$MM^* = T_{\psi}^{\frac{1}{2}} C_{\phi} C_{\phi}^* T_{\psi}^{\frac{1}{2}} \le T_{\psi}.$$

Hence, $0 \leq C_{\phi}^* T_{\psi} C_{\phi} - T_{\psi} \leq C_{\phi}^* T_{\psi} C_{\phi} - T_{\psi}^{\frac{1}{2}} C_{\phi} C_{\phi}^* T_{\psi}^{\frac{1}{2}} = M^* M - M M^*$. That is, the operator M is hyponormal. Hence, M is normal [2] as M is compact. Therefore, $T_{\psi} = C_{\phi}^* T_{\psi} C_{\phi} = T_{\psi}^{\frac{1}{2}} C_{\phi} C_{\phi}^* T_{\psi}^{\frac{1}{2}}$ and hence C_{ϕ}^* is an isometry on $\overline{Ran(T_{\psi})}$. Furthermore, T_{ψ} commutes with C_{ϕ} and also with C_{ϕ}^* , so

$$C^*_{\phi}C_{\phi}T_{\psi} = C^*_{\phi}T_{\psi}C_{\phi} = T_{\psi} = T_{\psi}C_{\phi}C^*_{\phi}.$$

Hence, C_{ϕ} is unitary.

Theorem 8 Let $\phi \in L^{\infty}(\mathbb{D})$ be such that $\phi \geq 0$ with $\|\phi\|_{\infty} \leq 1$ and $\|T_{1+\phi}\| < 1$. Then T_{ϕ} can expressed as the mean of two unitary operators.

Proof Since $\phi \ge 0$, T_{ϕ} is positive on $L^2_a(\mathbb{D})$. Then, by ([1], Theorem 3.1), for every unitary operator U on $L^2_a(\mathbb{D})$, we obtain, $||U - T_{\phi}|| \le ||I + T_{\phi}|| = ||T_{1+\phi}|| < 1$. Since $||U - T_{\phi}|| < 1$, that implies $||I - U^*T_{\phi}|| < 1$ so that U^*T_{ϕ} and T_{ϕ} are invertible. Let $T_{\phi} = VQ$ be the polar decomposition of T_{ϕ} with V as partial isometry and Q as positive operator on $L^2_a(\mathbb{D})$. Since T_{ϕ} is invertible, V is unitary and Q is a positive invertible operator on the Bergman space $L^2_a(\mathbb{D})$.

Since $||T_{\phi}|| \leq 1$, that implies $||Q|| \leq 1$. Therefore, $I - Q^2$ is a positive operator and $||I - Q^2|| \leq 1$. Let us define $W_1 = Q + i(I - Q^2)^{\frac{1}{2}}$ and $W_2 = Q - i(I - Q^2)^{\frac{1}{2}}$. One can easily observe that $W_1^* = W_2$ and $W_1W_1^* = Q^2 + I - Q^2 = I$. Similarly, $W_1^*W_1 = I$. Hence, $W_1W_1^* = W_1^*W_1 = I$ and also $W_2W_2^* = W_2^*W_2 = I$. That implies that W_1 and W_2 are two unitary operators on the Bergman space $L_a^2(\mathbb{D})$. Therefore, $T_{\phi} = VQ = V(\frac{W_1+W_2}{2}) = \frac{1}{2}(VW_1 + VW_2) = \frac{V_1+V_2}{2}$ where $V_1 = VW_1$ and $V_2 = VW_2$ are two unitary operators on $L_a^2(\mathbb{D})$. The result follows.

Definition 1 An operator $T \in \mathcal{L}(H)$ is a **Fredholm** operator if and only if range of T is closed, dim ker T is finite, and dim ker T^* is finite.

-	-	-	
н			
ь.		_	

JENA/Turk J Math

Let $\mathcal{F}(H)$ denote the collection of Fredholm operators on H. Recall that the index of an operator $T \in \mathcal{L}(H)$ denoted as i(T) is a function from $\mathcal{F}(H)$ to \mathbb{Z} defined by $i(T) = \dim \ker T$ - dim $\ker T^*$. For more details, see [9].

Corollary 2 Let $\phi \in L^{\infty}(\mathbb{D})$ and $\|\phi\|_{\infty} \leq 1$. If $T_{\phi} \in \mathcal{L}(L^2_a(\mathbb{D}))$ has index zero then the Toeplitz operator T_{ϕ} can be expressed as the mean of two unitary operators.

Proof Since $\phi \in L^{\infty}(\mathbb{D})$ and $\|\phi\|_{\infty} \leq 1$, so $\|T_{\phi}\| \leq \|\phi\|_{\infty} \leq 1$. Hence, $\|T_{\phi}\| \leq 1$. Let $T_{\phi} = UQ$ be the polar decomposition of T_{ϕ} where U is a partial isometry and Q is a positive operator on $L^2_a(\mathbb{D})$. If a Toeplitz operator T_{ϕ} with symbol ϕ has index zero then dim $(\ker(T_{\phi})) = \dim(\ker(T^*_{\phi}))$. Thus, the partial isometry U of an operator T_{ϕ} can be extended to a unitary operator. Therefore, the corollary is evident from the above Theorem 8. \Box

Corollary 3 Let $\phi \in L^{\infty}(\mathbb{D})$ and $\|\phi\|_{\infty} \leq 1$. If $\|U_z - T_{\phi}\| < 1$, then the Toeplitz operator T_{ϕ} can be expressed as $\frac{1}{4}$ times the alternating finite series of four unitary operators. That is, $T_{\phi} = \sum_{k=1}^{4} \frac{(-1)^{k+1}}{4} U_k$ where U_k are

unitary operators.

Proof Since $\|\phi\|_{\infty} \leq 1$, so $\|T_{\phi}\| \leq \|\phi\|_{\infty} \leq 1$. Given that $\|U_z - T_{\phi}\| < 1$, then by ([8], Corollary-1) T_{ϕ} is invertible. Let $T_{\phi} = VQ$ be the polar decomposition of T_{ϕ} with V as partial isometry and Q as positive operator on $L^2_a(\mathbb{D})$. Since T_{ϕ} is invertible, so V is unitary and Q is a positive invertible operator on the Bergman space $L^2_a(\mathbb{D})$.

Since $||T_{\phi}|| \leq 1$, that implies $||Q|| \leq 1$. Therefore, $I - Q^2$ is a positive operator and $||I - Q^2|| \leq 1$. Let us define $W_1 = Q + i(I - Q^2)^{\frac{1}{2}}$, $W_2 = -Q + i(I - Q^2)^{\frac{1}{2}}$, $W_3 = Q - i(I - Q^2)^{\frac{1}{2}}$, and $W_4 = -Q - i(I - Q^2)^{\frac{1}{2}}$. One may observe that $W_1^* = W_3, W_2^* = W_4$ and $W_1W_1^* = I, W_1^*W_1 = I$. Similarly, $W_2W_2^* = I, W_2^*W_2 = I$, $W_3W_3^* = I, W_3^*W_3 = I$, and $W_4W_4^* = I, W_4^*W_4 = I$. Hence, W_1, W_2, W_3 and W_4 are unitary operators on the Bergman space $L_a^2(\mathbb{D})$. Therefore, $T_{\phi} = VQ = V(\frac{W_1 - W_2 + W_3 - W_4}{4}) = \frac{1}{4}(VW_1 - VW_2 + VW_3 - VW_4) = \frac{V_1 - V_2 + V_3 - V}{4}$ where $V_1 = VW_1, V_2 = VW_2, V_3 = VW_3$, and $V_4 = VW_4$ are four unitary operators on $L_a^2(\mathbb{D})$. Hence, the result follows.

Corollary 4 If $W \in \mathcal{L}(L^2_a(\mathbb{D}))$ with $||W|| \leq 1$ is of finite rank then WW^* and W^*W are unitarily equivalent. **Proof** Assume that $W \in \mathcal{L}(L^2_a(\mathbb{D}))$ and $||W|| \leq 1$. Let W = VQ be the polar decomposition of W with V as a partial isometry and Q is a positive operator on the Bergman space. Since the operator W is of finite rank, so dim(ker W) = dim(ker W^*). Therefore, by using Corollary 2, we can conclude that the partial isometry V of the polar decomposition W extends to the unitary operator. Now

$$V^*WW^*V = V^*VQQ^*V^*V$$
$$= Q^2$$
$$= Q^*IQ$$
$$= Q^*V^*VQ$$
$$= W^*W.$$

_	

Theorem 9 For a Toplitz operator $T_{\phi} \in \mathcal{L}(L^2_a(\mathbb{D}))$, let $T^*_{\phi}T_{\phi} = S \oplus 0$ defined on $L^2_a(\mathbb{D}) = \overline{Range T^*_{\phi}} \oplus \ker T_{\phi}$ and $T_{\phi}T^*_{\phi} = T \oplus 0$ defined on $L^2_a(\mathbb{D}) = \overline{Range T_{\phi}} \oplus \ker T^*_{\phi}$. Then S and T are unitarily equivalent.

Proof Since $\overline{Range T_{\phi}^*} = \overline{Range (T_{\phi}^*T_{\phi})^{\frac{1}{2}}}$ and $\overline{Range T_{\phi}} = \overline{Range (T_{\phi}T_{\phi}^*)^{\frac{1}{2}}}$ we may define $V : \overline{Range T_{\phi}^*} \to \overline{Range T_{\phi}}$ by $V((T_{\phi}^*T_{\phi})^{\frac{1}{2}}f) = T_{\phi}f$ for $f \in L^2_a(\mathbb{D})$ and $W : \overline{Range T_{\phi}} \to \overline{Range T_{\phi}^*})$ by $W((T_{\phi}T_{\phi}^*)^{\frac{1}{2}}g) = T_{\phi}^*g$ for $g \in L^2_a(\mathbb{D})$. Then V and W are surjective isometries satisfying

$$\langle V(T_{\phi}^*T_{\phi})^{\frac{1}{2}}f, (T_{\phi}^*T_{\phi})^{\frac{1}{2}}g \rangle = \langle T_{\phi}f, (T_{\phi}T_{\phi}^*)^{\frac{1}{2}}g \rangle$$

$$= \langle f, T_{\phi}^*(T_{\phi}T_{\phi})^{\frac{1}{2}}g \rangle$$

$$= \langle f, (T_{\phi}^*T_{\phi})^{\frac{1}{2}}T_{\phi}^*g \rangle$$

$$= \langle (T_{\phi}^*T_{\phi})^{\frac{1}{2}}f, W(T_{\phi}T_{\phi}^*)^{\frac{1}{2}}g \rangle \text{ for all } f, g \in L^2_a(\mathbb{D}).$$

Thus, $V = W^*$. We have

$$(V^*TV)(T_{\phi}^*T_{\phi})^{\frac{1}{2}}f = WTT_{\phi}f$$

= $W(T_{\phi}T_{\phi}^*)T_{\phi}f$
= $W(T_{\phi}T_{\phi}^*)^{\frac{1}{2}}(T_{\phi}T_{\phi}^*)^{\frac{1}{2}}T_{\phi}f$
= $T_{\phi}^*(T_{\phi}T_{\phi}^*)^{\frac{1}{2}}T_{\phi}f$
= $(T_{\phi}^*T_{\phi})(T_{\phi}^*T_{\phi})^{\frac{1}{2}}f$
= $S(T_{\phi}^*T_{\phi})^{\frac{1}{2}}f,$

which shows that $V^*TV = S$, completing the proof.

Corollary 5 Let $S, T \in \mathcal{L}(L^2_a(\mathbb{D}))$. If $\langle TU_z k_z, k_z \rangle = \langle Sk_z, U_z k_z \rangle$ for all $z \in \mathbb{D}$ then $|PS|^2$ is unitarily equivalent to $|QT|^2$ for any isometries P and Q in $\mathcal{L}(L^2_a(\mathbb{D}))$.

Proof Suppose $\langle TU_z k_z, k_z \rangle = \langle Sk_z, U_z k_z \rangle$ for all $z \in \mathbb{D}$, and then $\langle U_z Sk_z, k_z \rangle = \langle TU_z k_z, k_z \rangle$ for all $z \in \mathbb{D}$. That is, $TU_z = U_z S$. Thus, $S = U_z TU_z$ for all $z \in \mathbb{D}$. Therefore, $S^*S = U_z T^*TU_z$. Now $U_z |QT|^2 U_z = U_z T^* Q^* QTU_z = U_z T^*TU_z = S^*S = S^*P^*PS = |PS|^2$ for any isometries P and Q in $\mathcal{L}(L^2_a(\mathbb{D}))$.

References

- [1] Aiken JG, Erdos JA, Goldstein JA. Unitary approximation of positive operators. Illinois J Math 1980; 24: 61-72.
- [2] Douglas RG. Banach Algebra Techniques in Operator Theory. New York, NY, USA: Academic Press, 1972.
- [3] Duggal BP. Contractions with a unitary part. J London Math Soc 1985; 31: 131-136.
- [4] Goya E, Saito T. On intertwining by an operator having a dense range. Tohoku Math J 1981; 33: 127-131.
- [5] Gurdal M, Sohret F. Some results for Toeplitz operators on the Bergman space. Appl Math Comput 2011; 218: 789-793.
- [6] Halmos PR. Hilbert Space Problem Book. 2nd ed. New York, NY, USA: Springer-Verlag, 1982.

-	-	-
L		
L		
L	-	-

JENA/Turk J Math

- [7] Heinz E. On an Inequality for Linear Operators in Hilbert Space. Report on Operator Theory and Group Representations. Washington, DC, USA: National Academy of Sciences-National Research Council, 1995.
- [8] Lin CS. The unilateral shift and a norm equality for bounded linear operators. P Am Math Soc 1999; 127: 1693-1696.
- [9] Olsen CL. Unitary approximation. J Funct Anal 1989; 85: 392-419.
- [10] Patel JM, Sheth IH. On intertwining by an operator having a dense range. Indian J Pure Ap Mat 1983; 14: 1077-1082.
- [11] Rashid MHM. Some conditions on non-normal operators which imply normality. Thai J Math 2010; 8: 185-192.
- [12] Zhu K. Operator Theory in Function Spaces. New York, NY, USA: Marcel Dekker, 1990.