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Abstract: In this work, we extend the uni-dimensional results, already found by Jerbi and Kharrat, for the multidi-

mensional case: we compute the Malliavin weights related to the conditional expectation E(Pt(Xt)|(Xs)) for 0 ≤ s ≤ t ,

where the only state variable follows a multidimensional J-process.
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1. Introduction

Malliavin calculus is an especially promising tool to compute the value of the conditional expectation in order

to resolve many problems in the field of financial mathematics. In 2005, Bally et al. [1] initiated the study

of the evaluation of the American option pricing and they developed a theoretical expression of the following

conditional expectation:

E(Pt(Xt)|(Xs)) (1)

where 0 ≤ s ≤ t , Pt is the price of an American option at time t , and Xt is generated by the following process:

dXt = rXtdt+ σXtdWt

X0 = x ,

where x ∈ R+ , r represents the interest rate considered as constant, σ denotes the volatility, and W is a

Brownian motion.

In 2011, Jerbi introduce the J-law and the J-process [3] as a generalization of the geometric Brownian

motion. Then, in his paper [4], he elaborated a new closed form solution for pricing European options as an

extension of the Black and Scholes model and showed that his model was equivalent to Heston’s stochastic

volatility model [2]. After that, Jerbi and Kharrat [5] showed the equivalence between the one-dimensional

model (under J-process) and the stochastic volatility model. By using the J-process as one of the underlying

assets, rather than the Brownian motion, the innovation consisted of extending Bally et al.’s work in order to

consider both the skewness and kurtosis effects.

In their paper, Bally et al. [1] developed the previous problem for the multidimensional case where

they assumed that Xt was generated by the multi-Brownian motion. However, their results did not take into

∗Correspondence: mohamed.kharrat08@gmail.com

2010 AMS Mathematics Subject Classification: 91Gxx, 60Gxx..

381



KHARRAT/Turk J Math

account the skewness and kurtosis effects. That is why their results were not in accordance with the reality of

the financial market. In order to overcome this shortcoming, this model should be extended by considering the

volatility as a stochastic state variable.

As an extension of the work by Jerbi and Kharrat [5] for the one-dimensional J-process, our aim is to

give a formula of the conditional expectation given by (1) for the multidimensional J-process.

To do this, we first recall some concepts of the J-law and the J-process [2,5].

Definition 1 Let V be a random variable. V is said to follow a standard J-law:

V ∼ J(λ, θ)

if its distribution density is defined as follows:

f(v, λ, θ) =
1

Jer(λ, θ)
√
2π

e−
1
2 v

2

N(λv + θ) ,

where λ and θ are two reals and N(.) represents the cumulative function of the standard normal distribution,

and where the quantity Jer(λ, θ) is defined as follows: Jer(λ, θ) = 1√
2π

∫ +∞
−∞ e−

1
2v

2

N(λv + θ)dv.

In fact, for λ = 0, the J-law represents nothing else but the standard normal law.

Using the J-law, Jerbi proposed a new stochastic process as a generalization of the geometric Brownian

motion [3]. Then Kharrat improved Jerbi’s definition of the previous process (see [6], page 21).

Definition 2 Let (Ω,F, P, (Ft)) be a filtered probability space. A stochastic process (Xt)t≥0 is said to follow a

J-process if we have:

• Xt is an Ft -adapted and continuous stochastic process;

• for s < t , Xt −Xs follows Mt−s ;

• dXt = α(Xt, t)dt+ β(Xt, t)dMt ,

where α and β are functions of both Xt and time t . If we put dMt = U
√
dt , where U is a standard

random variable based on the above defined J-law: U = V−E(V )
σ(V ) , where V ∼ J(λ, θ) , E(V ) = λZ(λ, θ) ,

σ2
V = 1− λ2θ

1+λ2Z(λ, θ)− λ2Z2(λ, θ) , and Z(λ, θ) = e
− θ2

2(1−λ2)

Jer(λ,θ)
√

2π(1−λ2)
.

Then the J-process can also be written as follows:

dXt = α(Xt, t)dt+ β(Xt, t)U
√
dt.

The outline of this paper is as follows. In the second section, we present the hypothesis and the nature

of the problem. In the third section, we present our theoretical framework followed by our results. The fourth

section will be reserved for the conclusion.
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2. Nature of the problem

In the following, we extend the definition of the J-process to the multidimensional case.

Definition 3 Let (Ω,F, P, (Ft)) be a filtered probability space. A multidimensional J-process is a stochastic

process X = (Xt)t∈[0,+∞[ in Rd such that

• X is an Ft -adapted and continuous stochastic process;

• for s < t , Xi
t −Xi

s has J-law distribution, i.e. follows Mt−s , and it is independent of Fs .

Let X denote the underlying asset price process, following a multidimensional J-process defined by

dXt = rXtdt+ σXtdMt

X0 = x ,

where x ∈ Rd
+ , r ∈ Rd

+ , with ri = r0 for any i = 1, · · · , d, and r0 represents the interest rate at the

initial time considered as constant, σ denotes the d × d volatility matrix assumed to be nondegenerate and a

subtriangle matrix, and M is a d-dimensional J-process.

Hence, any component of Xt can be written as

Xi
t = xiexp

ri −
1

2

i∑
j=1

σ2
ij

 t+
i∑

j=1

σijM
j
t

 , with i = 1, · · · , d. (2)

In order to price the American option, we must evaluate this conditional expectation

E(Pt(Xt)|Xs = α),

where 0 ≤ s ≤ t , α ∈ Rd
+ , and Pt represents the American option price at time t , which is an Rd measurable

function.

In the following section, we will present our theoretical framework followed by our main results in order

to solve the above problem.

3. Theoretical framework

Let lt = (l1t , · · · , ldt ) be a fixed C1 function. Moreover, let us set the following:

X̃i
t = xiexp

ri −
1

2

i∑
j=1

σ2
ij

 t+ lit + σiiM
i
t

 , with i = 1, · · · , d. (3)

As a first result, we study a transformation allowing us to handle the new process X̃ instead of X .

Proposition 1 For any t ≥ 0 , there exists a function Ft(.) : Rd
+ → Rd

+ such that Ft is invertible, and

Xt = Ft(X̃t)

X̃t = F−1
t (Xt).
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Proof Let t , l , and x be fixed. From Equation (3), we may deduce that

M i
t =

1

σii

ln
X̃i

t

xi
−

ri −
1

2

i∑
j=1

σ2
ij

 t− lit


and, by inserting this in Equation (2), we get

Xi
t = xiexp

ri −
1

2

i∑
j=1

σ2
ij

 t−
i∑

j=1

σij

σjj

rj −
1

2

i∑
j=1

σ2
jj

 t+ ljt

 i∏
j=1

(
X̃i

t

xi
)

σij
σjj .

Hence, after setting σ̃ij =
σij

σjj
with i, j = 1, · · · , d , let Ft = (F 1

t , · · · , F d
t ) satisfy

ln(Ft(y)) = −σ̃lt + σ̃lny + (I − σ̃)

(
lnx+ (r − 1

2
σ2)t

)
,

where its inverse function is given by

ln(F−1
t (z)) = lt + σ̃−1lnz + (I − σ̃−1)

(
lnx+ (r − 1

2
σ2)t

)
.

Let us note that σ̃−1 is easy to compute because σ̃ is a triangular matrix. Moreover, σ̃−1 is also

triangular and (σ̃−1)ii = 1 for any i . Hence, the function Ft and its inverse Gt = F−1
t (such that Xt = Ft(X̃t)

and X̃t = Gt(Xt)) are respectively given by

F i
t (y) = yi

exp(−
i∑

j=1

σ̃ij l
j
t )

 i−1∏
j=1

(
yie

−(rj− 1
2

∑i
j=1 σ2

jj)t

xj

)σ̃ij

, with i = 1, · · · , d and y ∈ Rd
+ (4)

and

Gi
t(z) = ziexp(l

i
t)

i−1∏
j=1

(
zie

−(rj− 1
2

∑i
j=1 σ2

jj)t

xj

)σ̃−1
ij

, with i = 1, · · · , d and z ∈ Rd
+ . (5)

By using the process X̃ , mainly the fact that all its components are independent, we can easily get a

first formula for the conditional expectation starting from the one-dimensional case, by using the results already

found by Jerbi and Kharrat [5].

Now we are ready to present and demonstrate the following theorem.

Theorem 1 Let 0 ≤ s ≤ t be fixed and let Xt = XsW , with W = e(r−
1
2σ

2)(t−s)+σ(Mt−Ms) . Let us assume that

W is independent of Xs and that its density is Γ(γ(W )) .

For any Rd -measurable function Pt , and for α ∈ Rd
+ , we have

E(Pt(Xt)|Xs = α) =
E (H(Xs − α)Υs[Pt](Xt))

E (H(Xs − α)Υs[1](Xt))
,
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where

Υs[f ](Xt) =
d∏

i=1

(σMs
)2f(Xi

t)

σXs

√
t− s

(
Ms + 2

σ
√
t− s

σMs

− λ
N ′(λMs + θ)

N(λMs + θ)
+

σ

σMs

W
γ′(W )Γ′(γ(W ))

Γ(γ(W ))

)
.

Let us note that N( ) represents the cumulative function of the standard normal distribution and H is

the Heaviside function, with X̃s = Gs(Xs) and α̃ = Gs(α) .

Proof Let us set P̃t(y) = Pt ◦ Ft(y) ; y ∈ Rd
+ , Ft being defined in (4).

Since Xt = Ft(X̃t) for any t , we can easily deduce that

E(Pt(Xt)|Xs = α) = E(P̃t(X̃t)|X̃s = Gs(α)) .

Then, by setting α̃ = Gs(α), it is sufficient to prove that

E(P̃t(X̃t)|X̃s = α̃) =
E
(
H(X̃s − α̃)Υ̃s[P̃t](X̃t)

)
E
(
H(X̃s − α̃)Υ̃s[1](X̃t)

) .

Let us assume that P̃t(X̃t) = P̃t

1
(X̃1

t ).P̃t

2
(X̃2

t ) . . . P̃t

d
(X̃d

t ), i.e. P̃t can be separated in the product of

d -measurable functions, where each one depends only on a single variable.

In such a case, we clearly have

E(P̃t(X̃t)|X̃s = α̃) =
d∏

i=1

E(P̃ i
t (X̃

i
t)|X̃i

s = α̃i) .

2

Now it is easy to show that, for each X̃i
t , we can apply the result already found by Jerbi and Kharrat in

[5]. Then we get the following result:

E(P̃t(X̃t)|X̃s = α̃) =
d∏

i=1

E(P̃t

i
(X̃i

t)|X̃i
s = α̃i)

=

d∏
i=1

E
(
H(X̃i

s − α̃i)Υi
s[P̃

i
t ](X̃

i
t)
)

E
(
H(X̃i

s − α̃i)Υi
s[1](X̃

i
t)
) ,

where

Υi
s[P̃

i
t ](X̃

i
t) =

(σMs)
2P̃ i

t (X̃
i
t)

σXs

√
t− s

(
Ms + 2

σ
√
t− s

σMs

− λ
N ′(λMs + θ)

N(λMs + θ)
+

σ

σMs

W
γ′(W )Γ′(γ(W ))

Γ(γ(W ))

)
,

and

Υi
s[1](X̃

i
t) =

(σMs)
2

σXs

√
t− s

(
Ms + 2

σ
√
t− s

σMs

− λ
N ′(λMs + θ)

N(λMs + θ)
+

σ

σMs

W
γ′(W )Γ′(γ(W ))

Γ(γ(W ))

)
.
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By using the independence of the components of X̃ , we can easily infer that

Υ̃s[P̃t](X̃t) =
d∏

i=1

Υi
s[P̃

i
t ](X̃

i
t) ,

and

Υ̃s[1](X̃t) =

d∏
i=1

Υi
s[1](X̃

i
t).

Important remark

We should note that

• When we take λ = 1 and θ = 0, we return to Bally et al.’s results [1].

• When d = 1, we return to Jerbi and Kharrat’s results [5].

4. Conclusion

In this paper, we have performed two extensions. The first one is the extension of the work performed by Bally

et al. [1] in order to take into account both the skewness and kurtosis effects, allowing us to compute the

conditional expectation related to the pricing problem of the American put option. The second one consists

of the extension of Jerbi and Kharrat’s work [5] from the one-dimensional case to the multidimensional one.

By using Malliavin calculus, the conditional expectation can also be written as a suitable ratio of ordinal

expectations. With this new formula, the previous conditional expectation becomes much easier to compute,

by using the Monte Carlo method. Moreover, the calculation of the conditional expectation, which represents

the aim of our paper, can be applied in any problems including the skewness and kurtosis effects.
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Appendix

The proof of Equation (2) is similar to the case of the Black and Scholes equation.

An underlying asset following a multidimensional J-process is generated by this dynamic:

dXi
t = Xi

t

ridt+
i∑

j=1

σijdM
j
t

 , with i = 1, · · · , d.

Based on the It formula related to the J-process [4] and knowing the fact that this process is Martingale we get

Xi
t = xiexp

ri −
1

2

i∑
j=1

σ2
ij

 t+

i∑
j=1

σijM
j
t

 , with i = 1, · · · , d.
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