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Abstract: Recently Fang and Li established a sampling formula that involves only samples from the function and its

first partial derivatives for functions from Bernstein space, Bp
σ(R2) . In this paper, we derive a general bivariate sampling

series for the entire function of two variables that satisfy certain growth conditions. This general bivariate sampling

formula involves samples from the function and its mixed and nonmixed partial derivatives. Some known sampling series

will be special cases of our formula, like the sampling series of Parzen, Peterson and Middleton, and Gosselin. The

truncated series of this formula are used to approximate functions from the Bernstein space so we establish a bound

for the truncation error of this series based on localized sampling without decay assumption. Numerically, we compare

our approximation results with the results of Fang and Li’s sampling formula. Our formula gives us highly accurate

approximations in comparison with the results of Fang and Li’s formula.

Key words: Sampling series, contour integral, truncation error

1. Introduction

Denote by Lp(Rn), 1 ≤ p < ∞ , n ∈ N , the Banach space of all complex-valued Lebesgue measurable functions

f of n -variables such that |f |p is integrable, with usual norm ∥.∥p . The Bernstein space, Bp
σ(Rn), 1 ≤ p < ∞ ,

is the class of all entire functions of exponential type σ , which belong to Lp(Rn) when restricted to Rn . In

other words, the Bernstein space, Bp
σ(Rn), is the class of all entire functions of n -variables that satisfy the

growth condition

|f (z)| ≤ sup
x∈Rn

|f(x)| expσ

(
n∑

k=1

|ℑzk|

)
, z := (z1, . . . , zn) ∈ Cn, (1.1)

and belong to Lp(Rn) when restricted to Rn . Here ℑz denotes the imaginary part of z . According to Schwartz’s

theorem cf. [21, p. 109],

Bp
σ (Rn) =

{
f ∈ Lp (Rn) : supp f̂ ⊂ [−σ, σ]n

}
,

where f̂ is the Fourier transform of f in the sense of generalized functions. For f ∈ Bp
σ (Rn), since the Fourier

transform of f vanishes outside [−σ, σ]n , we say that f is a bandlimited function with bandwidth σ . In

particular, the space B2
σ (Rn) is called Paley–Wiener space.

The sampling that uses samples from a function f of one variable and its derivatives up to r was first

given by Linden and Abramson in 1960)[18]; for more detail, see [14, 16, 24]. The generalized sampling series
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for functions from the Bernstein space, Bp
σ (R), states that if f ∈ Bp

σ(R2), then it has the generalized sampling

expansion involving derivatives, see, e.g., [25, 29, 31],

f(z) =
∞∑

n=−∞

∑
i+j+l=r

f (i) (nh)
sinr+1

(
πh−1z

)
i! ℓ! (z − nh)

j+1

[
dℓ

dzℓ

(
z − nh

sin (πh−1z)

)r+1
]
z=nh

, (1.2)

where z ∈ C , h := (r + 1)π/σ and r ∈ N◦ . Series (1.2) converges uniformly on any compact subset of C . The

authors of [8, 29] studied the truncation error of the generalized sampling series (1.2) on a complex domain and

a modification of this series with a Gaussian multiplier is given in [7, 9]. The special cases of (1.2) when r = 0

and r = 1 are useful in the approximation theory and its applications, cf., e.g., [2, 3, 6, 26, 27].

There are many results of multidimensional sampling series, cf., e.g., [15, 17, 20]. To the best of our

knowledge, the first multidimensional sampling series using values from the function and its partial derivatives

was introduced by Montgomery in 1965 [20]. A more general form of double sampling involving values of partial

and mixed partial derivatives was given by Horng [15]. Recently, Fang and Li introduced a multidimensional

version of the Hermite sampling theorem involving only samples from all the first partial derivatives for functions

from Bernstein space Bp
σ(Rn), cf. [11, 17]. The bivariate sampling of Fang and Li states that if f ∈ Bp

σ(R2),

then we have the sampling series

f(x, y) =

∞∑
n=−∞

∞∑
m=−∞

{
f

(
2nπ

σ
,
2mπ

σ

)
+

(
x− 2nπ

σ

)
f ′
x

(
2nπ

σ
,
2mπ

σ

)

+

(
y − 2mπ

σ

)
f ′
y

(
2nπ

σ
,
2mπ

σ

)}
sin2 ((σ/2)x− nπ) sin2 ((σ/2)y −mπ) , (1.3)

where (x, y) ∈ R2 and the sinc function is defined as

sin t =


sin t

t
, t ̸= 0,

1, t = 0.

Series (1.3) converges absolutely and uniformly on R2 [11]. In fact, we can verify that Fang and Li’s formula,

(1.3), is justified also on C2 and converges uniformly on any compact subset of C2 . Recently, Asharabi and

Prestin introduced a modification of series (1.3) with a bivariate Gaussian multiplier, cf. [10].

Motivated by formula (1.2) and the Fang–Li formula, (1.3), we derive a general bivariate sampling series

for some classes of entire functions that satisfy some growth conditions. This new sampling expansion involving

samples from the function and its mixed and nonmixed partial derivatives. The sampling series of Parzen,

Peterson and Middleton, and Gosselin [12, 22, 23] will be special cases of our formula. To derive the desired

formula, we develop the contour integrals technique [25] for functions of two variables.

We organize this paper as follows: the next section is devoted to some auxiliary results that will be used

in the proofs of Sections 3 and 4. In Section 3, we present general bivariate sampling formulas with some useful

special formulas. The truncation error bound of the general bivariate sampling is established in Section 4 for

functions from the Bernstein space, Bp
σ(R2). Numerical examples and comparisons are given in the last section.

Now we state some results that we will use later on. Assuming that f(ζ) has s-derivatives, then the
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Leibniz formula for the product of several functions [28] is given by

d s

dζ s
fr+1(ζ) =

∑
k1+k2+...+kr+1=s

s!

k1!k2! . . . kr+1!

r+1∏
j=1

f (kj)(ζ), (1.4)

where the summation is taken over all partitions (k1, k2, . . . , kn) of n into nonnegative integers kj , j =

1, 2, . . . , r + 1 and f (k) := d kf/dζ k . Assuming that 1/f has s-derivatives, then we have [13, p. 22]

d s

dζ s

(
1

f(ζ)

)
=
∑ (−1)m s!m!

k1!k2! . . . kℓ! fm+1(ζ)

ℓ∏
j=1

(
f (j)(ζ)

j!

)kj

, (1.5)

where the symbol Σ indicates summation over all solutions in nonnegative integers of the equation
∑ℓ

j=1 j kj = s

and m =
∑ℓ

j=1 kj .

2. Auxiliary results

In this section, we introduce some auxiliary results that we will use in proofs of main results in Section 3 and

Section 4. Let S1 be the set

S1 := {z ∈ C : |z| ≤ M and z ̸= nh, n ∈ Z} , (2.1)

where M > 0, r ∈ N and h = (r + 1)π/σ . Choose z ∈ S1 and define a function gr on the complex plane by

gr(ζ) =
f(ζ)

(ζ − z) sinr+1(πh−1ζ)
.

Lemma 2.1 Let f be an entire function that satisfies one of the following growth conditions:

|f(ζ)| ≤ Cf e
σ|ℑζ|

1 + |ℜζ|
, |f(ζ)| ≤ Cf e

σ|ℑζ|

1 + |ℑζ|
, (2.2)

and let RN be the rectangular path whose vertices are ±τN ± iτN , τN = (N + 1/2)h . Then the integral∫
RN

gr(ζ) dζ converges to zero uniformly on S1 as N → ∞ .

Proof We prove this result only when f satisfies the first growth condition and the other proof is similar.

Choose N ∈ N so large that τN ≥ 2M . Observing that for any t ≥ δ > 0

sinh(t) ≥ αδe
t, (2.3)

where αδ = e2δ−1
2e2δ

, we get, for x ∈ R ,

∣∣sin (πh−1(x+ iτN )
)∣∣ ≥ ∣∣sinh(πh−1τN )

∣∣ ≥ απδ/h eπh
−1τN . (2.4)

Similarly, we have for |y| > δ ∣∣sin (πh−1(τN + iy)
)∣∣ ≥ απδ/h eπh

−1|y|. (2.5)
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For z ∈ S1 , τN ≥ 2M , and x, y ∈ R we have

|x+ iτN − z| ≥ τN −M and |τN + iy − z| ≥ τN −M. (2.6)

Let RN,1 be the upper horizontal path, RN,2 the right vertical path, RN,3 the lower horizontal path, and RN,4

the left vertical path of RN . On RN,1 , ζ is written as

ζ = x+ iτN , −τN ≤ x ≤ τN ,

and gr(ζ) is bounded by

|gr(x+ iτN )| ≤ Cf

απδ/h(1 + |x|)(τN −M)
,

where we have used the first growth of (2.2) and inequalities (2.4) and (2.6). Therefore,∫ τN

0

|gr (x+ iτN )|dx ≤ Cf ln(1 + τN )

απδ/h(τN −M)
. (2.7)

On RN,2 , ζ is expressed as

ζ = τN + iy, −τN ≤ y ≤ τN ,

and gr(ζ) is bounded by

|gr(τN + iy)| ≤ Cf

απδ/h(1 + τN )(τN −M)
,

where we have used the first growth of (2.2), (2.5), and inequalities (2.5) and (2.6). Thus,∫ τN

0

|gr (τN + iy))| dy ≤ Cf

απδ/h(τN −M)
. (2.8)

By the same computation it follows from (2.7) and (2.8) that∫
RN

|gr(ζ)| dζ ≤ 4Cf

απδ/h

{
ln(1 + τN )

τN −M
+

1

τN −M

}
,

and
∫
RN

|gr(ζ)| dζ converges to zero uniformly on S1 as N → ∞ . 2

For z, w, ζ, η ∈ C , we defined the following entire function:

ρr(z, w, ζ, η) : = sinr+1(πh−1z) sinr+1(πh−1η) + sinr+1(πh−1w) sinr+1(πh−1ζ)

− sinr+1(πh−1z) sinr+1(πh−1w). (2.9)

Lemma 2.2 Let f be an entire function of two variables. For all i, j ∈ N◦ such that i, j ≤ r and n,m ∈ Z ,

we have[
∂i+j

∂ηj∂ζi
f(ζ, η)ρr(z, w, ζ, η)

]
(ζ,η)=(nh,mh)

= − sinr+1(πh−1z) sinr+1(πh−1w)f (i,j)(nh,mh), (2.10)

where z, w ∈ C and

f (i,j) :=
∂i+jf

∂ηj∂ζi
, f (0,0) := f.
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Proof Using the Leibniz formula, we get for all i ∈ N◦ and i ≤ r

∂i

∂ζi

{
f(ζ, η)ρr(z, w, ζ, η)

}
ζ=nh

=
i∑

k=0

(
i
k

)
f (k,0)(nh, η)ρ(i−k)

r (z, w, nh, η). (2.11)

From the definition of ρr , (2.9), we can get

ρ(i−k)
r (z, w, nh, η) =

 sinr+1(πh−1z)
{
sinr+1(πh−1η)− sinr+1(πh−1w)

}
, k = i,

0, k < i.

Therefore,

∂i

∂ζi

{
f(ζ, η)ρr(z, w, ζ, η)

}
ζ=nh

= f (i,0)(nh, η) sinr+1(πh−1z)

[
sinr+1(πh−1η)− sinr+1(πh−1w)

]
.

(2.12)

Using the same arguments for the variable η , we get (2.10). 2

Lemma 2.3 For s ∈ Z+ , ζ ∈ C , and n ∈ Z , we have

[
ds

dζs

(
1

sin (ζ)

)]
ζ=0

=


0, s is odd,

∑ (−1)m s!m!

k2!k4! . . . k2ℓ!

ℓ∏
j=1

(
(−1)j

(2j + 1)!

)k2j

, s is even,
(2.13)

where the sum is taken over all solutions in nonnegative integers of the equation
∑ℓ

j=1 2j k2j = s and m =∑ℓ
j=1 k2j .

Proof Using the identity (1.5) for f(ζ) = sin (ζ), we obtain

ds

dζs

(
1

sin (ζ)

)
=
∑ (−1)m s!m!

k1!k2! . . . kℓ! sin
m+1 (ζ)

ℓ∏
j=1

(
sin(j) (ζ)

j!

)kj

, (2.14)

where the sum is taken over all solutions in nonnegative integers of the equation
∑ℓ

j=1 j kj = s and m =∑ℓ
j=1 kj . From [5, Eq. (22)], we have

[
dj

dζj
sin (ζ)

]
ζ=0

=


0, j is odd,

(−1)j/2

j + 1
, j is even,

(2.15)

When s is odd, we get at least one odd value of j for all solutions of
∑ℓ

j=1 j kj = s . Substituting from (2.15)

into (2.14) and using the fact sin(0) = 1, we get (2.13). 2
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For convenience, we set

δrs(ν) :=

[
ds

dζs

(
ζ − νh

sin (πh−1ζ)

)r+1
]
ζ=νh

. (2.16)

In the following lemma, we prove that |δrs(ν)| is independent of ν .

Lemma 2.4 Let r, s ∈ N◦ such that s ≤ r . Then we have for all ν ∈ Z

δrs(ν) = (−1)(r+1)ν

(
h

π

)r+1−s ∑
ℓ1 + ℓ2 + . . .+ ℓr+1 = s

ℓi is even

s!

ℓ1!ℓ2! . . . ℓr+1!

r+1∏
i=1

βi, (2.17)

where

βi =
∑ (−1)m (ℓi)!(mi)!

K2,i!K4,i! . . .K2τ,i!

τ∏
j=1

(
(−1)j

(2j + 1)!

)K2j,i

, (2.18)

such that the last sum is taken over all solutions in nonnegative integers of the equation
∑ℓ

j=1 2j K2j,i = ℓi and

mi =
∑ℓ

j=1 K2j,i .

Proof From the definition of δrs , we can see that

δrs(ν) =
ds

dζs

[(
ζ − νh

sin (πh−1ζ)

)r+1
]
ζ=νh

= (−1)(r+1)ν

(
h

π

)r+1−s
[
ds

dζs

(
1

sin (ζ)

)r+1
]
ζ=0

. (2.19)

Applying the general Leibniz formula (1.4), we obtain[
ds

dζs

(
1

sin (ζ)

)r+1
]
ζ=0

=
∑

ℓ1+ℓ2+...+ℓr+1=s

s!

ℓ1!ℓ2! . . . ℓr+1!

r+1∏
i=1

[
dℓi

dζℓi

(
1

sin (ζ)

)]
ζ=0

, (2.20)

where ℓj is a nonnegative number for all j = 1, 2, . . . , r+1. Combining (2.20), (2.19), and (2.13) implies (2.17).
2

3. General bivariate sampling

This section is devoted to establishing a generalized sampling formula for functions from different classes of

bivariate entire functions that satisfy certain growth conditions. Some known results will be special cases of our

formula. To derive this formula, we develop the contour integrals technique [25] for functions of two variables.

In Section 2, we defined the set S1 on the z -plane and here we define the set S2 on the w -plane as follows:

S2 := {w ∈ C : |w| ≤ M and w ̸= mh, m ∈ Z} . (3.1)

Choose any z ∈ S1 , w ∈ S2 and consider the kernel function

Kr(z, w, ζ, η) :=
f(ζ, η)ρr(z, w, ζ, η)

(ζ − z)(η − w) sinr+1(πh−1ζ) sinr+1(πh−1η)
, r ∈ N◦, (3.2)
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where f is an entire function of two variables and ρr is defined in (2.9). The kernel Kr has a singularity of

order one at all the points of the set {(z,C) , (C, w) : z and w are fixed in C} and a singularity of order r + 1

at all the points of the set {(nh,C) , (C,mh) : n,m ∈ Z} .

Theorem 3.1 Let f be an entire function satisfying the following growth condition:

|f(z, w)| ≤ Cf e
σ(|ℑz|+|ℑw|)

(1 + |ℜz|) (1 + |ℜw|)
. (3.3)

Then f can be expanded as the following bivariate sampling series

f(z, w) =
∑

(n,m)∈Z2

∑
i+s+ℓ=r

∑
j+τ+k=r

f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

, (3.4)

where (z, w) ∈ C2 , h = (r+1)π/σ and δrℓ is defined in (2.16). Series (3.4) converges uniformly on any compact

subset of C2 .

Proof We consider z, w , and η to be arbitrary fixed complex parameters and we consider the kernel

Kr(z, w, ζ, η) as a function of ζ . Let R1,N be the rectangular path whose vertices are ±(N+ 1
2 )h± i(N+ 1

2 )h on

the ζ -plane. Applying the classical Cauchy integral formula on the ζ -plane, see, e.g., [1, p. 141], [19, Chapter

3], we obtain

1

2πi

∮
R1,N

Kr(z, w, ζ, η) dζ = Res (Kr; (z, η)) +
N∑

n=−N

Res (Kr; (nh, η)) , (3.5)

where Res (Kr; (·, ·)) is denoted the residue of the function Kr at the point (·, ·). Now we consider the right-

hand side of (3.5) as a function of η and z, w are the arbitrary fixed complex parameters. Let R2,N be the

rectangular path whose vertices are ±(N + 1
2 )h ± i(N + 1

2 )h on the η -plane. Applying the classical Cauchy

integral formula on the η -plane, we get

1

(2πi)2

∮
R2,N

∮
R1,N

Kr(z, w, ζ, η) dζdη = Res (Kr; (z, w)) +

(N,N)∑
(n,m)=(−N,−N)

Res (Kr; (nh,mh)) . (3.6)

The residue at each point is

Res (Kr; (z, w)) = f(z, w), (3.7)

and for −N ≤ n,m ≤ N

Res (Kr; (nh,mh)) =
1

(r!)2
lim

η→mh

∂r

∂ηr

{
D(z, w, η)

(η − w)

(
η −mh

sin(πh−1η)

)r+1
}
, (3.8)

where

D(z, w, η) := lim
ζ→nh

∂r

∂ζr

{
f(ζ, η)ρr(z, w, ζ, η)

(ζ − z)

(
ζ − nh

sin(πh−1ζ)

)r+1
}
.
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Using the general Leibniz formula and (2.16), we get

D(z, w, η) = −
∑

i+s+ℓ=r

s!

(
r

i, s, ℓ

) [ ∂i

∂ζi f(ζ, η)ρr(z, w, ζ, η)
]
ζ=nh

(z − nh)s+1

[
dℓ

dζℓ

(
ζ − nh

sin (πh−1ζ)

)r+1
]
ζ=nh

= −r!
∑

i+s+ℓ=r

[
∂i

∂ζi
f(ζ, η)ρr(z, w, ζ, η)

]
ζ=nh

δrℓ (n)

i!ℓ!(z − nh)s+1
. (3.9)

Substituting from (3.9) in (3.8) and applying the general Leibniz formula and using the equalities (2.16) and

(2.10) yields

Res (Kr; (nh,mh)) =
∑

i+s+ℓ=r

∑
j+τ+k=r

δrℓ (n)δ
r
k(m)

[
∂i+j

∂ηj∂ζi f(ζ, η)ρr(z, w, ζ, η)
]
(ζ,η)=(nh,mh)

i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

= −
∑

i+s+ℓ=r

∑
j+τ+k=r

f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

.

(3.10)

Combining (3.10), (3.7), and (3.5), we get

f(z, w) −
(N,N)∑

(n,m)=(−N,−N)

∑
i+s+ℓ=r

∑
j+τ+k=r

f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

=
1

(2πi)
2

∮
R2,N

∮
R1,N

Kr(z, w, ζ, η) dζdη. (3.11)

With the use of the Cauchy integral formula in one dimension, the integral in the right-hand side of (3.11) may

be expanded to obtain the following representation:∮
R2,N

∮
R1,N

Kr(z, w, ζ, η) dζdη = 2πi sinr+1(πh−1z)

∮
R1,N

f(ζ, w) dζ

(ζ − z) sinr+1(πh−1ζ)

= 2πi sinr+1(πh−1w)

∮
R2,N

f(z, η) dη

(η − w) sinr+1(πh−1η)

−
∮
R2,N

∮
R1,N

sinr+1(πh−1z) sinr+1(πh−1w) f(ζ, η) dζdη

(ζ − z) sinr+1(πh−1ζ)(η − w) sinr+1(πh−1η)
.

Since f satisfies the growth condition (3.3), then all integrals in the right-hand side of (3.12) converge uniformly

to zero on S1×S2 as N → ∞ , see Lemma 2.1. Therefore, the integral in the right-hand side of (3.11) converges

uniformly to zero on S1 × S2 as N → ∞ and the sampling series (3.4) converges uniformly on S1 × S2 . When

z = nh , n ∈ Z , it is easy to verify that the sampling expansion

f(nh,w) =

∞∑
m=−∞

∑
j+τ+k=r

f (i,j) (nh,mh)
δrk(m) sinr+1

(
πh−1w

)
j!k!(w −mh)τ+1
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holds and converges uniformly on any compact subset of the w -plane, see [25, Theorem 3.1]. Similarly, when

w = mh , m ∈ Z , we have the sampling representation

f(z,mh) =
∞∑

n=−∞

∑
i+s+ℓ=r

f (i,j) (nh,mh)
δrℓ (n) sin

r+1
(
πh−1z

)
i!ℓ!(z − nh)s+1

,

which converges uniformly on any compact subset of the z -plane. The equality (3.4) holds for each point

(z, w) = (nh,mh), n,m ∈ Z . Hence, the sampling representation (3.4) holds for any (z, w) ∈ C2 such that

|z| ≤ M and |w| ≤ M . Since M > 0 is arbitrary, then series (3.4) is convergent uniformly on any compact

subset of C2 . 2

Theorem 3.2 Let f be an entire function satisfying the following growth condition:

|f(z, w)| ≤ Cf e
σ(|ℑz|+|ℑw|)

(1 + |ℑz|) (1 + |ℑw|)
. (3.12)

Then f can be expanded as (3.4) and the series converges uniformly on any compact subset of C2 .

Proof Following the proof of the above theorem, we can replace the growth condition (3.3) by (3.12) and

obtain the expansion (3.4). 2

Theorem 3.3 Let f ∈ Bp
σ(R2) , 1 ≤ p < ∞ , and then we have the following bivariate sampling expansion:

f(z, w) =
∑

(n,m)∈Z2

∑
i+s+ℓ=r

∑
j+τ+k=r

f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

, (3.13)

where h = (r + 1)π/σ′ and σ′ ≥ σ . Series (3.13) converges uniformly on any compact subset of C2 .

Proof Since f ∈ Bp
σ(R2), then function f has the following growth:

|f(z, w)| ≤ Af eσ(|ℑz|+|ℑw|), (3.14)

where Af is a positive number. Let σ′ > σ . Since f satisfies ( 3.14), it is easy to verify that f satisfies the

following growth:

|f(z, w)| ≤
A′

f e
σ′(|ℑz|+|ℑw|)

(1 + |ℑz|) (1 + |ℑw|)
.

By Theorem 3.2, the sampling expansion (3.13) holds and the series converges uniformly on any compact subsets

of C2 . Finally, it is not hard to check that the series (3.13) is valid when σ = σ′ . 2

The following known sampling series is a special case of our series (3.13):

Corollary 3.4 Let f ∈ Bp
σ(R2) , 1 ≤ p < ∞ , and then we have

f(z, w) =
∞∑

n=−∞

∞∑
m=−∞

f
(nπ

σ
,
mπ

σ

)
sin (σz − nπ) sin (σw −mπ) , (z, w) ∈ C2. (3.15)

Series (3.15) converges uniformly on any compact subset of C2 .

395



ASHARABI and AL-HADDAD/Turk J Math

Proof Letting r = 0 in (3.13) implies i = s = ℓ = j = τ = k = 0, and from (2.17), we get

δ00(ν) sin
(
πh−1ζ

)
ζ − νh

= sin (σζ − νπ) , ∀ ζ ∈ C, ν ∈ Z,

since h = π/σ . Therefore, (3.15) is proved. 2

Remark 3.5 Formula (3.15) goes back to Parzen (1956), Peterson and Middleton (1962), and Gosselin (1963)

[12, 22, 23]. They proved it for real-valued functions from Paley–Wiener space, B2
σ(R2) . Since B2

σ(R2) ⊆
Bp

σ(R2) for p ≥ 2 , then (3.15) extends the result of Parzen, Peterson and Middleton, and Gosselin for complex-

valued functions from Bernstein space, Bp
σ(R2) , 1 ≤ p < ∞ .

The generalized sampling series (3.13) uses samples from the function itself and its mixed and nonmixed

derivatives up to order 2r . In the special case when r = 1, we get the following series:

Corollary 3.6 Let f ∈ Bp
σ(R2) , 1 ≤ p < ∞ , and then we have the sampling series

f(z, w) =

∞∑
n=−∞

∞∑
m=−∞

{
f

(
2nπ

σ
,
2mπ

σ

)
+

(
z − 2nπ

σ

)
f ′
z

(
2nπ

σ
,
2mπ

σ

)
+

(
w − 2mπ

σ

)
f ′
w

(
2nπ

σ
,
2mπ

σ

)

+

(
z − 2nπ

σ

)(
w − 2mπ

σ

)
f ′′
zw

(
2nπ

σ
,
2mπ

σ

)}
sin2 ((σ/2)z − nπ) sin2 ((σ/2)w −mπ) , (3.16)

which converges uniformly on any compact subset of C2 .

Proof From (2.16), we have δ10(ν) = (h/π)
2
and δ11(ν) = 0 for all ν ∈ Z . Since f ∈ Bp

σ(R2), then the

bandwidth of functions is equal to σ and hence h = 2π/σ . Letting r = 1 in (3.13) implies (3.16). 2

Remark 3.7 The sampling series (3.16) and Fang and Li’s series (1.3) are valid for the same class of functions,

Bp
σ(R2) , 1 ≤ p < ∞ , but our formula gives us high accuracy of approximations, see Section 5. Series (3.16) is

a version of the Hermite series, which involves sample values from the function itself and its partial and mixed

partial derivatives of functions f ∈ Bp
σ(R2) , while series (1.3) does not involve samples from mixed partial

derivatives of the function.

4. Truncation error bound

The bounds of the truncation error of sampling series (1.2), when r = 0 and r = 1, have been studied widely

under the assumption that f satisfies a decay condition, cf., e.g., [4, 5] and their references. In 2012, Ye and

Song studied the truncation error of Whittaker–Kotelnikov–Shannon sampling, which is a special case of (1.2)

when r = 0, for real-valued functions from Bp
σ(R) based on localized sampling without decay assumption [30].

In this section, we extend the technique of [30] to find a bound for the truncation error of the series (3.4). For

any positive number N , we truncate the series (3.4) as follows:

T r
N [f ](z, w) =

∑
(n,m)∈Z2

N
(z,w)

∑
i+s+ℓ=r

∑
j+τ+k=r

f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!l!j!k!(z − nh)s+1(w −mh)τ+1

, (4.1)
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where (z, w) ∈ C2 and

Z2
N (z, w) :=

{
(n,m) ∈ Z2 : |⌊h−1ℜz⌋ − n| ≤ N, |⌊h−1ℜw⌋ −m| ≤ N

}
. (4.2)

Here ⌊x⌋ is the integer part of x . That is, if we want to estimate f , we only sum over values of f on a part

of hZ near ℜz and ℜw . Now we introduce two introductory lemmas that we will use in the proof of the main

result of this section.

Lemma 4.1 Let p, q > 1 such that 1/p+ 1/q = 1 . Then for any ζ ∈ C and j ∈ N◦ , we have

∑
|⌊h−1ℜζ⌋−k|>N

∣∣sin (πh−1ζ − kπ
)∣∣(j+1)q ≤ Cj e

jπh−1|ℑζ| N−j−1/p, (4.3)

where h = (r + 1)π/σ′ , σ′ ≥ σ > 0 and Cj,p = 2π−(j+1)
(

pj+1
p−1

)1/p−1

.

Proof The sum in (4.3) is periodic with period h , as a function of ζ . Indeed, for all ζ ∈ C , we have

∑
|⌊h−1ℜ(ζ+h)⌋−k|>N

∣∣sin (πh−1(ζ + h)− kπ
)∣∣(j+1)q

=
∑

|⌊h−1ℜζ⌋−(k−1)|>N

∣∣sin (πh−1ζ − (k − 1)π
)∣∣(j+1)q

.

Replacing k−1 by k , the h -periodicity of the sum of (4.3) is proved. From the periodicity of the sum in (4.3),

it is sufficient to prove the lemma only on the strip Sh = {ζ ∈ C : 0 ≤ ℜζ < h} . Using the definition of the sinc

function and the facts that |sin(ζ)| ≤ exp(|ℑζ|) and |ℜζ| ≤ |ζ| , we obtain

∣∣sin (πh−1ζ − kπ
)∣∣ ≤ exp(πh−1|ℑζ|)

|πh−1ℜζ − kπ|
. (4.4)

It can be verified that for any ζ ∈ Sh

 ∑
|⌊h−1ℜζ⌋−k|>N

∣∣sin (πh−1ζ − kπ
)∣∣(j+1)q


1/q

≤ e(j+1)πh−1|ℑζ|

π(j+1)

 ∑
|⌊h−1ℜζ⌋−k|>N

1

|h−1ℜζ − k|(j+1)q


1/q

≤ e(j+1)πh−1|ℑζ|

π(j+1)

 ∑
|k|>N

1

|k|(j+1)q

1/q

≤ 2e(j+1)πh−1|ℑζ|

π(j+1)

(∫ ∞

N

1

t(j+1)q
dt

)1/q

= Cj,p e(j+1)πh−1|ℑζ| N−j−1/p, (4.5)

where we have used that the sequence of function 1/|h−1ℜζ − k|(j+1)q attains its maximum in the strip Sh at

ζ = 0 and ⌊h−1ℜζ⌋ = 0 in Sh . 2

Remark 4.2 The special case of (4.3) when ζ ∈ R and j = 1 was considered by Ye and Song in [30, p. 415].
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For convenience, we let

Ss,τ
N,q(z, w) :=

 ∑
(n,m)∈Z2\Z2

N (z,w)

∣∣sins+1
(
πh−1z − nπ

)
sinτ+1

(
πh−1w −mπ

)∣∣q1/q

. (4.6)

Lemma 4.3 Let p, q > 1 and 1/p+ 1/q = 1 . For any (z, w) ∈ C2 and s, τ ∈ N◦ , we have

Ss,τ
N,q(z, w) ≤ p

(
Cs,pN

−s + Cτ,pN
−τ
)
e(s+1)πh−1|ℑz|e(τ+1)πh−1|ℑw|N−1/p. (4.7)

Proof From the definitions of Ss,τ
N,q(z, w) and Z2

N (z, w), we obtain

(
Ss,τ
N,q(z, w)

)q
≤

∑
|⌊h−1ℜz⌋−n|>N

∣∣sin (πh−1z − nπ
)∣∣(s+1)q

∞∑
m=−∞

∣∣sin (πh−1w −mπ
)∣∣(τ+1)q

+
∞∑

n=−∞

∣∣sin (πh−1z − nπ
)∣∣(s+1)q ∑

|⌊h−1ℜw⌋−m|>N

∣∣sin (πh−1w −mπ
)∣∣(τ+1)q

.

(4.8)

Since |sin(ζ)| ≤ exp(|ℑζ|), then we have

∞∑
k=−∞

∣∣sin (πh−1ζ − kπ
)∣∣(j+1)q ≤ ejqπh

−1|ℑζ|
∞∑

k=−∞

∣∣sin (πh−1ζ − kπ
)∣∣q , (4.9)

for all j ∈ N◦ and ζ ∈ C . Combining the inequality of [2, Lemma 2.5]

∞∑
k=−∞

∣∣sin (πh−1ζ − kπ
)∣∣q ≤ pq eqπh

−1|ℑζ|,

and (4.9) with (4.8) implies (4.7). 2

Theorem 4.4 Let f ∈ Bp
σ(R2) , 1 ≤ p < ∞ . Then for all (z, w) ∈ C2 , we have

|(f − T r
N [f ])(z, w)| ≤ B h−2/p∥f∥p Dr

N e(r+1)πh−1(|ℑz|+|ℑw|) N−1/p, (4.10)

where B is positive constant, h = (r + 1)π/σ′ , σ′ ≥ σ , and

Dr
N :=

∑
i+s+ℓ=r

σi |δrℓ (n)|
i!ℓ!

(
π

h

)s+1

N−s +
∑

j+τ+k=r

σj |δrk(n)|
j!k!

(
π

h

)τ+1

N−τ . (4.11)
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Proof Since f ∈ Bp
σ(R2), we can apply the expansion (3.4). Together with (4.1) and the triangle inequality,

we obtain

|(f − T r
N [f ])(z, w)| ≤

∑
(n,m)/∈Z2

N
(z,w)

∑
i+s+ℓ=r

∑
j+τ+k=r

∣∣∣∣∣f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

∣∣∣∣∣
=

∑
i+s+ℓ=r

∑
j+τ+k=r

∑
(n,m)/∈Z2

N
(z,w)

∣∣∣∣∣f (i,j) (nh,mh)
δrℓ (n)δ

r
k(m) sinr+1

(
πh−1z

)
sinr+1

(
πh−1w

)
i!ℓ!j!k!(z − nh)s+1(w −mh)τ+1

∣∣∣∣∣ ,
(4.12)

where the interchange of the sums is justified by the absolute convergence of the series (3.4). It is easy to see

that

sinr+1
(
πh−1ζ

)
(ζ − νh)s+1

= (−1)(s+1)ν(πh−1)s+1 sinr−s
(
πh−1ζ

)
sins+1

(
πh−1ζ − νπ

)
. (4.13)

Combining (4.13) and (4.12) with |sin(ζ)| ≤ exp(|ℑζ|), we obtain

|(f − T r
N [f ])(z, w)| ≤

∑
i+s+ℓ=r

Ar
ℓ

i!ℓ!

(
π

h

)s+1

e(r−s)πh−1|ℑz|
∑

j+τ+k=r

Ar
k

j!k!

(
π

h

)τ+1

e(r−τ)πh−1|ℑw|

×
∑

(n,m)/∈Z2
N (z,w)

∣∣∣f (i,j) (nh,mh) sins+1
(
πh−1z − nπ

)
sinτ+1

(
πh−1w −mπ

)∣∣∣ ,
(4.14)

where we have used that the sequences Ar
ℓ := |δrℓ (n)| and Ar

k := |δrk(m)| are independent of n,m ∈ Z , see

Lemma 2.4. Let p, q > 1 such that 1/p+ 1/q = 1. Applying the general Hölder inequality yields∑
(n,m)/∈Z2

N (z,w)

∣∣∣f (i,j) (nh,mh) sins+1
(
πh−1z − nπ

)
sinτ+1

(
πh−1w −mπ

)∣∣∣

≤

 ∑
(n,m)∈Z2

∣∣∣f (i,j) (nh,mh)
∣∣∣p
1/p

Ss,τ
N,q(z, w), (4.15)

where Ss,τ
N,q(z, w) is defined in (4.6). Because of f ∈ Bp

σ(R2) ⊂ Bp
σ′(R2), we have f (i,j) ∈ Bp

σ′(R2) for all

i, j ∈ N and (see [21, pp. 123–124]) ∑
(n,m)∈Z2

∣∣∣f (i,j) (nh,mh)
∣∣∣p
1/p

≤ B h−2/p∥f (i,j)∥p ≤ B h−2/p(σ′)i+j∥f∥p, (4.16)

where we used the Bernstein inequality [21, p. 116] in the last step of (4.16). 2

Corollary 4.5 Let f ∈ Bp
σ(R2) , 1 ≤ p < ∞ . For all (x, y) ∈ R2 , we have the following uniform bound:

|(f − T r
N [f ])(z, w)| ≤ B h−2/p∥f∥pDr

NN−1/p, (4.17)

where h = (r + 1)π/σ′ , σ′ ≥ σ and Dr
N is defined in (4.11).
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Remark 4.6 Letting r = 0 in (4.17), we exactly get Asharabi and Prestin’s bound in [10, Lemma 2.2].

5. Numerical examples and comparisons

In this section, we discuss three examples that are devoted to a numerical comparison between the new

sampling formula (3.13) and Fang and Li’s sampling formula (1.3). We restrict ourselves in Example 1 to

the cases r = 1, 2 and the other examples to the case r = 1. We approximate the function f at the points

(xi, yj) = (i − 1/2, j − 1/2) where i, j ∈ Z+ and we summarize the results in some tables and illustrate the

absolute errors by figures. In all examples, we use σ′ = σ + 10−1 and we find that the sampling formula (3.13)

gives us highly accurate approximations compared with the results of Fang and Li’s formula (1.3). We truncate

the series (1.3) as follows:

TN [f ](x, y) =
∑

(n,m)∈ZN (x,y)

{
f

(
2nπ

σ
,
2mπ

σ

)
+

(
x− 2nπ

σ

)
f ′
x

(
2nπ

σ
,
2mπ

σ

)

+

(
y − 2mπ

σ

)
f ′
y

(
2nπ

σ
,
2mπ

σ

)}
sin2 ((σ/2)x− nπ) sin2 ((σ/2)y −mπ) , (5.1)

where (x, y) ∈ R2 and ZN (x, y) is defined above.

Example 5.1 Consider the following function from B2
1(R2) :

f(x, y) = sin
(√

x2 + 1
)

sin
(√

y2 + 1
)
.

In Table 1, we approximate f using sampling formula (3.13) and Fang and Li’s formula (1.3). Figures 1 and

Table 1. Error approximating f when N = 12.

(x, x) ∈ R2 Fang and Li’s formula (1.3) Sampling formula (3.13)∣∣∣f(x, y)− TN [f ](x, y)
∣∣∣ ∣∣∣f(x, y)− T 1

N [f ](x, y)
∣∣∣ ∣∣∣f(x, y)− T 2

N [f ](x, y)
∣∣∣

(0.5, 0.5) 1.23678×10−3 1.39765×10−4 3.70169×10−7

(0.5, 1.5) 3.76975×10−3 5.58342×10−4 4.73431×10−6

(1.5, 0.5) 3.76975×10−3 5.58342×10−4 4.73431×10−6

(1.5, 1.5) 1.40714×10−2 6.86209×10−4 6.18844×10−6

2 show the graphs of the absolute error of formulas (1.3) and (3.13) respectively on the region [0, π]× [0, π] for

N = 12 .

Example 5.2 In this example, we approximate the function

f(x, y) =
sin(πx) sin(πy)

π2(x2 − 1)(y2 − 1)
∈ B2

π(R2), (x, y) ∈ R2.

In Table 2, we show the numerical results with the absolute errors, and the graphs of the absolute errors are

given in Figures 3 and 4.

400



ASHARABI and AL-HADDAD/Turk J Math

N=12

1

2

3
x

1

2

3

y

0

0.05

0.1

1

2

3
x

Figure 1. f(x, y)− T12[f ](x, y) .

N=12,r=2

1

2

3
x

1

2

3

y

0
2·10-6
4·10-6
6·10-6

1

2

3
x

Figure 2. f(x, y)− T 2
12[f ](x, y) .

Table 2. Error approximating f when N = 10.

(x, y) ∈ R2 Fang and Li’s formula (1.3) Sampling formula (3.13)∣∣∣f(x, y)− TN [f ](x, y)
∣∣∣ ∣∣∣f(x, y)− T 1

N [f ](x, y)
∣∣∣

(0.5, 0.5) 0.180127 2.15377×10−6

(0.5, 1.5) 0.108076 3.27096×10−6

(1.5, 0.5) 0.108076 3.27096×10−6

(1.5, 1.5) 0.064846 3.14982×10−6

N=10

0.5
1

1.5

2
x

0.5

1

1.5

2

y

0

0.1

0.2

0.5
1

1.5

2
x

Figure 3. f(x, y)− T10[f ](x, y) .

N=10,r=1

0.5
1

1.5
2

x
0.5

1

1.5

2

y

-7.5·10-6
-5·10-6

-2.5·10-6
0

0.5
1

1.5
2

x

Figure 4. f(x, y)− T 1
10[f ](x, y) .

Example 5.3 The function

f(z, w) = sin(1)(z) sin(1)(w), (z, w) ∈ C2,

belongs to B2
1(R2) . In this case, we apply Fang and Li’s formula (1.3) because it is also justified on C2 as we

mentioned in Section 1. Therefore, we approximate f using (3.13) and Fang and Li’s formula (1.3).
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Table 3. Error approximating when N = 15.

(z, w) ∈ C2 Fang and Li’s formula (1.3) Sampling formula (3.13)∣∣∣f(z, w)− TN [f ](z, w)
∣∣∣ ∣∣∣f(z, w)− T 1

N [f ](z, w)
∣∣∣

(1 + i, 1 + i) 0.223874 1.23309×10−6

(1 + i, 2 + i) 0.270242 2.54352×10−6

(2 + i, 1 + i) 0.326213 2.54352×10−6

(2 + i, 2 + i) 0.326213 4.50832×10−6
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